mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-22 15:23:42 +00:00
b0350c1c30
Use CODEC_CAP_DELAY and CODEC_CAP_SMALL_LAST_FRAME to properly pad and flush the encoder at the end of encoding. This is needed in order to have all input samples decoded.
553 lines
18 KiB
C
553 lines
18 KiB
C
/*
|
|
* Real Audio 1.0 (14.4K) encoder
|
|
* Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Real Audio 1.0 (14.4K) encoder
|
|
* @author Francesco Lavra <francescolavra@interfree.it>
|
|
*/
|
|
|
|
#include <float.h>
|
|
|
|
#include "avcodec.h"
|
|
#include "put_bits.h"
|
|
#include "celp_filters.h"
|
|
#include "ra144.h"
|
|
|
|
|
|
static av_cold int ra144_encode_close(AVCodecContext *avctx)
|
|
{
|
|
RA144Context *ractx = avctx->priv_data;
|
|
ff_lpc_end(&ractx->lpc_ctx);
|
|
av_freep(&avctx->coded_frame);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static av_cold int ra144_encode_init(AVCodecContext * avctx)
|
|
{
|
|
RA144Context *ractx;
|
|
int ret;
|
|
|
|
if (avctx->channels != 1) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n",
|
|
avctx->channels);
|
|
return -1;
|
|
}
|
|
avctx->frame_size = NBLOCKS * BLOCKSIZE;
|
|
avctx->delay = avctx->frame_size;
|
|
avctx->bit_rate = 8000;
|
|
ractx = avctx->priv_data;
|
|
ractx->lpc_coef[0] = ractx->lpc_tables[0];
|
|
ractx->lpc_coef[1] = ractx->lpc_tables[1];
|
|
ractx->avctx = avctx;
|
|
ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER,
|
|
FF_LPC_TYPE_LEVINSON);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
avctx->coded_frame = avcodec_alloc_frame();
|
|
if (!avctx->coded_frame) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
ra144_encode_close(avctx);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* Quantize a value by searching a sorted table for the element with the
|
|
* nearest value
|
|
*
|
|
* @param value value to quantize
|
|
* @param table array containing the quantization table
|
|
* @param size size of the quantization table
|
|
* @return index of the quantization table corresponding to the element with the
|
|
* nearest value
|
|
*/
|
|
static int quantize(int value, const int16_t *table, unsigned int size)
|
|
{
|
|
unsigned int low = 0, high = size - 1;
|
|
|
|
while (1) {
|
|
int index = (low + high) >> 1;
|
|
int error = table[index] - value;
|
|
|
|
if (index == low)
|
|
return table[high] + error > value ? low : high;
|
|
if (error > 0) {
|
|
high = index;
|
|
} else {
|
|
low = index;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Orthogonalize a vector to another vector
|
|
*
|
|
* @param v vector to orthogonalize
|
|
* @param u vector against which orthogonalization is performed
|
|
*/
|
|
static void orthogonalize(float *v, const float *u)
|
|
{
|
|
int i;
|
|
float num = 0, den = 0;
|
|
|
|
for (i = 0; i < BLOCKSIZE; i++) {
|
|
num += v[i] * u[i];
|
|
den += u[i] * u[i];
|
|
}
|
|
num /= den;
|
|
for (i = 0; i < BLOCKSIZE; i++)
