ffmpeg/libavcodec/twinvq.c

803 lines
27 KiB
C

/*
* TwinVQ decoder
* Copyright (c) 2009 Vitor Sessak
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <math.h>
#include <stdint.h>
#include "libavutil/channel_layout.h"
#include "libavutil/float_dsp.h"
#include "libavutil/mem.h"
#include "avcodec.h"
#include "decode.h"
#include "lsp.h"
#include "metasound_twinvq_data.h"
#include "sinewin.h"
#include "twinvq.h"
/**
* Evaluate a single LPC amplitude spectrum envelope coefficient from the line
* spectrum pairs.
*
* @param lsp a vector of the cosine of the LSP values
* @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
* @param order the order of the LSP (and the size of the *lsp buffer). Must
* be a multiple of four.
* @return the LPC value
*
* @todo reuse code from Vorbis decoder: vorbis_floor0_decode
*/
static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
{
int j;
float p = 0.5f;
float q = 0.5f;
float two_cos_w = 2.0f * cos_val;
for (j = 0; j + 1 < order; j += 2 * 2) {
// Unroll the loop once since order is a multiple of four
q *= lsp[j] - two_cos_w;
p *= lsp[j + 1] - two_cos_w;
q *= lsp[j + 2] - two_cos_w;
p *= lsp[j + 3] - two_cos_w;
}
p *= p * (2.0f - two_cos_w);
q *= q * (2.0f + two_cos_w);
return 0.5 / (p + q);
}
/**
* Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
*/
static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
{
int i;
const TwinVQModeTab *mtab = tctx->mtab;
int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
for (i = 0; i < size_s / 2; i++) {
float cos_i = tctx->cos_tabs[0][i];
lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
}
}
static void interpolate(float *out, float v1, float v2, int size)
{
int i;
float step = (v1 - v2) / (size + 1);
for (i = 0; i < size; i++) {
v2 += step;
out[i] = v2;
}
}
static inline float get_cos(int idx, int part, const float *cos_tab, int size)
{
return part ? -cos_tab[size - idx - 1]
: cos_tab[idx];
}
/**
* Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
* Probably for speed reasons, the coefficients are evaluated as
* siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
* where s is an evaluated value, i is a value interpolated from the others
* and b might be either calculated or interpolated, depending on an
* unexplained condition.
*
* @param step the size of a block "siiiibiiii"
* @param in the cosine of the LSP data
* @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
* (negative cosine values)
* @param size the size of the whole output
*/
static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
enum TwinVQFrameType ftype,
float *out, const float *in,
int size, int step, int part)
{
int i;
const TwinVQModeTab *mtab = tctx->mtab;
const float *cos_tab = tctx->cos_tabs[ftype];
// Fill the 's'
for (i = 0; i < size; i += step)
out[i] =
eval_lpc_spectrum(in,
get_cos(i, part, cos_tab, size),
mtab->n_lsp);
// Fill the 'iiiibiiii'
for (i = step; i <= size - 2 * step; i += step) {
if (out[i + step] + out[i - step] > 1.95 * out[i] ||
out[i + step] >= out[i - step]) {
interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
} else {
out[i - step / 2] =
eval_lpc_spectrum(in,
get_cos(i - step / 2, part, cos_tab, size),
mtab->n_lsp);
interpolate(out + i - step + 1, out[i - step / 2],
out[i - step], step / 2 - 1);
interpolate(out + i - step / 2 + 1, out[i],
out[i - step / 2], step / 2 - 1);
}
}
interpolate(out + size - 2 * step + 1, out[size - step],
out[size - 2 * step], step - 1);
}
static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
const float *buf, float *lpc,
int size, int step)
{
eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
2 * step, 1);
interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
lpc[size / 2 - step], step);
twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
2 * step - 1);
}
/**
* Inverse quantization. Read CB coefficients for cb1 and cb2 from the
* bitstream, sum the corresponding vectors and write the result to *out
* after permutation.
*/
static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
enum TwinVQFrameType ftype,
const int16_t *cb0, const int16_t *cb1, int cb_len)
{
int pos = 0;
int i, j;
for (i = 0; i < tctx->n_div[ftype]; i++) {
int tmp0, tmp1;
int sign0 = 1;
int sign1 = 1;
const int16_t *tab0, *tab1;
int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
tmp0 = *cb_bits++;
if (bits == 7) {
if (tmp0 & 0x40)
sign0 = -1;
tmp0 &= 0x3F;
}
bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
tmp1 = *cb_bits++;
if (bits == 7) {
if (tmp1 & 0x40)
sign1 = -1;
tmp1 &= 0x3F;
}
tab0 = cb0 + tmp0 * cb_len;
tab1 = cb1 + tmp1 * cb_len;
for (j = 0; j < length; j++)
out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
sign1 * tab1[j];
pos += length;
}
}
static void dec_gain(TwinVQContext *tctx,
enum TwinVQFrameType ftype, float *out)
{
const TwinVQModeTab *mtab = tctx->mtab;
const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
int i, j;
int channels = tctx->avctx->ch_layout.nb_channels;
int sub = mtab->fmode[ftype].sub;
float step = TWINVQ_AMP_MAX / ((1 << TWINVQ_GAIN_BITS) - 1);
float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
if (ftype == TWINVQ_FT_LONG) {
for (i = 0; i < channels; i++)
out[i] = (1.0 / (1 << 13)) *
twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
} else {
for (i = 0; i < channels; i++) {
float val = (1.0 / (1 << 23)) *
twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
for (j = 0; j < sub; j++)
out[i * sub + j] =
val * twinvq_mulawinv(sub_step * 0.5 +
sub_step * bits->sub_gain_bits[i * sub + j],
TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU);
}
}
}
/**
* Rearrange the LSP coefficients so that they have a minimum distance of
* min_dist. This function does it exactly as described in section of 3.2.4
* of the G.729 specification (but interestingly is different from what the
* reference decoder actually does).
