ffmpeg/libavcodec/adpcm.c
aaron f44353cfb6 avcodec/adpcm: Mono ADPCM for EA WVE Files
Reviewed-by: Peter Ross <pross@xvid.org>
2024-07-23 06:40:30 +10:00

2419 lines
95 KiB
C

/*
* Copyright (c) 2001-2003 The FFmpeg project
*
* first version by Francois Revol (revol@free.fr)
* fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
* by Mike Melanson (melanson@pcisys.net)
* CD-ROM XA ADPCM codec by BERO
* EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
* EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
* EA IMA EACS decoder by Peter Ross (pross@xvid.org)
* EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
* EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
* MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
* THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
* Argonaut Games ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
* Simon & Schuster Interactive ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
* Ubisoft ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
* High Voltage Software ALP decoder by Zane van Iperen (zane@zanevaniperen.com)
* Cunning Developments decoder by Zane van Iperen (zane@zanevaniperen.com)
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config_components.h"
#include "avcodec.h"
#include "get_bits.h"
#include "bytestream.h"
#include "adpcm.h"
#include "adpcm_data.h"
#include "codec_internal.h"
#include "decode.h"
/**
* @file
* ADPCM decoders
* Features and limitations:
*
* Reference documents:
* http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
* http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
* http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
* http://openquicktime.sourceforge.net/
* XAnim sources (xa_codec.c) http://xanim.polter.net/
* http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
* SoX source code http://sox.sourceforge.net/
*
* CD-ROM XA:
* http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
* vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
* readstr http://www.geocities.co.jp/Playtown/2004/
*/
#define CASE_0(codec_id, ...)
#define CASE_1(codec_id, ...) \
case codec_id: \
{ __VA_ARGS__ } \
break;
#define CASE_2(enabled, codec_id, ...) \
CASE_ ## enabled(codec_id, __VA_ARGS__)
#define CASE_3(config, codec_id, ...) \
CASE_2(config, codec_id, __VA_ARGS__)
#define CASE(codec, ...) \
CASE_3(CONFIG_ ## codec ## _DECODER, AV_CODEC_ID_ ## codec, __VA_ARGS__)
/* These are for CD-ROM XA ADPCM */
static const int8_t xa_adpcm_table[5][2] = {
{ 0, 0 },
{ 60, 0 },
{ 115, -52 },
{ 98, -55 },
{ 122, -60 }
};
static const int16_t afc_coeffs[2][16] = {
{ 0, 2048, 0, 1024, 4096, 3584, 3072, 4608, 4200, 4800, 5120, 2048, 1024, -1024, -1024, -2048 },
{ 0, 0, 2048, 1024, -2048, -1536, -1024, -2560, -2248, -2300, -3072, -2048, -1024, 1024, 0, 0 }
};
static const int16_t ea_adpcm_table[] = {
0, 240, 460, 392,
0, 0, -208, -220,
0, 1, 3, 4,
7, 8, 10, 11,
0, -1, -3, -4
};
/*
* Dumped from the binaries:
* - FantasticJourney.exe - 0x794D2, DGROUP:0x47A4D2
* - BigRaceUSA.exe - 0x9B8AA, DGROUP:0x49C4AA
* - Timeshock!.exe - 0x8506A, DGROUP:0x485C6A
*/
static const int8_t ima_cunning_index_table[9] = {
-1, -1, -1, -1, 1, 2, 3, 4, -1
};
/*
* Dumped from the binaries:
* - FantasticJourney.exe - 0x79458, DGROUP:0x47A458
* - BigRaceUSA.exe - 0x9B830, DGROUP:0x49C430
* - Timeshock!.exe - 0x84FF0, DGROUP:0x485BF0
*/
static const int16_t ima_cunning_step_table[61] = {
1, 1, 1, 1, 2, 2, 3, 3, 4, 5,
6, 7, 8, 10, 12, 14, 16, 20, 24, 28,
32, 40, 48, 56, 64, 80, 96, 112, 128, 160,
192, 224, 256, 320, 384, 448, 512, 640, 768, 896,
1024, 1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096, 5120,
6144, 7168, 8192, 10240, 12288, 14336, 16384, 20480, 24576, 28672, 0
};
static const int8_t adpcm_index_table2[4] = {
-1, 2,
-1, 2,
};
static const int8_t adpcm_index_table3[8] = {
-1, -1, 1, 2,
-1, -1, 1, 2,
};
static const int8_t adpcm_index_table5[32] = {
-1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16,
-1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16,
};
static const int8_t * const adpcm_index_tables[4] = {
&adpcm_index_table2[0],
&adpcm_index_table3[0],
&ff_adpcm_index_table[0],
&adpcm_index_table5[0],
};
static const int16_t mtaf_stepsize[32][16] = {
{ 1, 5, 9, 13, 16, 20, 24, 28,
-1, -5, -9, -13, -16, -20, -24, -28, },
{ 2, 6, 11, 15, 20, 24, 29, 33,
-2, -6, -11, -15, -20, -24, -29, -33, },
{ 2, 7, 13, 18, 23, 28, 34, 39,
-2, -7, -13, -18, -23, -28, -34, -39, },
{ 3, 9, 15, 21, 28, 34, 40, 46,
-3, -9, -15, -21, -28, -34, -40, -46, },
{ 3, 11, 18, 26, 33, 41, 48, 56,
-3, -11, -18, -26, -33, -41, -48, -56, },
{ 4, 13, 22, 31, 40, 49, 58, 67,
-4, -13, -22, -31, -40, -49, -58, -67, },
{ 5, 16, 26, 37, 48, 59, 69, 80,
-5, -16, -26, -37, -48, -59, -69, -80, },
{ 6, 19, 31, 44, 57, 70, 82, 95,
-6, -19, -31, -44, -57, -70, -82, -95, },
{ 7, 22, 38, 53, 68, 83, 99, 114,
-7, -22, -38, -53, -68, -83, -99, -114, },
{ 9, 27, 45, 63, 81, 99, 117, 135,
-9, -27, -45, -63, -81, -99, -117, -135, },
{ 10, 32, 53, 75, 96, 118, 139, 161,
-10, -32, -53, -75, -96, -118, -139, -161, },
{ 12, 38, 64, 90, 115, 141, 167, 193,
-12, -38, -64, -90, -115, -141, -167, -193, },
{ 15, 45, 76, 106, 137, 167, 198, 228,
-15, -45, -76, -106, -137, -167, -198, -228, },
{ 18, 54, 91, 127, 164, 200, 237, 273,
-18, -54, -91, -127, -164, -200, -237, -273, },
{ 21, 65, 108, 152, 195, 239, 282, 326,
-21, -65, -108, -152, -195, -239, -282, -326, },
{ 25, 77, 129, 181, 232, 284, 336, 388,
-25, -77, -129, -181, -232, -284, -336, -388, },
{ 30, 92, 153, 215, 276, 338, 399, 461,
-30, -92, -153, -215, -276, -338, -399, -461, },
{ 36, 109, 183, 256, 329, 402, 476, 549,
-36, -109, -183, -256, -329, -402, -476, -549, },
{ 43, 130, 218, 305, 392, 479, 567, 654,
-43, -130, -218, -305, -392, -479, -567, -654, },
{ 52, 156, 260, 364, 468, 572, 676, 780,
-52, -156, -260, -364, -468, -572, -676, -780, },
{ 62, 186, 310, 434, 558, 682, 806, 930,
-62, -186, -310, -434, -558, -682, -806, -930, },
{ 73, 221, 368, 516, 663, 811, 958, 1106,
-73, -221, -368, -516, -663, -811, -958, -1106, },
{ 87, 263, 439, 615, 790, 966, 1142, 1318,
-87, -263, -439, -615, -790, -966, -1142, -1318, },
{ 104, 314, 523, 733, 942, 1152, 1361, 1571,
-104, -314, -523, -733, -942, -1152, -1361, -1571, },
{ 124, 374, 623, 873, 1122, 1372, 1621, 1871,
-124, -374, -623, -873, -1122, -1372, -1621, -1871, },
{ 148, 445, 743, 1040, 1337, 1634, 1932, 2229,
-148, -445, -743, -1040, -1337, -1634, -1932, -2229, },
{ 177, 531, 885, 1239, 1593, 1947, 2301, 2655,
-177, -531, -885, -1239, -1593, -1947, -2301, -2655, },
{ 210, 632, 1053, 1475, 1896, 2318, 2739, 3161,
-210, -632, -1053, -1475, -1896, -2318, -2739, -3161, },
{ 251, 753, 1255, 1757, 2260, 2762, 3264, 3766,
-251, -753, -1255, -1757, -2260, -2762, -3264, -3766, },
{ 299, 897, 1495, 2093, 2692, 3290, 3888, 4486,
-299, -897, -1495, -2093, -2692, -3290, -3888, -4486, },
{ 356, 1068, 1781, 2493, 3206, 3918, 4631, 5343,
-356, -1068, -1781, -2493, -3206, -3918, -4631, -5343, },
{ 424, 1273, 2121, 2970, 3819, 4668, 5516, 6365,
-424, -1273, -2121, -2970, -3819, -4668, -5516, -6365, },
};
static const int16_t oki_step_table[49] = {
16, 17, 19, 21, 23, 25, 28, 31, 34, 37,
41, 45, 50, 55, 60, 66, 73, 80, 88, 97,
107, 118, 130, 143, 157, 173, 190, 209, 230, 253,