|
|
v[i] -= num * u[i];
|
|
}
|
|
|
|
|
|
/**
|
|
* Calculate match score and gain of an LPC-filtered vector with respect to
|
|
* input data, possibly othogonalizing it to up to 2 other vectors
|
|
*
|
|
* @param work array used to calculate the filtered vector
|
|
* @param coefs coefficients of the LPC filter
|
|
* @param vect original vector
|
|
* @param ortho1 first vector against which orthogonalization is performed
|
|
* @param ortho2 second vector against which orthogonalization is performed
|
|
* @param data input data
|
|
* @param score pointer to variable where match score is returned
|
|
* @param gain pointer to variable where gain is returned
|
|
*/
|
|
static void get_match_score(float *work, const float *coefs, float *vect,
|
|
const float *ortho1, const float *ortho2,
|
|
const float *data, float *score, float *gain)
|
|
{
|
|
float c, g;
|
|
int i;
|
|
|
|
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
|
|
if (ortho1)
|
|
orthogonalize(work, ortho1);
|
|
if (ortho2)
|
|
orthogonalize(work, ortho2);
|
|
c = g = 0;
|
|
for (i = 0; i < BLOCKSIZE; i++) {
|
|
g += work[i] * work[i];
|
|
c += data[i] * work[i];
|
|
}
|
|
if (c <= 0) {
|
|
*score = 0;
|
|
return;
|
|
}
|
|
*gain = c / g;
|
|
*score = *gain * c;
|
|
}
|
|
|
|
|
|
/**
|
|
* Create a vector from the adaptive codebook at a given lag value
|
|
*
|
|
* @param vect array where vector is stored
|
|
* @param cb adaptive codebook
|
|
* @param lag lag value
|
|
*/
|
|
static void create_adapt_vect(float *vect, const int16_t *cb, int lag)
|
|
{
|
|
int i;
|
|
|
|
cb += BUFFERSIZE - lag;
|
|
for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++)
|
|
vect[i] = cb[i];
|
|
if (lag < BLOCKSIZE)
|
|
for (i = 0; i < BLOCKSIZE - lag; i++)
|
|
vect[lag + i] = cb[i];
|
|
}
|
|
|
|
|
|
/**
|
|
* Search the adaptive codebook for the best entry and gain and remove its
|
|
* contribution from input data
|
|
*
|
|
* @param adapt_cb array from which the adaptive codebook is extracted
|
|
* @param work array used to calculate LPC-filtered vectors
|
|
* @param coefs coefficients of the LPC filter
|
|
* @param data input data
|
|
* @return index of the best entry of the adaptive codebook
|
|
*/
|
|
static int adaptive_cb_search(const int16_t *adapt_cb, float *work,
|
|
const float *coefs, float *data)
|
|
{
|
|
int i, best_vect;
|
|
float score, gain, best_score, best_gain;
|
|
float exc[BLOCKSIZE];
|
|
|
|
gain = best_score = 0;
|
|
for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) {
|
|
create_adapt_vect(exc, adapt_cb, i);
|
|
get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain);
|
|
if (score > best_score) {
|
|
best_score = score;
|
|
best_vect = i;
|
|
best_gain = gain;
|
|
}
|
|
}
|
|
if (!best_score)
|
|
return 0;
|
|
|
|
/**
|
|
* Re-calculate the filtered vector from the vector with maximum match score
|
|
* and remove its contribution from input data.
