mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-03 21:42:09 +00:00
9200514ad8
Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
288 lines
9.7 KiB
C
288 lines
9.7 KiB
C
/*
|
|
* xWMA demuxer
|
|
* Copyright (c) 2011 Max Horn
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <stdint.h>
|
|
|
|
#include "avformat.h"
|
|
#include "internal.h"
|
|
#include "riff.h"
|
|
|
|
/*
|
|
* Demuxer for xWMA, a Microsoft audio container used by XAudio 2.
|
|
*/
|
|
|
|
typedef struct XWMAContext {
|
|
int64_t data_end;
|
|
} XWMAContext;
|
|
|
|
static int xwma_probe(AVProbeData *p)
|
|
{
|
|
if (!memcmp(p->buf, "RIFF", 4) && !memcmp(p->buf + 8, "XWMA", 4))
|
|
return AVPROBE_SCORE_MAX;
|
|
return 0;
|
|
}
|
|
|
|
static int xwma_read_header(AVFormatContext *s)
|
|
{
|
|
int64_t size;
|
|
int ret = 0;
|
|
uint32_t dpds_table_size = 0;
|
|
uint32_t *dpds_table = 0;
|
|
unsigned int tag;
|
|
AVIOContext *pb = s->pb;
|
|
AVStream *st;
|
|
XWMAContext *xwma = s->priv_data;
|
|
int i;
|
|
|
|
/* The following code is mostly copied from wav.c, with some
|
|
* minor alterations.
|
|
*/
|
|
|
|
/* check RIFF header */
|
|
tag = avio_rl32(pb);
|
|
if (tag != MKTAG('R', 'I', 'F', 'F'))
|
|
return -1;
|
|
avio_rl32(pb); /* file size */
|
|
tag = avio_rl32(pb);
|
|
if (tag != MKTAG('X', 'W', 'M', 'A'))
|
|
return -1;
|
|
|
|
/* parse fmt header */
|
|
tag = avio_rl32(pb);
|
|
if (tag != MKTAG('f', 'm', 't', ' '))
|
|
return -1;
|
|
size = avio_rl32(pb);
|
|
st = avformat_new_stream(s, NULL);
|
|
if (!st)
|
|
return AVERROR(ENOMEM);
|
|
|
|
ret = ff_get_wav_header(s, pb, st->codecpar, size);
|
|
if (ret < 0)
|
|
return ret;
|
|
st->need_parsing = AVSTREAM_PARSE_NONE;
|
|
|
|
/* All xWMA files I have seen contained WMAv2 data. If there are files
|
|
* using WMA Pro or some other codec, then we need to figure out the right
|
|
* extradata for that. Thus, ask the user for feedback, but try to go on
|
|
* anyway.
|
|
*/
|
|
if (st->codecpar->codec_id != AV_CODEC_ID_WMAV2) {
|
|
avpriv_request_sample(s, "Unexpected codec (tag 0x04%x; id %d)",
|
|
st->codecpar->codec_tag, st->codecpar->codec_id);
|
|
} else {
|
|
/* In all xWMA files I have seen, there is no extradata. But the WMA
|
|
* codecs require extradata, so we provide our own fake extradata.
|
|
*
|
|
* First, check that there really was no extradata in the header. If
|
|
* there was, then try to use it, after asking the user to provide a
|
|
* sample of this unusual file.
|
|
*/
|
|
if (st->codecpar->extradata_size != 0) {
|
|
/* Surprise, surprise: We *did* get some extradata. No idea
|
|
* if it will work, but just go on and try it, after asking
|
|
* the user for a sample.
|
|
*/
|
|
avpriv_request_sample(s, "Unexpected extradata (%d bytes)",
|
|
st->codecpar->extradata_size);
|
|
} else {
|
|
st->codecpar->extradata_size = 6;
|
|
st->codecpar->extradata = av_mallocz(6 + AV_INPUT_BUFFER_PADDING_SIZE);
|
|
if (!st->codecpar->extradata)
|
|
return AVERROR(ENOMEM);
|
|
|
|
/* setup extradata with our experimentally obtained value */
|
|
st->codecpar->extradata[4] = 31;
|
|
}
|
|
}
|
|
|
|
if (!st->codecpar->channels) {
|
|
av_log(s, AV_LOG_WARNING, "Invalid channel count: %d\n",
|
|
st->codecpar->channels);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (!st->codecpar->bits_per_coded_sample) {
|
|
av_log(s, AV_LOG_WARNING, "Invalid bits_per_coded_sample: %d\n",
|
|
st->codecpar->bits_per_coded_sample);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/* set the sample rate */
|
|
avpriv_set_pts_info(st, 64, 1, st->codecpar->sample_rate);
|
|
|
|
/* parse the remaining RIFF chunks */
|
|
for (;;) {
|
|
if (pb->eof_reached) {
|
|
ret = AVERROR_INVALIDDATA;
|
|
goto fail;
|
|
}
|
|
/* read next chunk tag */
|
|
tag = avio_rl32(pb);
|
|
size = avio_rl32(pb);
|
|
if (tag == MKTAG('d', 'a', 't', 'a')) {
|
|
/* We assume that the data chunk comes last. */
|
|
break;
|
|
} else if (tag == MKTAG('d','p','d','s')) {
|
|
/* Quoting the MSDN xWMA docs on the dpds chunk: "Contains the
|
|
* decoded packet cumulative data size array, each element is the
|
|
* number of bytes accumulated after the corresponding xWMA packet
|
|
* is decoded in order."