279, 307, 337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552
};
// padded to zero where table size is less then 16
static const int8_t swf_index_tables[4][16] = {
/*2*/ { -1, 2 },
/*3*/ { -1, -1, 2, 4 },
/*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
/*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
};
static const int8_t zork_index_table[8] = {
-1, -1, -1, 1, 4, 7, 10, 12,
};
static const int8_t mtf_index_table[16] = {
8, 6, 4, 2, -1, -1, -1, -1,
-1, -1, -1, -1, 2, 4, 6, 8,
};
/* end of tables */
typedef struct ADPCMDecodeContext {
ADPCMChannelStatus status[14];
int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
int has_status; /**< Status flag. Reset to 0 after a flush. */
} ADPCMDecodeContext;
static void adpcm_flush(AVCodecContext *avctx);
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
{
ADPCMDecodeContext *c = avctx->priv_data;
unsigned int min_channels = 1;
unsigned int max_channels = 2;
adpcm_flush(avctx);
switch(avctx->codec->id) {
case AV_CODEC_ID_ADPCM_IMA_AMV:
max_channels = 1;
break;
case AV_CODEC_ID_ADPCM_DTK:
case AV_CODEC_ID_ADPCM_EA:
min_channels = 1;
break;
case AV_CODEC_ID_ADPCM_AFC:
case AV_CODEC_ID_ADPCM_EA_R1:
case AV_CODEC_ID_ADPCM_EA_R2:
case AV_CODEC_ID_ADPCM_EA_R3:
case AV_CODEC_ID_ADPCM_EA_XAS:
case AV_CODEC_ID_ADPCM_MS:
max_channels = 6;
break;
case AV_CODEC_ID_ADPCM_MTAF:
min_channels = 2;
max_channels = 8;
if (avctx->ch_layout.nb_channels & 1) {
avpriv_request_sample(avctx, "channel count %d", avctx->ch_layout.nb_channels);
return AVERROR_PATCHWELCOME;
}
break;
case AV_CODEC_ID_ADPCM_PSX:
max_channels = 8;
if (avctx->ch_layout.nb_channels <= 0 ||
avctx->block_align % (16 * avctx->ch_layout.nb_channels))
return AVERROR_INVALIDDATA;
break;
case AV_CODEC_ID_ADPCM_IMA_DAT4:
case AV_CODEC_ID_ADPCM_THP:
case AV_CODEC_ID_ADPCM_THP_LE:
max_channels = 14;
break;
}
if (avctx->ch_layout.nb_channels < min_channels ||
avctx->ch_layout.nb_channels > max_channels) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
return AVERROR(EINVAL);
}
switch(avctx->codec->id) {
case AV_CODEC_ID_ADPCM_IMA_WAV:
if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
return AVERROR_INVALIDDATA;
break;
case AV_CODEC_ID_ADPCM_ARGO:
if (avctx->bits_per_coded_sample != 4 ||
avctx->block_align != 17 * avctx->ch_layout.nb_channels)
return AVERROR_INVALIDDATA;
break;
case AV_CODEC_ID_ADPCM_ZORK:
if (avctx->bits_per_coded_sample != 8)
return AVERROR_INVALIDDATA;
break;
default:
break;
}
switch (avctx->codec->id) {
case AV_CODEC_ID_ADPCM_AICA:
case AV_CODEC_ID_ADPCM_IMA_CUNNING:
case AV_CODEC_ID_ADPCM_IMA_DAT4:
case AV_CODEC_ID_ADPCM_IMA_QT:
case AV_CODEC_ID_ADPCM_IMA_WAV:
case AV_CODEC_ID_ADPCM_4XM:
case AV_CODEC_ID_ADPCM_XA:
case AV_CODEC_ID_ADPCM_XMD:
case AV_CODEC_ID_ADPCM_EA_R1:
case AV_CODEC_ID_ADPCM_EA_R2:
case AV_CODEC_ID_ADPCM_EA_R3:
case AV_CODEC_ID_ADPCM_EA_XAS:
case AV_CODEC_ID_ADPCM_THP:
case AV_CODEC_ID_ADPCM_THP_LE:
case AV_CODEC_ID_ADPCM_AFC:
case AV_CODEC_ID_ADPCM_DTK:
case AV_CODEC_ID_ADPCM_PSX:
case AV_CODEC_ID_ADPCM_MTAF:
case AV_CODEC_ID_ADPCM_ARGO:
case AV_CODEC_ID_ADPCM_IMA_MOFLEX:
avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
break;
case AV_CODEC_ID_ADPCM_IMA_WS:
avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
AV_SAMPLE_FMT_S16;
break;
case AV_CODEC_ID_ADPCM_MS:
avctx->sample_fmt = avctx->ch_layout.nb_channels > 2 ? AV_SAMPLE_FMT_S16P :
AV_SAMPLE_FMT_S16;
break;
default:
avctx->sample_fmt = AV_SAMPLE_FMT_S16;
}
return 0;
}
static inline int16_t adpcm_agm_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
{
int delta, pred, step, add;
pred = c->predictor;
delta = nibble & 7;
step = c->step;
add = (delta * 2 + 1) * step;
if (add < 0)
add = add + 7;
if ((nibble & 8) == 0)
pred = av_clip(pred + (add >> 3), -32767, 32767);
else
pred = av_clip(pred - (add >> 3), -32767, 32767);
switch (delta) {
case 7:
step *= 0x99;
break;
case 6:
c->step = av_clip(c->step * 2, 127, 24576);
c->predictor = pred;
return pred;
case 5:
step *= 0x66;
break;
case 4:
step *= 0x4d;
break;
default:
step *= 0x39;
break;
}
if (step < 0)
step += 0x3f;
c->step = step >> 6;
c->step = av_clip(c->step, 127, 24576);
c->predictor = pred;
return pred;
}
static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
{
int step_index;
int predictor;
int sign, delta, diff, step;
step = ff_adpcm_step_table[c->step_index];
step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
step_index = av_clip(step_index, 0, 88);
sign = nibble & 8;
delta = nibble & 7;
/* perform direct multiplication instead of series of jumps proposed by
* the reference ADPCM implementation since modern CPUs can do the mults
* quickly enough */
diff = ((2 * delta + 1) * step) >> shift;
predictor = c->predictor;
if (sign) predictor -= diff;
else predictor += diff;
c->predictor = av_clip_int16(predictor);
c->step_index = step_index;
return (int16_t)c->predictor;
}
static inline int16_t adpcm_ima_alp_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
{
int step_index;
int predictor;
int sign, delta, diff, step;
step = ff_adpcm_step_table[c->step_index];
step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
step_index = av_clip(step_index, 0, 88);
sign = nibble & 8;
delta = nibble & 7;
diff = (delta * step) >> shift;
predictor = c->predictor;
if (sign) predictor -= diff;
else predictor += diff;
c->predictor = av_clip_int16(predictor);
c->step_index = step_index;
return (int16_t)c->predictor;
}
static inline int16_t adpcm_ima_mtf_expand_nibble(ADPCMChannelStatus *c, int nibble)
{
int step_index, step, delta, predictor;
step = ff_adpcm_step_table[c->step_index];
delta = step * (2 * nibble - 15);
predictor = c->predictor + delta;
step_index = c->step_index + mtf_index_table[(unsigned)nibble];
c->predictor = av_clip_int16(predictor >> 4);
c->step_index = av_clip(step_index, 0, 88);
return (int16_t)c->predictor;
}
static inline int16_t adpcm_ima_cunning_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
{
int step_index;
int predictor;
int step;
nibble = sign_extend(nibble & 0xF, 4);
step = ima_cunning_step_table[c->step_index];
step_index = c->step_index + ima_cunning_index_table[abs(nibble)];
step_index = av_clip(step_index, 0, 60);
predictor = c->predictor + step * nibble;
c->predictor = av_clip_int16(predictor);
c->step_index = step_index;
return c->predictor;
}
static inline int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
{
int nibble, step_index, predictor, sign, delta, diff, step, shift;
shift = bps - 1;
nibble = get_bits_le(gb, bps),
step = ff_adpcm_step_table[c->step_index];
step_index = c->step_index + adpcm_index_tables[bps - 2][nibble];
step_index = av_clip(step_index, 0, 88);
sign = nibble & (1 << shift);
delta = av_zero_extend(nibble, shift);
diff = ((2 * delta + 1) * step) >> shift;
predictor = c->predictor;
if (sign) predictor -= diff;
else predictor += diff;
c->predictor = av_clip_int16(predictor);
c->step_index = step_index;
return (int16_t)c->predictor;
}
static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble)
{
int step_index;
int predictor;
int diff, step;
step = ff_adpcm_step_table[c->step_index];
step_index = c->step_index + ff_adpcm_index_table[nibble];
step_index = av_clip(step_index, 0, 88);
diff = step >> 3;
if (nibble & 4) diff += step;
if (nibble & 2) diff += step >> 1;
if (nibble & 1) diff += step >> 2;
if (nibble & 8)