|
|
*/
|
|
create_adapt_vect(exc, adapt_cb, best_vect);
|
|
ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER);
|
|
for (i = 0; i < BLOCKSIZE; i++)
|
|
data[i] -= best_gain * work[i];
|
|
return best_vect - BLOCKSIZE / 2 + 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Find the best vector of a fixed codebook by applying an LPC filter to
|
|
* codebook entries, possibly othogonalizing them to up to 2 other vectors and
|
|
* matching the results with input data
|
|
*
|
|
* @param work array used to calculate the filtered vectors
|
|
* @param coefs coefficients of the LPC filter
|
|
* @param cb fixed codebook
|
|
* @param ortho1 first vector against which orthogonalization is performed
|
|
* @param ortho2 second vector against which orthogonalization is performed
|
|
* @param data input data
|
|
* @param idx pointer to variable where the index of the best codebook entry is
|
|
* returned
|
|
* @param gain pointer to variable where the gain of the best codebook entry is
|
|
* returned
|
|
*/
|
|
static void find_best_vect(float *work, const float *coefs,
|
|
const int8_t cb[][BLOCKSIZE], const float *ortho1,
|
|
const float *ortho2, float *data, int *idx,
|
|
float *gain)
|
|
{
|
|
int i, j;
|
|
float g, score, best_score;
|
|
float vect[BLOCKSIZE];
|
|
|
|
*idx = *gain = best_score = 0;
|
|
for (i = 0; i < FIXED_CB_SIZE; i++) {
|
|
for (j = 0; j < BLOCKSIZE; j++)
|
|
vect[j] = cb[i][j];
|
|
get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g);
|
|
if (score > best_score) {
|
|
best_score = score;
|
|
*idx = i;
|
|
*gain = g;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Search the two fixed codebooks for the best entry and gain
|
|
*
|
|
* @param work array used to calculate LPC-filtered vectors
|
|
* @param coefs coefficients of the LPC filter
|
|
* @param data input data
|
|
* @param cba_idx index of the best entry of the adaptive codebook
|
|
* @param cb1_idx pointer to variable where the index of the best entry of the
|
|
* first fixed codebook is returned
|
|
* @param cb2_idx pointer to variable where the index of the best entry of the
|
|
* second fixed codebook is returned
|
|
*/
|
|
static void fixed_cb_search(float *work, const float *coefs, float *data,
|
|
int cba_idx, int *cb1_idx, int *cb2_idx)
|
|
{
|
|
int i, ortho_cb1;
|
|
float gain;
|
|
float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
|
|
float vect[BLOCKSIZE];
|
|
|
|
/**
|
|
* The filtered vector from the adaptive codebook can be retrieved from
|
|
* work, because this function is called just after adaptive_cb_search().
|
|
*/
|
|
if (cba_idx)
|
|
memcpy(cba_vect, work, sizeof(cba_vect));
|
|
|
|
find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL,
|
|
data, cb1_idx, &gain);
|
|
|
|
/**
|
|
* Re-calculate the filtered vector from the vector with maximum match score
|
|
* and remove its contribution from input data.
|
|
*/
|
|
if (gain) {
|
|
for (i = 0; i < BLOCKSIZE; i++)
|
|
vect[i] = ff_cb1_vects[*cb1_idx][i];
|
|
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
|
|
if (cba_idx)
|
|
orthogonalize(work, cba_vect);
|
|
for (i = 0; i < BLOCKSIZE; i++)
|
|
data[i] -= gain * work[i];
|
|
memcpy(cb1_vect, work, sizeof(cb1_vect));
|
|
ortho_cb1 = 1;
|
|
} else
|
|
ortho_cb1 = 0;
|
|
|
|
find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
|
|
ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
|
|
}
|
|
|
|
|
|
/**
|
|
* Encode a subblock of the current frame
|
|
*
|
|
* @param ractx encoder context
|
|
* @param sblock_data input data of the subblock
|
|
* @param lpc_coefs coefficients of the LPC filter
|
|
* @param rms RMS of the reflection coefficients
|
|
* @param pb pointer to PutBitContext of the current frame
|
|
*/
|
|
static void ra144_encode_subblock(RA144Context *ractx,
|
|
const int16_t *sblock_data,
|
|
const int16_t *lpc_coefs, unsigned int rms,
|
|
PutBitContext *pb)
|
|
{
|
|
float data[BLOCKSIZE], work[LPC_ORDER + BLOCKSIZE];
|
|
float coefs[LPC_ORDER];
|
|
float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
|
|
int16_t cba_vect[BLOCKSIZE];
|
|
int cba_idx, cb1_idx, cb2_idx, gain;
|
|
int i, n, m[3];
|
|
float g[3];
|
|
float error, best_error;
|
|
|
|
for (i = 0; i < LPC_ORDER; i++) {
|
|
work[i] = ractx->curr_sblock[BLOCKSIZE + i];
|
|
coefs[i] = lpc_coefs[i] * (1/4096.0);
|
|
}
|
|
|
|
/**
|
|
* Calculate the zero-input response of the LPC filter and subtract it from
|
|
* input data.