|
|
*
|
|
* Each packet has size equal to st->codecpar->block_align, which in
|
|
* all cases I saw so far was always 2230. Thus, we can use the
|
|
* dpds data to compute a seeking index.
|
|
*/
|
|
|
|
/* Error out if there is more than one dpds chunk. */
|
|
if (dpds_table) {
|
|
av_log(s, AV_LOG_ERROR, "two dpds chunks present\n");
|
|
ret = AVERROR_INVALIDDATA;
|
|
goto fail;
|
|
}
|
|
|
|
/* Compute the number of entries in the dpds chunk. */
|
|
if (size & 3) { /* Size should be divisible by four */
|
|
av_log(s, AV_LOG_WARNING,
|
|
"dpds chunk size %"PRId64" not divisible by 4\n", size);
|
|
}
|
|
dpds_table_size = size / 4;
|
|
if (dpds_table_size == 0 || dpds_table_size >= INT_MAX / 4) {
|
|
av_log(s, AV_LOG_ERROR,
|
|
"dpds chunk size %"PRId64" invalid\n", size);
|
|
return -1;
|
|
}
|
|
|
|
/* Allocate some temporary storage to keep the dpds data around.
|
|
* for processing later on.
|
|
*/
|
|
dpds_table = av_malloc(dpds_table_size * sizeof(uint32_t));
|
|
if (!dpds_table) {
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < dpds_table_size; ++i) {
|
|
dpds_table[i] = avio_rl32(pb);
|
|
size -= 4;
|
|
}
|
|
}
|
|
avio_skip(pb, size);
|
|
}
|
|
|
|
/* Determine overall data length */
|
|
if (size < 0) {
|
|
ret = AVERROR_INVALIDDATA;
|
|
goto fail;
|
|
}
|
|
if (!size) {
|
|
xwma->data_end = INT64_MAX;
|
|
} else
|
|
xwma->data_end = avio_tell(pb) + size;
|
|
|
|
|
|
if (dpds_table && dpds_table_size) {
|
|
int64_t cur_pos;
|
|
const uint32_t bytes_per_sample
|
|
= (st->codecpar->channels * st->codecpar->bits_per_coded_sample) >> 3;
|
|
|
|
/* Estimate the duration from the total number of output bytes. */
|
|
const uint64_t total_decoded_bytes = dpds_table[dpds_table_size - 1];
|
|
|
|
if (!bytes_per_sample) {
|
|
av_log(s, AV_LOG_ERROR,
|
|
"Invalid bits_per_coded_sample %d for %d channels\n",
|
|
st->codecpar->bits_per_coded_sample, st->codecpar->channels);
|
|
ret = AVERROR_INVALIDDATA;
|
|
goto fail;
|
|
}
|
|
|
|
st->duration = total_decoded_bytes / bytes_per_sample;
|
|
|
|
/* Use the dpds data to build a seek table. We can only do this after
|
|
* we know the offset to the data chunk, as we need that to determine
|
|
* the actual offset to each input block.
|
|
* Note: If we allowed ourselves to assume that the data chunk always
|
|
* follows immediately after the dpds block, we could of course guess
|
|
* the data block's start offset already while reading the dpds chunk.
|
|
* I decided against that, just in case other chunks ever are
|
|
* discovered.
|
|
*/
|
|
cur_pos = avio_tell(pb);
|
|
for (i = 0; i < dpds_table_size; ++i) {
|
|
/* From the number of output bytes that would accumulate in the
|
|
* output buffer after decoding the first (i+1) packets, we compute
|
|
* an offset / timestamp pair.
|
|
*/
|
|
av_add_index_entry(st,
|
|
cur_pos + (i+1) * st->codecpar->block_align, /* pos */
|
|
dpds_table[i] / bytes_per_sample, /* timestamp */
|
|
st->codecpar->block_align, /* size */
|
|
0, /* duration */
|
|
AVINDEX_KEYFRAME);
|
|
}
|
|
} else if (st->codecpar->bit_rate) {
|
|
/* No dpds chunk was present (or only an empty one), so estimate
|
|
* the total duration using the average bits per sample and the
|
|
* total data length.
|
|
*/
|
|
st->duration = (size<<3) * st->codecpar->sample_rate / st->codecpar->bit_rate;
|
|
}
|
|
|
|
fail:
|
|
av_free(dpds_table);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xwma_read_packet(AVFormatContext *s, AVPacket *pkt)
|
|
{
|
|
int ret, size;
|
|
int64_t left;
|
|
AVStream *st;
|
|
XWMAContext *xwma = s->priv_data;
|
|
|
|
st = s->streams[0];
|
|
|
|
left = xwma->data_end - avio_tell(s->pb);
|
|
if (left <= 0) {
|
|
return AVERROR_EOF;
|
|
}
|
|
|
|
/* read a single block; the default block size is 2230. */
|
|
size = (st->codecpar->block_align > 1) ? st->codecpar->block_align : 2230;
|
|
size = FFMIN(size, left);
|
|
|
|
ret = av_get_packet(s->pb, pkt, size);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
pkt->stream_index = 0;
|
|
return ret;
|
|
}
|
|
|
|
AVInputFormat ff_xwma_demuxer = {
|
|
.name = "xwma",
|
|
.long_name = NULL_IF_CONFIG_SMALL("Microsoft xWMA"),
|
|
.priv_data_size = sizeof(XWMAContext),
|
|
.read_probe = xwma_probe,
|
|
.read_header = xwma_read_header,
|
|
.read_packet = xwma_read_packet,
|
|
};
|