predictor = c->predictor - diff;
else
predictor = c->predictor + diff;
c->predictor = av_clip_int16(predictor);
c->step_index = step_index;
return c->predictor;
}
static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
{
int predictor;
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
c->sample2 = c->sample1;
c->sample1 = av_clip_int16(predictor);
c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
if (c->idelta < 16) c->idelta = 16;
if (c->idelta > INT_MAX/768) {
av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
c->idelta = INT_MAX/768;
}
return c->sample1;
}
static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
{
int step_index, predictor, sign, delta, diff, step;
step = oki_step_table[c->step_index];
step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
step_index = av_clip(step_index, 0, 48);
sign = nibble & 8;
delta = nibble & 7;
diff = ((2 * delta + 1) * step) >> 3;
predictor = c->predictor;
if (sign) predictor -= diff;
else predictor += diff;
c->predictor = av_clip_intp2(predictor, 11);
c->step_index = step_index;
return c->predictor * 16;
}
static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
{
int sign, delta, diff;
int new_step;
sign = nibble & 8;
delta = nibble & 7;
/* perform direct multiplication instead of series of jumps proposed by
* the reference ADPCM implementation since modern CPUs can do the mults
* quickly enough */
diff = ((2 * delta + 1) * c->step) >> 3;
/* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
c->predictor = av_clip_int16(c->predictor);
/* calculate new step and clamp it to range 511..32767 */
new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
c->step = av_clip(new_step, 511, 32767);
return (int16_t)c->predictor;
}
static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
{
int sign, delta, diff;
sign = nibble & (1<<(size-1));
delta = nibble & ((1<<(size-1))-1);
diff = delta << (7 + c->step + shift);
/* clamp result */
c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
/* calculate new step */
if (delta >= (2*size - 3) && c->step < 3)
c->step++;
else if (delta == 0 && c->step > 0)
c->step--;
return (int16_t) c->predictor;
}
static inline int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
{
if(!c->step) {
c->predictor = 0;
c->step = 127;
}
c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
c->predictor = av_clip_int16(c->predictor);
c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
c->step = av_clip(c->step, 127, 24576);
return c->predictor;
}
static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
{
c->predictor += mtaf_stepsize[c->step][nibble];
c->predictor = av_clip_int16(c->predictor);
c->step += ff_adpcm_index_table[nibble];
c->step = av_clip_uintp2(c->step, 5);
return c->predictor;
}
static inline int16_t adpcm_zork_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
{
int16_t index = c->step_index;
uint32_t lookup_sample = ff_adpcm_step_table[index];
int32_t sample = 0;
if (nibble & 0x40)
sample += lookup_sample;
if (nibble & 0x20)
sample += lookup_sample >> 1;
if (nibble & 0x10)
sample += lookup_sample >> 2;
if (nibble & 0x08)
sample += lookup_sample >> 3;
if (nibble & 0x04)
sample += lookup_sample >> 4;
if (nibble & 0x02)
sample += lookup_sample >> 5;
if (nibble & 0x01)
sample += lookup_sample >> 6;
if (nibble & 0x80)
sample = -sample;
sample += c->predictor;
sample = av_clip_int16(sample);
index += zork_index_table[(nibble >> 4) & 7];
index = av_clip(index, 0, 88);
c->predictor = sample;
c->step_index = index;
return sample;
}
static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
const uint8_t *in, ADPCMChannelStatus *left,
ADPCMChannelStatus *right, int channels, int sample_offset)
{
int i, j;
int shift,filter,f0,f1;
int s_1,s_2;
int d,s,t;
out0 += sample_offset;
if (channels == 1)
out1 = out0 + 28;
else
out1 += sample_offset;
for(i=0;i<4;i++) {
shift = 12 - (in[4+i*2] & 15);
filter = in[4+i*2] >> 4;
if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
filter=0;
}
if (shift < 0) {
avpriv_request_sample(avctx, "unknown XA-ADPCM shift %d", shift);
shift = 0;
}
f0 = xa_adpcm_table[filter][0];
f1 = xa_adpcm_table[filter][1];
s_1 = left->sample1;
s_2 = left->sample2;
for(j=0;j<28;j++) {
d = in[16+i+j*4];
t = sign_extend(d, 4);
s = t*(1<<shift) + ((s_1*f0 + s_2*f1+32)>>6);
s_2 = s_1;
s_1 = av_clip_int16(s);
out0[j] = s_1;
}
if (channels == 2) {
left->sample1 = s_1;
left->sample2 = s_2;
s_1 = right->sample1;
s_2 = right->sample2;
}
shift = 12 - (in[5+i*2] & 15);
filter = in[5+i*2] >> 4;
if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table) || shift < 0) {
avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
filter=0;
}
if (shift < 0) {
avpriv_request_sample(avctx, "unknown XA-ADPCM shift %d", shift);
shift = 0;
}
f0 = xa_adpcm_table[filter][0];
f1 = xa_adpcm_table[filter][1];
for(j=0;j<28;j++) {
d = in[16+i+j*4];
t = sign_extend(d >> 4, 4);
s = t*(1<<shift) + ((s_1*f0 + s_2*f1+32)>>6);
s_2 = s_1;
s_1 = av_clip_int16(s);
out1[j] = s_1;
}
if (channels == 2) {
right->sample1 = s_1;
right->sample2 = s_2;
} else {
left->sample1 = s_1;
left->sample2 = s_2;
}
out0 += 28 * (3 - channels);
out1 += 28 * (3 - channels);
}
return 0;
}
static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
{
ADPCMDecodeContext *c = avctx->priv_data;
GetBitContext gb;
const int8_t *table;
int channels = avctx->ch_layout.nb_channels;
int k0, signmask, nb_bits, count;
int size = buf_size*8;
int i;
init_get_bits(&gb, buf, size);
//read bits & initial values
nb_bits = get_bits(&gb, 2)+2;
table = swf_index_tables[nb_bits-2];
k0 = 1 << (nb_bits-2);
signmask = 1 << (nb_bits-1);
while (get_bits_count(&gb) <= size - 22 * channels) {
for (i = 0; i < channels; i++) {
*samples++ = c->status[i].predictor = get_sbits(&gb, 16);
c->status[i].step_index = get_bits(&gb, 6);
}
for (count = 0; get_bits_count(&gb) <= size - nb_bits * channels && count < 4095; count++) {
int i;
for (i = 0; i < channels; i++) {
// similar to IMA adpcm
int delta = get_bits(&gb, nb_bits);
int step = ff_adpcm_step_table[c->status[i].step_index];
int vpdiff = 0; // vpdiff = (delta+0.5)*step/4
int k = k0;
do {
if (delta & k)
vpdiff += step;
step >>= 1;
k >>= 1;
} while(k);
vpdiff += step;
if (delta & signmask)
c->status[i].predictor -= vpdiff;
else
c->status[i].predictor += vpdiff;
c->status[i].step_index += table[delta & (~signmask)];
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
c->status[i].predictor = av_clip_int16(c->status[i].predictor);
*samples++ = c->status[i].predictor;
}
}
}
}
int16_t ff_adpcm_argo_expand_nibble(ADPCMChannelStatus *cs, int nibble, int shift, int flag)
{
int sample = sign_extend(nibble, 4) * (1 << shift);
if (flag)
sample += (8 * cs->sample1) - (4 * cs->sample2);
else
sample += 4 * cs->sample1;
sample = av_clip_int16(sample >> 2);
cs->sample2 = cs->sample1;
cs->sample1 = sample;
return sample;
}
/**
* Get the number of samples (per channel) that will be decoded from the packet.
* In one case, this is actually the maximum number of samples possible to
* decode with the given buf_size.
*
* @param[out] coded_samples set to the number of samples as coded in the
* packet, or 0 if the codec does not encode the
* number of samples in each frame.
* @param[out] approx_nb_samples set to non-zero if the number of samples
* returned is an approximation.