|
|
*/
|
|
memset(data, 0, sizeof(data));
|
|
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE,
|
|
LPC_ORDER);
|
|
for (i = 0; i < BLOCKSIZE; i++) {
|
|
zero[i] = work[LPC_ORDER + i];
|
|
data[i] = sblock_data[i] - zero[i];
|
|
}
|
|
|
|
/**
|
|
* Codebook search is performed without taking into account the contribution
|
|
* of the previous subblock, since it has been just subtracted from input
|
|
* data.
|
|
*/
|
|
memset(work, 0, LPC_ORDER * sizeof(*work));
|
|
|
|
cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs,
|
|
data);
|
|
if (cba_idx) {
|
|
/**
|
|
* The filtered vector from the adaptive codebook can be retrieved from
|
|
* work, see implementation of adaptive_cb_search().
|
|
*/
|
|
memcpy(cba, work + LPC_ORDER, sizeof(cba));
|
|
|
|
ff_copy_and_dup(cba_vect, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1);
|
|
m[0] = (ff_irms(cba_vect) * rms) >> 12;
|
|
}
|
|
fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx);
|
|
for (i = 0; i < BLOCKSIZE; i++) {
|
|
cb1[i] = ff_cb1_vects[cb1_idx][i];
|
|
cb2[i] = ff_cb2_vects[cb2_idx][i];
|
|
}
|
|
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE,
|
|
LPC_ORDER);
|
|
memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
|
|
m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8;
|
|
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE,
|
|
LPC_ORDER);
|
|
memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
|
|
m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8;
|
|
best_error = FLT_MAX;
|
|
gain = 0;
|
|
for (n = 0; n < 256; n++) {
|
|
g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) *
|
|
(1/4096.0);
|
|
g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) *
|
|
(1/4096.0);
|
|
error = 0;
|
|
if (cba_idx) {
|
|
g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) *
|
|
(1/4096.0);
|
|
for (i = 0; i < BLOCKSIZE; i++) {
|
|
data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] +
|
|
g[2] * cb2[i];
|
|
error += (data[i] - sblock_data[i]) *
|
|
(data[i] - sblock_data[i]);
|
|
}
|
|
} else {
|
|
for (i = 0; i < BLOCKSIZE; i++) {
|
|
data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i];
|
|
error += (data[i] - sblock_data[i]) *
|
|
(data[i] - sblock_data[i]);
|
|
}
|
|
}
|
|
if (error < best_error) {
|
|
best_error = error;
|
|
gain = n;
|
|
}
|
|
}
|
|
put_bits(pb, 7, cba_idx);
|
|
put_bits(pb, 8, gain);
|
|
put_bits(pb, 7, cb1_idx);
|
|
put_bits(pb, 7, cb2_idx);
|
|
ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms,
|
|
gain);
|
|
}
|
|
|
|
|
|
static int ra144_encode_frame(AVCodecContext *avctx, uint8_t *frame,
|
|
int buf_size, void *data)
|
|
{
|
|
static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4};
|
|
static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
|
|
RA144Context *ractx = avctx->priv_data;
|
|
PutBitContext pb;
|
|
int32_t lpc_data[NBLOCKS * BLOCKSIZE];
|
|
int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER];
|
|
int shift[LPC_ORDER];
|
|
int16_t block_coefs[NBLOCKS][LPC_ORDER];
|
|
int lpc_refl[LPC_ORDER]; /**< reflection coefficients of the frame */
|
|
unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */
|
|
const int16_t *samples = data;
|
|
int energy = 0;
|
|
int i, idx;
|
|
|
|
if (ractx->last_frame)
|
|
return 0;
|
|
|
|
if (buf_size < FRAMESIZE) {
|
|
av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Since the LPC coefficients are calculated on a frame centered over the
|
|
* fourth subframe, to encode a given frame, data from the next frame is
|
|
* needed. In each call to this function, the previous frame (whose data are
|
|
* saved in the encoder context) is encoded, and data from the current frame
|
|
* are saved in the encoder context to be used in the next function call.