*/
static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
int buf_size, int *coded_samples, int *approx_nb_samples)
{
ADPCMDecodeContext *s = avctx->priv_data;
int nb_samples = 0;
int ch = avctx->ch_layout.nb_channels;
int has_coded_samples = 0;
int header_size;
*coded_samples = 0;
*approx_nb_samples = 0;
if(ch <= 0)
return 0;
switch (avctx->codec->id) {
/* constant, only check buf_size */
case AV_CODEC_ID_ADPCM_EA_XAS:
if (buf_size < 76 * ch)
return 0;
nb_samples = 128;
break;
case AV_CODEC_ID_ADPCM_IMA_QT:
if (buf_size < 34 * ch)
return 0;
nb_samples = 64;
break;
/* simple 4-bit adpcm */
case AV_CODEC_ID_ADPCM_CT:
case AV_CODEC_ID_ADPCM_IMA_APC:
case AV_CODEC_ID_ADPCM_IMA_CUNNING:
case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
case AV_CODEC_ID_ADPCM_IMA_OKI:
case AV_CODEC_ID_ADPCM_IMA_WS:
case AV_CODEC_ID_ADPCM_YAMAHA:
case AV_CODEC_ID_ADPCM_AICA:
case AV_CODEC_ID_ADPCM_IMA_SSI:
case AV_CODEC_ID_ADPCM_IMA_APM:
case AV_CODEC_ID_ADPCM_IMA_ALP:
case AV_CODEC_ID_ADPCM_IMA_MTF:
nb_samples = buf_size * 2 / ch;
break;
}
if (nb_samples)
return nb_samples;
/* simple 4-bit adpcm, with header */
header_size = 0;
switch (avctx->codec->id) {
case AV_CODEC_ID_ADPCM_4XM:
case AV_CODEC_ID_ADPCM_AGM:
case AV_CODEC_ID_ADPCM_IMA_ACORN:
case AV_CODEC_ID_ADPCM_IMA_DAT4:
case AV_CODEC_ID_ADPCM_IMA_MOFLEX:
case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
}
if (header_size > 0)
return (buf_size - header_size) * 2 / ch;
/* more complex formats */
switch (avctx->codec->id) {
case AV_CODEC_ID_ADPCM_IMA_AMV:
bytestream2_skip(gb, 4);
has_coded_samples = 1;
*coded_samples = bytestream2_get_le32u(gb);
nb_samples = FFMIN((buf_size - 8) * 2, *coded_samples);
bytestream2_seek(gb, -8, SEEK_CUR);
break;
case AV_CODEC_ID_ADPCM_EA:
/* Stereo is 30 bytes per block */
/* Mono is 15 bytes per block */
has_coded_samples = 1;
*coded_samples = bytestream2_get_le32(gb);
*coded_samples -= *coded_samples % 28;
nb_samples = (buf_size - 12) / (ch == 2 ? 30 : 15) * 28;
break;
case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
has_coded_samples = 1;
*coded_samples = bytestream2_get_le32(gb);
nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
break;
case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
nb_samples = (buf_size - ch) / ch * 2;
break;
case AV_CODEC_ID_ADPCM_EA_R1:
case AV_CODEC_ID_ADPCM_EA_R2:
case AV_CODEC_ID_ADPCM_EA_R3:
/* maximum number of samples */
/* has internal offsets and a per-frame switch to signal raw 16-bit */
has_coded_samples = 1;
switch (avctx->codec->id) {
case AV_CODEC_ID_ADPCM_EA_R1:
header_size = 4 + 9 * ch;
*coded_samples = bytestream2_get_le32(gb);
break;
case AV_CODEC_ID_ADPCM_EA_R2:
header_size = 4 + 5 * ch;
*coded_samples = bytestream2_get_le32(gb);
break;
case AV_CODEC_ID_ADPCM_EA_R3:
header_size = 4 + 5 * ch;
*coded_samples = bytestream2_get_be32(gb);
break;
}
*coded_samples -= *coded_samples % 28;
nb_samples = (buf_size - header_size) * 2 / ch;
nb_samples -= nb_samples % 28;
*approx_nb_samples = 1;
break;
case AV_CODEC_ID_ADPCM_IMA_DK3:
if (avctx->block_align > 0)
buf_size = FFMIN(buf_size, avctx->block_align);
nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
break;
case AV_CODEC_ID_ADPCM_IMA_DK4:
if (avctx->block_align > 0)
buf_size = FFMIN(buf_size, avctx->block_align);
if (buf_size < 4 * ch)
return AVERROR_INVALIDDATA;
nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
break;
case AV_CODEC_ID_ADPCM_IMA_RAD:
if (avctx->block_align > 0)
buf_size = FFMIN(buf_size, avctx->block_align);
nb_samples = (buf_size - 4 * ch) * 2 / ch;
break;
CASE(ADPCM_IMA_WAV,
int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
if (avctx->block_align > 0)
buf_size = FFMIN(buf_size, avctx->block_align);
if (buf_size < 4 * ch)
return AVERROR_INVALIDDATA;
nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
) /* End of CASE */
case AV_CODEC_ID_ADPCM_MS:
if (avctx->block_align > 0)
buf_size = FFMIN(buf_size, avctx->block_align);
nb_samples = (buf_size - 6 * ch) * 2 / ch;
break;
case AV_CODEC_ID_ADPCM_MTAF:
if (avctx->block_align > 0)
buf_size = FFMIN(buf_size, avctx->block_align);
nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
break;
case AV_CODEC_ID_ADPCM_SBPRO_2:
case AV_CODEC_ID_ADPCM_SBPRO_3:
case AV_CODEC_ID_ADPCM_SBPRO_4:
{
int samples_per_byte;
switch (avctx->codec->id) {
case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
}
if (!s->status[0].step_index) {
if (buf_size < ch)
return AVERROR_INVALIDDATA;
nb_samples++;
buf_size -= ch;
}
nb_samples += buf_size * samples_per_byte / ch;
break;
}
case AV_CODEC_ID_ADPCM_SWF:
{
int buf_bits = buf_size * 8 - 2;
int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
int block_hdr_size = 22 * ch;
int block_size = block_hdr_size + nbits * ch * 4095;
int nblocks = buf_bits / block_size;
int bits_left = buf_bits - nblocks * block_size;
nb_samples = nblocks * 4096;
if (bits_left >= block_hdr_size)
nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
break;
}
case AV_CODEC_ID_ADPCM_THP:
case AV_CODEC_ID_ADPCM_THP_LE:
if (avctx->extradata) {
nb_samples = buf_size * 14 / (8 * ch);
break;
}
has_coded_samples = 1;
bytestream2_skip(gb, 4); // channel size
*coded_samples = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
bytestream2_get_le32(gb) :
bytestream2_get_be32(gb);
buf_size -= 8 + 36 * ch;
buf_size /= ch;
nb_samples = buf_size / 8 * 14;
if (buf_size % 8 > 1)
nb_samples += (buf_size % 8 - 1) * 2;
*approx_nb_samples = 1;
break;
case AV_CODEC_ID_ADPCM_AFC:
nb_samples = buf_size / (9 * ch) * 16;
break;
case AV_CODEC_ID_ADPCM_XA:
nb_samples = (buf_size / 128) * 224 / ch;
break;
case AV_CODEC_ID_ADPCM_XMD:
nb_samples = buf_size / (21 * ch) * 32;
break;
case AV_CODEC_ID_ADPCM_DTK:
case AV_CODEC_ID_ADPCM_PSX:
nb_samples = buf_size / (16 * ch) * 28;
break;
case AV_CODEC_ID_ADPCM_ARGO:
nb_samples = buf_size / avctx->block_align * 32;
break;
case AV_CODEC_ID_ADPCM_ZORK:
nb_samples = buf_size / ch;
break;
}
/* validate coded sample count */
if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
return AVERROR_INVALIDDATA;
return nb_samples;
}
static int adpcm_decode_frame(AVCodecContext *avctx, AVFrame *frame,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
ADPCMDecodeContext *c = avctx->priv_data;
int channels = avctx->ch_layout.nb_channels;
int16_t *samples;
int16_t **samples_p;
int st; /* stereo */
int nb_samples, coded_samples, approx_nb_samples, ret;
GetByteContext gb;
bytestream2_init(&gb, buf, buf_size);
nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
if (nb_samples <= 0) {
av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
return AVERROR_INVALIDDATA;
}
/* get output buffer */
frame->nb_samples = nb_samples;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
samples = (int16_t *)frame->data[0];
samples_p = (int16_t **)frame->extended_data;
/* use coded_samples when applicable */
/* it is always <= nb_samples, so the output buffer will be large enough */
if (coded_samples) {
if (!approx_nb_samples && coded_samples != nb_samples)
av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
frame->nb_samples = nb_samples = coded_samples;
}
st = channels == 2 ? 1 : 0;
switch(avctx->codec->id) {
CASE(ADPCM_IMA_QT,
/* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
Channel data is interleaved per-chunk. */
for (int channel = 0; channel < channels; channel++) {
ADPCMChannelStatus *cs = &c->status[channel];
int predictor;
int step_index;
/* (pppppp) (piiiiiii) */
/* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
step_index = predictor & 0x7F;
predictor &= ~0x7F;
if (cs->step_index == step_index) {
int diff = predictor - cs->predictor;
if (diff < 0)
diff = - diff;
if (diff > 0x7f)
goto update;
} else {
update:
cs->step_index = step_index;
cs->predictor = predictor;
}
if (cs->step_index > 88u){
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
channel, cs->step_index);
return AVERROR_INVALIDDATA;
}
samples = samples_p[channel];
for (int m = 0; m < 64; m += 2) {
int byte = bytestream2_get_byteu(&gb);
samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F);
samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 );
}
}
) /* End of CASE */
CASE(ADPCM_IMA_WAV,
for (int i = 0; i < channels; i++) {
ADPCMChannelStatus *cs = &c->status[i];
cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
if (cs->step_index > 88u){
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
i, cs->step_index);
return AVERROR_INVALIDDATA;
}
}
if (avctx->bits_per_coded_sample != 4) {
int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
uint8_t temp[20 + AV_INPUT_BUFFER_PADDING_SIZE] = { 0 };
GetBitContext g;
for (int n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
for (int i = 0; i < channels; i++) {
ADPCMChannelStatus *cs = &c->status[i];
samples = &samples_p[i][1 + n * samples_per_block];
for (int j = 0; j < block_size; j++) {
temp[j] = buf[4 * channels + block_size * n * channels +
(j % 4) + (j / 4) * (channels * 4) + i * 4];
}
ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size);
if (ret < 0)
return ret;
for (int m = 0; m < samples_per_block; m++) {
samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
avctx->bits_per_coded_sample);
}
}
}
bytestream2_skip(&gb, avctx->block_align - channels * 4);
} else {
for (int n = 0; n < (nb_samples - 1) / 8; n++) {
for (int i = 0; i < channels; i++) {
ADPCMChannelStatus *cs = &c->status[i];
samples = &samples_p[i][1 + n * 8];
for (int m = 0; m < 8; m += 2) {
int v = bytestream2_get_byteu(&gb);
samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
}
}
}
}
) /* End of CASE */
CASE(ADPCM_4XM,
for (int i = 0; i < channels; i++)
c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
for (int i = 0; i < channels; i++) {
c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
if (c->status[i].step_index > 88u) {
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
i, c->status[i].step_index);
return AVERROR_INVALIDDATA;
}
}
for (int i = 0; i < channels; i++) {
ADPCMChannelStatus *cs = &c->status[i];
samples = (int16_t *)frame->data[i];