|
|
*/
|
|
for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) {
|
|
lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
|
|
energy += (lpc_data[i] * lpc_data[i]) >> 4;
|
|
}
|
|
if (data) {
|
|
int j;
|
|
for (j = 0; j < avctx->frame_size && i < NBLOCKS * BLOCKSIZE; i++, j++) {
|
|
lpc_data[i] = samples[j] >> 2;
|
|
energy += (lpc_data[i] * lpc_data[i]) >> 4;
|
|
}
|
|
}
|
|
if (i < NBLOCKS * BLOCKSIZE)
|
|
memset(&lpc_data[i], 0, (NBLOCKS * BLOCKSIZE - i) * sizeof(*lpc_data));
|
|
energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab,
|
|
32)];
|
|
|
|
ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER,
|
|
LPC_ORDER, 16, lpc_coefs, shift, FF_LPC_TYPE_LEVINSON,
|
|
0, ORDER_METHOD_EST, 12, 0);
|
|
for (i = 0; i < LPC_ORDER; i++)
|
|
block_coefs[NBLOCKS - 1][i] = -(lpc_coefs[LPC_ORDER - 1][i] <<
|
|
(12 - shift[LPC_ORDER - 1]));
|
|
|
|
/**
|
|
* TODO: apply perceptual weighting of the input speech through bandwidth
|
|
* expansion of the LPC filter.
|
|
*/
|
|
|
|
if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
|
|
/**
|
|
* The filter is unstable: use the coefficients of the previous frame.
|
|
*/
|
|
ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]);
|
|
if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
|
|
/* the filter is still unstable. set reflection coeffs to zero. */
|
|
memset(lpc_refl, 0, sizeof(lpc_refl));
|
|
}
|
|
}
|
|
init_put_bits(&pb, frame, buf_size);
|
|
for (i = 0; i < LPC_ORDER; i++) {
|
|
idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]);
|
|
put_bits(&pb, bit_sizes[i], idx);
|
|
lpc_refl[i] = ff_lpc_refl_cb[i][idx];
|
|
}
|
|
ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
|
|
ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
|
|
refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
|
|
refl_rms[1] = ff_interp(ractx, block_coefs[1], 2,
|
|
energy <= ractx->old_energy,
|
|
ff_t_sqrt(energy * ractx->old_energy) >> 12);
|
|
refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy);
|
|
refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy);
|
|
ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]);
|
|
put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32));
|
|
for (i = 0; i < NBLOCKS; i++)
|
|
ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE,
|
|
block_coefs[i], refl_rms[i], &pb);
|
|
flush_put_bits(&pb);
|
|
ractx->old_energy = energy;
|
|
ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
|
|
FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
|
|
|
|
/* copy input samples to current block for processing in next call */
|
|
i = 0;
|
|
if (data) {
|
|
for (; i < avctx->frame_size; i++)
|
|
ractx->curr_block[i] = samples[i] >> 2;
|
|
} else
|
|
ractx->last_frame = 1;
|
|
memset(&ractx->curr_block[i], 0,
|
|
(NBLOCKS * BLOCKSIZE - i) * sizeof(*ractx->curr_block));
|
|
|
|
return FRAMESIZE;
|
|
}
|
|
|
|
|
|
AVCodec ff_ra_144_encoder = {
|
|
.name = "real_144",
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = CODEC_ID_RA_144,
|
|
.priv_data_size = sizeof(RA144Context),
|
|
.init = ra144_encode_init,
|
|
.encode = ra144_encode_frame,
|
|
.close = ra144_encode_close,
|
|
.capabilities = CODEC_CAP_DELAY | CODEC_CAP_SMALL_LAST_FRAME,
|
|
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
|
|
AV_SAMPLE_FMT_NONE },
|
|
.long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
|
|
};
|