for (int n = nb_samples >> 1; n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
*samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
}
}
) /* End of CASE */
CASE(ADPCM_AGM,
for (int i = 0; i < channels; i++)
c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
for (int i = 0; i < channels; i++)
c->status[i].step = sign_extend(bytestream2_get_le16u(&gb), 16);
for (int n = 0; n < nb_samples >> (1 - st); n++) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_agm_expand_nibble(&c->status[0], v & 0xF);
*samples++ = adpcm_agm_expand_nibble(&c->status[st], v >> 4 );
}
) /* End of CASE */
CASE(ADPCM_MS,
int block_predictor;
if (avctx->ch_layout.nb_channels > 2) {
for (int channel = 0; channel < avctx->ch_layout.nb_channels; channel++) {
samples = samples_p[channel];
block_predictor = bytestream2_get_byteu(&gb);
if (block_predictor > 6) {
av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[%d] = %d\n",
channel, block_predictor);
return AVERROR_INVALIDDATA;
}
c->status[channel].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
c->status[channel].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
c->status[channel].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
c->status[channel].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
c->status[channel].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
*samples++ = c->status[channel].sample2;
*samples++ = c->status[channel].sample1;
for (int n = (nb_samples - 2) >> 1; n > 0; n--) {
int byte = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte >> 4 );
*samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte & 0x0F);
}
}
} else {
block_predictor = bytestream2_get_byteu(&gb);
if (block_predictor > 6) {
av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
block_predictor);
return AVERROR_INVALIDDATA;
}
c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
if (st) {
block_predictor = bytestream2_get_byteu(&gb);
if (block_predictor > 6) {
av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
block_predictor);
return AVERROR_INVALIDDATA;
}
c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
}
c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
if (st){
c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
}
c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
*samples++ = c->status[0].sample2;
if (st) *samples++ = c->status[1].sample2;
*samples++ = c->status[0].sample1;
if (st) *samples++ = c->status[1].sample1;
for (int n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
int byte = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
*samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
}
}
) /* End of CASE */
CASE(ADPCM_MTAF,
for (int channel = 0; channel < channels; channel += 2) {
bytestream2_skipu(&gb, 4);
c->status[channel ].step = bytestream2_get_le16u(&gb) & 0x1f;
c->status[channel + 1].step = bytestream2_get_le16u(&gb) & 0x1f;
c->status[channel ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
bytestream2_skipu(&gb, 2);
c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
bytestream2_skipu(&gb, 2);
for (int n = 0; n < nb_samples; n += 2) {
int v = bytestream2_get_byteu(&gb);
samples_p[channel][n ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F);
samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4 );
}
for (int n = 0; n < nb_samples; n += 2) {
int v = bytestream2_get_byteu(&gb);
samples_p[channel + 1][n ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F);
samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4 );
}
}
) /* End of CASE */
CASE(ADPCM_IMA_DK4,
for (int channel = 0; channel < channels; channel++) {
ADPCMChannelStatus *cs = &c->status[channel];
cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
if (cs->step_index > 88u){
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
channel, cs->step_index);
return AVERROR_INVALIDDATA;
}
}
for (int n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
*samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
}
) /* End of CASE */
/* DK3 ADPCM support macro */
#define DK3_GET_NEXT_NIBBLE() \
if (decode_top_nibble_next) { \
nibble = last_byte >> 4; \
decode_top_nibble_next = 0; \
} else { \
last_byte = bytestream2_get_byteu(&gb); \
nibble = last_byte & 0x0F; \
decode_top_nibble_next = 1; \
}
CASE(ADPCM_IMA_DK3,
int last_byte = 0;
int nibble;
int decode_top_nibble_next = 0;
int diff_channel;
const int16_t *samples_end = samples + channels * nb_samples;
bytestream2_skipu(&gb, 10);
c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
c->status[0].step_index = bytestream2_get_byteu(&gb);
c->status[1].step_index = bytestream2_get_byteu(&gb);
if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
c->status[0].step_index, c->status[1].step_index);
return AVERROR_INVALIDDATA;
}
/* sign extend the predictors */
diff_channel = c->status[1].predictor;
while (samples < samples_end) {
/* for this algorithm, c->status[0] is the sum channel and
* c->status[1] is the diff channel */
/* process the first predictor of the sum channel */
DK3_GET_NEXT_NIBBLE();
adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
/* process the diff channel predictor */
DK3_GET_NEXT_NIBBLE();
adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
/* process the first pair of stereo PCM samples */
diff_channel = (diff_channel + c->status[1].predictor) / 2;
*samples++ = c->status[0].predictor + c->status[1].predictor;
*samples++ = c->status[0].predictor - c->status[1].predictor;
/* process the second predictor of the sum channel */
DK3_GET_NEXT_NIBBLE();
adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
/* process the second pair of stereo PCM samples */
diff_channel = (diff_channel + c->status[1].predictor) / 2;
*samples++ = c->status[0].predictor + c->status[1].predictor;
*samples++ = c->status[0].predictor - c->status[1].predictor;
}
if ((bytestream2_tell(&gb) & 1))
bytestream2_skip(&gb, 1);
) /* End of CASE */
CASE(ADPCM_IMA_ISS,
for (int channel = 0; channel < channels; channel++) {
ADPCMChannelStatus *cs = &c->status[channel];
cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
if (cs->step_index > 88u){
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
channel, cs->step_index);
return AVERROR_INVALIDDATA;
}
}
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int v1, v2;
int v = bytestream2_get_byteu(&gb);
/* nibbles are swapped for mono */
if (st) {
v1 = v >> 4;
v2 = v & 0x0F;
} else {
v2 = v >> 4;
v1 = v & 0x0F;
}
*samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
*samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
}
) /* End of CASE */
CASE(ADPCM_IMA_MOFLEX,
for (int channel = 0; channel < channels; channel++) {
ADPCMChannelStatus *cs = &c->status[channel];
cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
if (cs->step_index > 88u){
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
channel, cs->step_index);
return AVERROR_INVALIDDATA;
}
}
for (int subframe = 0; subframe < nb_samples / 256; subframe++) {
for (int channel = 0; channel < channels; channel++) {
samples = samples_p[channel] + 256 * subframe;
for (int n = 0; n < 256; n += 2) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
*samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
}
}
}
) /* End of CASE */
CASE(ADPCM_IMA_DAT4,
for (int channel = 0; channel < channels; channel++) {
ADPCMChannelStatus *cs = &c->status[channel];
samples = samples_p[channel];
bytestream2_skip(&gb, 4);
for (int n = 0; n < nb_samples; n += 2) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
*samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
}
}
) /* End of CASE */
CASE(ADPCM_IMA_APC,
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
*samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
}
) /* End of CASE */
CASE(ADPCM_IMA_SSI,
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_qt_expand_nibble(&c->status[0], v >> 4 );
*samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0x0F);
}
) /* End of CASE */
CASE(ADPCM_IMA_APM,
for (int n = nb_samples / 2; n > 0; n--) {
for (int channel = 0; channel < channels; channel++) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_qt_expand_nibble(&c->status[channel], v >> 4 );
samples[st] = adpcm_ima_qt_expand_nibble(&c->status[channel], v & 0x0F);
}
samples += channels;
}
) /* End of CASE */
CASE(ADPCM_IMA_ALP,
for (int n = nb_samples / 2; n > 0; n--) {
for (int channel = 0; channel < channels; channel++) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_alp_expand_nibble(&c->status[channel], v >> 4 , 2);
samples[st] = adpcm_ima_alp_expand_nibble(&c->status[channel], v & 0x0F, 2);
}
samples += channels;
}
) /* End of CASE */
CASE(ADPCM_IMA_CUNNING,
for (int channel = 0; channel < channels; channel++) {
int16_t *smp = samples_p[channel];
for (int n = 0; n < nb_samples / 2; n++) {
int v = bytestream2_get_byteu(&gb);
*smp++ = adpcm_ima_cunning_expand_nibble(&c->status[channel], v & 0x0F);
*smp++ = adpcm_ima_cunning_expand_nibble(&c->status[channel], v >> 4);
}
}
) /* End of CASE */
CASE(ADPCM_IMA_OKI,
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
*samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
}
) /* End of CASE */
CASE(ADPCM_IMA_RAD,
for (int channel = 0; channel < channels; channel++) {
ADPCMChannelStatus *cs = &c->status[channel];
cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
if (cs->step_index > 88u){
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
channel, cs->step_index);
return AVERROR_INVALIDDATA;
}
}
for (int n = 0; n < nb_samples / 2; n++) {
int byte[2];
byte[0] = bytestream2_get_byteu(&gb);
if (st)
byte[1] = bytestream2_get_byteu(&gb);
for (int channel = 0; channel < channels; channel++) {
*samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
}
for (int channel = 0; channel < channels; channel++) {
*samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
}
}
) /* End of CASE */
CASE(ADPCM_IMA_WS,
if (c->vqa_version == 3) {
for (int channel = 0; channel < channels; channel++) {
int16_t *smp = samples_p[channel];
for (int n = nb_samples / 2; n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
*smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
}
}
} else {
for (int n = nb_samples / 2; n > 0; n--) {
for (int channel = 0; channel < channels; channel++) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
}
samples += channels;
}
}
bytestream2_seek(&gb, 0, SEEK_END);
) /* End of CASE */
CASE(ADPCM_XMD,
int bytes_remaining, block = 0;
while (bytestream2_get_bytes_left(&gb) >= 21 * channels) {
for (int channel = 0; channel < channels; channel++) {
int16_t *out = samples_p[channel] + block * 32;
int16_t history[2];
uint16_t scale;
history[1] = sign_extend(bytestream2_get_le16(&gb), 16);
history[0] = sign_extend(bytestream2_get_le16(&gb), 16);
scale = bytestream2_get_le16(&gb);
out[0] = history[1];
out[1] = history[0];
for (int n = 0; n < 15; n++) {
unsigned byte = bytestream2_get_byte(&gb);
int32_t nibble[2];
nibble[0] = sign_extend(byte & 15, 4);
nibble[1] = sign_extend(byte >> 4, 4);
out[2+n*2] = nibble[0]*scale + ((history[0]*3667 - history[1]*1642) >> 11);
history[1] = history[0];
history[0] = out[2+n*2];
out[2+n*2+1] = nibble[1]*scale + ((history[0]*3667 - history[1]*1642) >> 11);
history[1] = history[0];
history[0] = out[2+n*2+1];
}
}
block++;
}
bytes_remaining = bytestream2_get_bytes_left(&gb);
if (bytes_remaining > 0) {
bytestream2_skip(&gb, bytes_remaining);
}
) /* End of CASE */
CASE(ADPCM_XA,
int16_t *out0 = samples_p[0];
int16_t *out1 = samples_p[1];
int samples_per_block = 28 * (3 - channels) * 4;
int sample_offset = 0;
int bytes_remaining;
while (bytestream2_get_bytes_left(&gb) >= 128) {
if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
&c->status[0], &c->status[1],
channels, sample_offset)) < 0)
return ret;
bytestream2_skipu(&gb, 128);
sample_offset += samples_per_block;
}
/* Less than a full block of data left, e.g. when reading from
* 2324 byte per sector XA; the remainder is padding */
bytes_remaining = bytestream2_get_bytes_left(&gb);
if (bytes_remaining > 0) {
bytestream2_skip(&gb, bytes_remaining);
}
) /* End of CASE */
CASE(ADPCM_IMA_EA_EACS,
for (int i = 0; i <= st; i++) {
c->status[i].step_index = bytestream2_get_le32u(&gb);
if (c->status[i].step_index > 88u) {
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
i, c->status[i].step_index);
return AVERROR_INVALIDDATA;
}
}
for (int i = 0; i <= st; i++) {
c->status[i].predictor = bytestream2_get_le32u(&gb);
if (FFABS((int64_t)c->status[i].predictor) > (1<<16))
return AVERROR_INVALIDDATA;
}
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int byte = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
*samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
}
) /* End of CASE */
CASE(ADPCM_IMA_EA_SEAD,
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int byte = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
*samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
}
) /* End of CASE */
CASE(ADPCM_EA,
int previous_left_sample, previous_right_sample;
int current_left_sample, current_right_sample;
int next_left_sample, next_right_sample;
int coeff1l, coeff2l, coeff1r, coeff2r;
int shift_left, shift_right;
/* Each EA ADPCM frame has a 12-byte header followed by 30-byte (stereo) or 15-byte (mono) pieces,
each coding 28 stereo/mono samples. */
if (channels != 2 && channels != 1)
return AVERROR_INVALIDDATA;
current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
for (int count1 = 0; count1 < nb_samples / 28; count1++) {
int byte = bytestream2_get_byteu(&gb);
coeff1l = ea_adpcm_table[ byte >> 4 ];
coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
coeff1r = ea_adpcm_table[ byte & 0x0F];
coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
if (channels == 2){
byte = bytestream2_get_byteu(&gb);
shift_left = 20 - (byte >> 4);
shift_right = 20 - (byte & 0x0F);
} else{
/* Mono packs the shift into the coefficient byte's lower nibble instead */
shift_left = 20 - (byte & 0x0F);
}
for (int count2 = 0; count2 < (channels == 2 ? 28 : 14); count2++) {
byte = bytestream2_get_byteu(&gb);
next_left_sample = sign_extend(byte >> 4, 4) * (1 << shift_left);
next_right_sample = sign_extend(byte, 4) * (1 << shift_right);
next_left_sample = (next_left_sample +
(current_left_sample * coeff1l) +
(previous_left_sample * coeff2l) + 0x80) >> 8;
next_right_sample = (next_right_sample +
(current_right_sample * coeff1r) +
(previous_right_sample * coeff2r) + 0x80) >> 8;
previous_left_sample = current_left_sample;
current_left_sample = av_clip_int16(next_left_sample);
previous_right_sample = current_right_sample;
current_right_sample = av_clip_int16(next_right_sample);
*samples++ = current_left_sample;
if (channels == 2){
*samples++ = current_right_sample;
} else {
next_left_sample = sign_extend(byte, 4) * (1 << shift_left);
next_left_sample = (next_left_sample +
(current_left_sample * coeff1l) +
(previous_left_sample * coeff2l) + 0x80) >> 8;
previous_left_sample = current_left_sample;
current_left_sample = av_clip_int16(next_left_sample);
*samples++ = current_left_sample;
}
}
}
bytestream2_skip(&gb, channels == 2 ? 2 : 3); // Skip terminating NULs
) /* End of CASE */
CASE(ADPCM_EA_MAXIS_XA,
int coeff[2][2], shift[2];
for (int channel = 0; channel < channels; channel++) {
int byte = bytestream2_get_byteu(&gb);
for (int i = 0; i < 2; i++)
coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
shift[channel] = 20 - (byte & 0x0F);
}
for (int count1 = 0; count1 < nb_samples / 2; count1++) {
int byte[2];
byte[0] = bytestream2_get_byteu(&gb);
if (st) byte[1] = bytestream2_get_byteu(&gb);
for (int i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
for (int channel = 0; channel < channels; channel++) {
int sample = sign_extend(byte[channel] >> i, 4) * (1 << shift[channel]);
sample = (sample +
c->status[channel].sample1 * coeff[channel][0] +
c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
c->status[channel].sample2 = c->status[channel].sample1;
c->status[channel].sample1 = av_clip_int16(sample);
*samples++ = c->status[channel].sample1;
}
}
}
bytestream2_seek(&gb, 0, SEEK_END);
) /* End of CASE */
#if CONFIG_ADPCM_EA_R1_DECODER || CONFIG_ADPCM_EA_R2_DECODER || CONFIG_ADPCM_EA_R3_DECODER
case AV_CODEC_ID_ADPCM_EA_R1:
case AV_CODEC_ID_ADPCM_EA_R2:
case AV_CODEC_ID_ADPCM_EA_R3: {
/* channel numbering
2chan: 0=fl, 1=fr
4chan: 0=fl, 1=rl, 2=fr, 3=rr
6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
int previous_sample, current_sample, next_sample;
int coeff1, coeff2;
int shift;
uint16_t *samplesC;
int count = 0;
int offsets[6];
for (unsigned channel = 0; channel < channels; channel++)
offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
bytestream2_get_le32(&gb)) +
(channels + 1) * 4;
for (unsigned channel = 0; channel < channels; channel++) {
int count1;
bytestream2_seek(&gb, offsets[channel], SEEK_SET);
samplesC = samples_p[channel];
if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
} else {
current_sample = c->status[channel].predictor;
previous_sample = c->status[channel].prev_sample;
}
for (count1 = 0; count1 < nb_samples / 28; count1++) {
int byte = bytestream2_get_byte(&gb);
if (byte == 0xEE) { /* only seen in R2 and R3 */
current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
for (int count2 = 0; count2 < 28; count2++)
*samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
} else {
coeff1 = ea_adpcm_table[ byte >> 4 ];
coeff2 = ea_adpcm_table[(byte >> 4) + 4];
shift = 20 - (byte & 0x0F);
for (int count2 = 0; count2 < 28; count2++) {
if (count2 & 1)
next_sample = (unsigned)sign_extend(byte, 4) << shift;
else {
byte = bytestream2_get_byte(&gb);
next_sample = (unsigned)sign_extend(byte >> 4, 4) << shift;
}
next_sample += (current_sample * coeff1) +
(previous_sample * coeff2);
next_sample = av_clip_int16(next_sample >> 8);
previous_sample = current_sample;
current_sample = next_sample;
*samplesC++ = current_sample;
}
}
}
if (!count) {
count = count1;
} else if (count != count1) {
av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
count = FFMAX(count, count1);
}
if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
c->status[channel].predictor = current_sample;
c->status[channel].prev_sample = previous_sample;
}
}
frame->nb_samples = count * 28;
bytestream2_seek(&gb, 0, SEEK_END);
break;
}
#endif /* CONFIG_ADPCM_EA_Rx_DECODER */
CASE(ADPCM_EA_XAS,
for (int channel=0; channel < channels; channel++) {
int coeff[2][4], shift[4];
int16_t *s = samples_p[channel];
for (int n = 0; n < 4; n++, s += 32) {
int val = sign_extend(bytestream2_get_le16u(&gb), 16);
for (int i = 0; i < 2; i++)
coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
s[0] = val & ~0x0F;
val = sign_extend(bytestream2_get_le16u(&gb), 16);
shift[n] = 20 - (val & 0x0F);
s[1] = val & ~0x0F;
}
for (int m = 2; m < 32; m += 2) {
s = &samples_p[channel][m];
for (int n = 0; n < 4; n++, s += 32) {
int level, pred;
int byte = bytestream2_get_byteu(&gb);
level = sign_extend(byte >> 4, 4) * (1 << shift[n]);
pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
s[0] = av_clip_int16((level + pred + 0x80) >> 8);
level = sign_extend(byte, 4) * (1 << shift[n]);
pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
s[1] = av_clip_int16((level + pred + 0x80) >> 8);
}
}
}
) /* End of CASE */
CASE(ADPCM_IMA_ACORN,
for (int channel = 0; channel < channels; channel++) {
ADPCMChannelStatus *cs = &c->status[channel];
cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
cs->step_index = bytestream2_get_le16u(&gb) & 0xFF;
if (cs->step_index > 88u){
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
channel, cs->step_index);
return AVERROR_INVALIDDATA;
}
}
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int byte = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(&c->status[0], byte & 0x0F, 3);
*samples++ = adpcm_ima_expand_nibble(&c->status[st], byte >> 4, 3);
}
) /* End of CASE */
CASE(ADPCM_IMA_AMV,
av_assert0(channels == 1);
/*
* Header format:
* int16_t predictor;
* uint8_t step_index;
* uint8_t reserved;
* uint32_t frame_size;
*
* Some implementations have step_index as 16-bits, but others
* only use the lower 8 and store garbage in the upper 8.
*/
c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
c->status[0].step_index = bytestream2_get_byteu(&gb);
bytestream2_skipu(&gb, 5);
if (c->status[0].step_index > 88u) {
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
c->status[0].step_index);
return AVERROR_INVALIDDATA;
}
for (int n = nb_samples >> 1; n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
*samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
}
if (nb_samples & 1) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
if (v & 0x0F) {
/* Holds true on all the http://samples.mplayerhq.hu/amv samples. */
av_log(avctx, AV_LOG_WARNING, "Last nibble set on packet with odd sample count.\n");
av_log(avctx, AV_LOG_WARNING, "Sample will be skipped.\n");
}
}
) /* End of CASE */
CASE(ADPCM_IMA_SMJPEG,
for (int i = 0; i < channels; i++) {
c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
c->status[i].step_index = bytestream2_get_byteu(&gb);
bytestream2_skipu(&gb, 1);
if (c->status[i].step_index > 88u) {
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
c->status[i].step_index);
return AVERROR_INVALIDDATA;
}
}
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4 );
*samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf);
}
) /* End of CASE */
CASE(ADPCM_CT,
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
*samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
}
) /* End of CASE */
#if CONFIG_ADPCM_SBPRO_2_DECODER || CONFIG_ADPCM_SBPRO_3_DECODER || \
CONFIG_ADPCM_SBPRO_4_DECODER
case AV_CODEC_ID_ADPCM_SBPRO_4:
case AV_CODEC_ID_ADPCM_SBPRO_3:
case AV_CODEC_ID_ADPCM_SBPRO_2:
if (!c->status[0].step_index) {
/* the first byte is a raw sample */
*samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
if (st)
*samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
c->status[0].step_index = 1;
nb_samples--;
}
if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int byte = bytestream2_get_byteu(&gb);
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
byte >> 4, 4, 0);
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
byte & 0x0F, 4, 0);
}
} else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
for (int n = (nb_samples<<st) / 3; n > 0; n--) {
int byte = bytestream2_get_byteu(&gb);
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
byte >> 5 , 3, 0);
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
(byte >> 2) & 0x07, 3, 0);
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
byte & 0x03, 2, 0);
}
} else {
for (int n = nb_samples >> (2 - st); n > 0; n--) {
int byte = bytestream2_get_byteu(&gb);
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
byte >> 6 , 2, 2);
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
(byte >> 4) & 0x03, 2, 2);
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
(byte >> 2) & 0x03, 2, 2);
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
byte & 0x03, 2, 2);
}
}
break;
#endif /* CONFIG_ADPCM_SBPRO_x_DECODER */
CASE(ADPCM_SWF,
adpcm_swf_decode(avctx, buf, buf_size, samples);
bytestream2_seek(&gb, 0, SEEK_END);
) /* End of CASE */
CASE(ADPCM_YAMAHA,
for (int n = nb_samples >> (1 - st); n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
*samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
}
) /* End of CASE */
CASE(ADPCM_AICA,
for (int channel = 0; channel < channels; channel++) {
samples = samples_p[channel];
for (int n = nb_samples >> 1; n > 0; n--) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F);
*samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4 );
}
}
) /* End of CASE */
CASE(ADPCM_AFC,
int samples_per_block;
int blocks;
if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
samples_per_block = avctx->extradata[0] / 16;
blocks = nb_samples / avctx->extradata[0];
} else {
samples_per_block = nb_samples / 16;
blocks = 1;
}
for (int m = 0; m < blocks; m++) {
for (int channel = 0; channel < channels; channel++) {
int prev1 = c->status[channel].sample1;
int prev2 = c->status[channel].sample2;
samples = samples_p[channel] + m * 16;
/* Read in every sample for this channel. */
for (int i = 0; i < samples_per_block; i++) {
int byte = bytestream2_get_byteu(&gb);
int scale = 1 << (byte >> 4);
int index = byte & 0xf;
int factor1 = afc_coeffs[0][index];
int factor2 = afc_coeffs[1][index];
/* Decode 16 samples. */
for (int n = 0; n < 16; n++) {
int32_t sampledat;
if (n & 1) {
sampledat = sign_extend(byte, 4);
} else {
byte = bytestream2_get_byteu(&gb);
sampledat = sign_extend(byte >> 4, 4);
}
sampledat = ((prev1 * factor1 + prev2 * factor2) >> 11) +
sampledat * scale;
*samples = av_clip_int16(sampledat);
prev2 = prev1;
prev1 = *samples++;
}
}
c->status[channel].sample1 = prev1;
c->status[channel].sample2 = prev2;
}
}
bytestream2_seek(&gb, 0, SEEK_END);
) /* End of CASE */
#if CONFIG_ADPCM_THP_DECODER || CONFIG_ADPCM_THP_LE_DECODER
case AV_CODEC_ID_ADPCM_THP:
case AV_CODEC_ID_ADPCM_THP_LE:
{
int table[14][16];
#define THP_GET16(g) \
sign_extend( \
avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
bytestream2_get_le16u(&(g)) : \
bytestream2_get_be16u(&(g)), 16)
if (avctx->extradata) {
GetByteContext tb;
if (avctx->extradata_size < 32 * channels) {
av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
return AVERROR_INVALIDDATA;
}
bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
for (int i = 0; i < channels; i++)
for (int n = 0; n < 16; n++)
table[i][n] = THP_GET16(tb);
} else {
for (int i = 0; i < channels; i++)
for (int n = 0; n < 16; n++)
table[i][n] = THP_GET16(gb);
if (!c->has_status) {
/* Initialize the previous sample. */
for (int i = 0; i < channels; i++) {
c->status[i].sample1 = THP_GET16(gb);
c->status[i].sample2 = THP_GET16(gb);
}
c->has_status = 1;
} else {
bytestream2_skip(&gb, channels * 4);
}
}
for (int ch = 0; ch < channels; ch++) {
samples = samples_p[ch];
/* Read in every sample for this channel. */
for (int i = 0; i < (nb_samples + 13) / 14; i++) {
int byte = bytestream2_get_byteu(&gb);
int index = (byte >> 4) & 7;
unsigned int exp = byte & 0x0F;
int64_t factor1 = table[ch][index * 2];
int64_t factor2 = table[ch][index * 2 + 1];
/* Decode 14 samples. */
for (int n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
int32_t sampledat;
if (n & 1) {
sampledat = sign_extend(byte, 4);
} else {
byte = bytestream2_get_byteu(&gb);
sampledat = sign_extend(byte >> 4, 4);
}
sampledat = ((c->status[ch].sample1 * factor1
+ c->status[ch].sample2 * factor2) >> 11) + sampledat * (1 << exp);
*samples = av_clip_int16(sampledat);
c->status[ch].sample2 = c->status[ch].sample1;
c->status[ch].sample1 = *samples++;
}
}
}
break;
}
#endif /* CONFIG_ADPCM_THP(_LE)_DECODER */
CASE(ADPCM_DTK,
for (int channel = 0; channel < channels; channel++) {
samples = samples_p[channel];
/* Read in every sample for this channel. */
for (int i = 0; i < nb_samples / 28; i++) {
int byte, header;
if (channel)
bytestream2_skipu(&gb, 1);
header = bytestream2_get_byteu(&gb);
bytestream2_skipu(&gb, 3 - channel);
/* Decode 28 samples. */
for (int n = 0; n < 28; n++) {
int32_t sampledat, prev;
switch (header >> 4) {
case 1:
prev = (c->status[channel].sample1 * 0x3c);
break;
case 2:
prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
break;
case 3:
prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
break;
default:
prev = 0;
}
prev = av_clip_intp2((prev + 0x20) >> 6, 21);
byte = bytestream2_get_byteu(&gb);
if (!channel)
sampledat = sign_extend(byte, 4);
else
sampledat = sign_extend(byte >> 4, 4);
sampledat = ((sampledat * (1 << 12)) >> (header & 0xf)) * (1 << 6) + prev;
*samples++ = av_clip_int16(sampledat >> 6);
c->status[channel].sample2 = c->status[channel].sample1;
c->status[channel].sample1 = sampledat;
}
}
if (!channel)
bytestream2_seek(&gb, 0, SEEK_SET);
}
) /* End of CASE */
CASE(ADPCM_PSX,
for (int block = 0; block < avpkt->size / FFMAX(avctx->block_align, 16 * channels); block++) {
int nb_samples_per_block = 28 * FFMAX(avctx->block_align, 16 * channels) / (16 * channels);
for (int channel = 0; channel < channels; channel++) {
samples = samples_p[channel] + block * nb_samples_per_block;
av_assert0((block + 1) * nb_samples_per_block <= nb_samples);
/* Read in every sample for this channel. */
for (int i = 0; i < nb_samples_per_block / 28; i++) {
int filter, shift, flag, byte;
filter = bytestream2_get_byteu(&gb);
shift = filter & 0xf;
filter = filter >> 4;
if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table))
return AVERROR_INVALIDDATA;
flag = bytestream2_get_byteu(&gb) & 0x7;
/* Decode 28 samples. */
for (int n = 0; n < 28; n++) {
int sample = 0, scale;
if (n & 1) {
scale = sign_extend(byte >> 4, 4);
} else {
byte = bytestream2_get_byteu(&gb);
scale = sign_extend(byte, 4);
}
if (flag < 0x07) {
scale = scale * (1 << 12);
sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64);
}
*samples++ = av_clip_int16(sample);
c->status[channel].sample2 = c->status[channel].sample1;
c->status[channel].sample1 = sample;
}
}
}
}
) /* End of CASE */
CASE(ADPCM_ARGO,
/*
* The format of each block:
* uint8_t left_control;
* uint4_t left_samples[nb_samples];
* ---- and if stereo ----
* uint8_t right_control;
* uint4_t right_samples[nb_samples];
*
* Format of the control byte:
* MSB [SSSSRDRR] LSB
* S = (Shift Amount - 2)
* D = Decoder flag.
* R = Reserved
*
* Each block relies on the previous two samples of each channel.
* They should be 0 initially.
*/
for (int block = 0; block < avpkt->size / avctx->block_align; block++) {
for (int channel = 0; channel < avctx->ch_layout.nb_channels; channel++) {
ADPCMChannelStatus *cs = c->status + channel;
int control, shift;
samples = samples_p[channel] + block * 32;
/* Get the control byte and decode the samples, 2 at a time. */
control = bytestream2_get_byteu(&gb);
shift = (control >> 4) + 2;
for (int n = 0; n < 16; n++) {
int sample = bytestream2_get_byteu(&gb);
*samples++ = ff_adpcm_argo_expand_nibble(cs, sample >> 4, shift, control & 0x04);
*samples++ = ff_adpcm_argo_expand_nibble(cs, sample >> 0, shift, control & 0x04);
}
}
}
) /* End of CASE */
CASE(ADPCM_ZORK,
for (int n = 0; n < nb_samples * channels; n++) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_zork_expand_nibble(&c->status[n % channels], v);
}
) /* End of CASE */
CASE(ADPCM_IMA_MTF,
for (int n = nb_samples / 2; n > 0; n--) {
for (int channel = 0; channel < channels; channel++) {
int v = bytestream2_get_byteu(&gb);
*samples++ = adpcm_ima_mtf_expand_nibble(&c->status[channel], v >> 4);
samples[st] = adpcm_ima_mtf_expand_nibble(&c->status[channel], v & 0x0F);
}
samples += channels;
}
) /* End of CASE */
default:
av_assert0(0); // unsupported codec_id should not happen
}
if (avpkt->size && bytestream2_tell(&gb) == 0) {
av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
return AVERROR_INVALIDDATA;
}
*got_frame_ptr = 1;
if (avpkt->size < bytestream2_tell(&gb)) {
av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
return avpkt->size;
}
return bytestream2_tell(&gb);
}
static void adpcm_flush(AVCodecContext *avctx)
{
ADPCMDecodeContext *c = avctx->priv_data;
/* Just nuke the entire state and re-init. */
memset(c, 0, sizeof(ADPCMDecodeContext));
switch(avctx->codec_id) {
case AV_CODEC_ID_ADPCM_CT:
c->status[0].step = c->status[1].step = 511;
break;
case AV_CODEC_ID_ADPCM_IMA_APC:
if (avctx->extradata && avctx->extradata_size >= 8) {
c->status[0].predictor = av_clip_intp2(AV_RL32(avctx->extradata ), 18);
c->status[1].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 4), 18);
}
break;
case AV_CODEC_ID_ADPCM_IMA_APM:
if (avctx->extradata && avctx->extradata_size >= 28) {
c->status[0].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 16), 18);
c->status[0].step_index = av_clip(AV_RL32(avctx->extradata + 20), 0, 88);
c->status[1].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 4), 18);
c->status[1].step_index = av_clip(AV_RL32(avctx->extradata + 8), 0, 88);
}
break;
case AV_CODEC_ID_ADPCM_IMA_WS:
if (avctx->extradata && avctx->extradata_size >= 2)
c->vqa_version = AV_RL16(avctx->extradata);
break;
default:
/* Other codecs may want to handle this during decoding. */
c->has_status = 0;
return;
}
c->has_status = 1;
}
static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16,
AV_SAMPLE_FMT_NONE };
static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_NONE };
static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_NONE };
#define ADPCM_DECODER_0(id_, sample_fmts_, name_, long_name_)
#define ADPCM_DECODER_1(id_, sample_fmts_, name_, long_name_) \
const FFCodec ff_ ## name_ ## _decoder = { \
.p.name = #name_, \
CODEC_LONG_NAME(long_name_), \
.p.type = AVMEDIA_TYPE_AUDIO, \
.p.id = id_, \
.p.capabilities = AV_CODEC_CAP_DR1, \
.p.sample_fmts = sample_fmts_, \
.priv_data_size = sizeof(ADPCMDecodeContext), \
.init = adpcm_decode_init, \
FF_CODEC_DECODE_CB(adpcm_decode_frame), \
.flush = adpcm_flush, \
};
#define ADPCM_DECODER_2(enabled, codec_id, name, sample_fmts, long_name) \
ADPCM_DECODER_ ## enabled(codec_id, name, sample_fmts, long_name)
#define ADPCM_DECODER_3(config, codec_id, name, sample_fmts, long_name) \
ADPCM_DECODER_2(config, codec_id, name, sample_fmts, long_name)
#define ADPCM_DECODER(codec, name, sample_fmts, long_name) \
ADPCM_DECODER_3(CONFIG_ ## codec ## _DECODER, AV_CODEC_ID_ ## codec, \
name, sample_fmts, long_name)
/* Note: Do not forget to add new entries to the Makefile as well. */
ADPCM_DECODER(ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie")
ADPCM_DECODER(ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC")
ADPCM_DECODER(ADPCM_AGM, sample_fmts_s16, adpcm_agm, "ADPCM AmuseGraphics Movie")
ADPCM_DECODER(ADPCM_AICA, sample_fmts_s16p, adpcm_aica, "ADPCM Yamaha AICA")
ADPCM_DECODER(ADPCM_ARGO, sample_fmts_s16p, adpcm_argo, "ADPCM Argonaut Games")
ADPCM_DECODER(ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology")
ADPCM_DECODER(ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK")
ADPCM_DECODER(ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts")
ADPCM_DECODER(ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA")
ADPCM_DECODER(ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1")
ADPCM_DECODER(ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2")
ADPCM_DECODER(ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3")
ADPCM_DECODER(ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS")
ADPCM_DECODER(ADPCM_IMA_ACORN, sample_fmts_s16, adpcm_ima_acorn, "ADPCM IMA Acorn Replay")
ADPCM_DECODER(ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV")
ADPCM_DECODER(ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC")
ADPCM_DECODER(ADPCM_IMA_APM, sample_fmts_s16, adpcm_ima_apm, "ADPCM IMA Ubisoft APM")
ADPCM_DECODER(ADPCM_IMA_CUNNING, sample_fmts_s16p, adpcm_ima_cunning, "ADPCM IMA Cunning Developments")
ADPCM_DECODER(ADPCM_IMA_DAT4, sample_fmts_s16, adpcm_ima_dat4, "ADPCM IMA Eurocom DAT4")
ADPCM_DECODER(ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3")
ADPCM_DECODER(ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4")
ADPCM_DECODER(ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS")
ADPCM_DECODER(ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD")
ADPCM_DECODER(ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS")
ADPCM_DECODER(ADPCM_IMA_MOFLEX, sample_fmts_s16p, adpcm_ima_moflex, "ADPCM IMA MobiClip MOFLEX")
ADPCM_DECODER(ADPCM_IMA_MTF, sample_fmts_s16, adpcm_ima_mtf, "ADPCM IMA Capcom's MT Framework")
ADPCM_DECODER(ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI")
ADPCM_DECODER(ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime")
ADPCM_DECODER(ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical")
ADPCM_DECODER(ADPCM_IMA_SSI, sample_fmts_s16, adpcm_ima_ssi, "ADPCM IMA Simon & Schuster Interactive")
ADPCM_DECODER(ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG")
ADPCM_DECODER(ADPCM_IMA_ALP, sample_fmts_s16, adpcm_ima_alp, "ADPCM IMA High Voltage Software ALP")
ADPCM_DECODER(ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV")
ADPCM_DECODER(ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood")
ADPCM_DECODER(ADPCM_MS, sample_fmts_both, adpcm_ms, "ADPCM Microsoft")
ADPCM_DECODER(ADPCM_MTAF, sample_fmts_s16p, adpcm_mtaf, "ADPCM MTAF")
ADPCM_DECODER(ADPCM_PSX, sample_fmts_s16p, adpcm_psx, "ADPCM Playstation")
ADPCM_DECODER(ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit")
ADPCM_DECODER(ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit")
ADPCM_DECODER(ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit")
ADPCM_DECODER(ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash")
ADPCM_DECODER(ADPCM_THP_LE, sample_fmts_s16p, adpcm_thp_le, "ADPCM Nintendo THP (little-endian)")
ADPCM_DECODER(ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo THP")
ADPCM_DECODER(ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA")
ADPCM_DECODER(ADPCM_XMD, sample_fmts_s16p, adpcm_xmd, "ADPCM Konami XMD")
ADPCM_DECODER(ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha")
ADPCM_DECODER(ADPCM_ZORK, sample_fmts_s16, adpcm_zork, "ADPCM Zork")