*/
static void rearrange_lsp(int order, float *lsp, float min_dist)
{
int i;
float min_dist2 = min_dist * 0.5;
for (i = 1; i < order; i++)
if (lsp[i] - lsp[i - 1] < min_dist) {
float avg = (lsp[i] + lsp[i - 1]) * 0.5;
lsp[i - 1] = avg - min_dist2;
lsp[i] = avg + min_dist2;
}
}
static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
int lpc_hist_idx, float *lsp, float *hist)
{
const TwinVQModeTab *mtab = tctx->mtab;
int i, j;
const float *cb = mtab->lspcodebook;
const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp;
const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
const int8_t funny_rounding[4] = {
-2,
mtab->lsp_split == 4 ? -2 : 1,
mtab->lsp_split == 4 ? -2 : 1,
0
};
j = 0;
for (i = 0; i < mtab->lsp_split; i++) {
int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
mtab->lsp_split;
for (; j < chunk_end; j++)
lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] +
cb2[lpc_idx2[i] * mtab->n_lsp + j];
}
rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
for (i = 0; i < mtab->n_lsp; i++) {
float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i];
float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
hist[i] = lsp[i];
lsp[i] = lsp[i] * tmp1 + tmp2;
}
rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
}
static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
enum TwinVQFrameType ftype, float *lpc)
{
int i;
int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
for (i = 0; i < tctx->mtab->n_lsp; i++)
lsp[i] = 2 * cos(lsp[i]);
switch (ftype) {
case TWINVQ_FT_LONG:
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
break;
case TWINVQ_FT_MEDIUM:
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
break;
case TWINVQ_FT_SHORT:
eval_lpcenv(tctx, lsp, lpc);
break;
}
}
static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
int wtype, float *in, float *prev, int ch)
{
AVTXContext *tx = tctx->tx[ftype];
av_tx_fn tx_fn = tctx->tx_fn[ftype];
const TwinVQModeTab *mtab = tctx->mtab;
int bsize = mtab->size / mtab->fmode[ftype].sub;
int size = mtab->size;
float *buf1 = tctx->tmp_buf;
int j, first_wsize, wsize; // Window size
float *out = tctx->curr_frame + 2 * ch * mtab->size;
float *out2 = out;
float *prev_buf;
int types_sizes[] = {
mtab->size / mtab->fmode[TWINVQ_FT_LONG].sub,
mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub,
mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
};
wsize = types_sizes[wtype_to_wsize[wtype]];
first_wsize = wsize;
prev_buf = prev + (size - bsize) / 2;
for (j = 0; j < mtab->fmode[ftype].sub; j++) {
int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
if (!j && wtype == 4)
sub_wtype = 4;
else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
sub_wtype = 7;
wsize = types_sizes[wtype_to_wsize[sub_wtype]];
tx_fn(tx, buf1 + bsize * j, in + bsize * j, sizeof(float));
tctx->fdsp->vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
buf1 + bsize * j,
ff_sine_windows[av_log2(wsize)],
wsize / 2);
out2 += wsize;
memcpy(out2, buf1 + bsize * j + wsize / 2,
(bsize - wsize / 2) * sizeof(float));
out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
prev_buf = buf1 + bsize * j + bsize / 2;
}
tctx->last_block_pos[ch] = (size + first_wsize) / 2;
}
static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
int wtype, float **out, int offset)
{
const TwinVQModeTab *mtab = tctx->mtab;
float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
int channels = tctx->avctx->ch_layout.nb_channels;
int size1, size2, i;
float *out1, *out2;
for (i = 0; i < channels; i++)
imdct_and_window(tctx, ftype, wtype,
tctx->spectrum + i * mtab->size,
prev_buf + 2 * i * mtab->size,
i);
if (!out)
return;
size2 = tctx->last_block_pos[0];
size1 = mtab->size - size2;
out1 = &out[0][0] + offset;
memcpy(out1, prev_buf, size1 * sizeof(*out1));
memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1));
if (channels == 2) {
out2 = &out[1][0] + offset;
memcpy(out2, &prev_buf[2 * mtab->size],
size1 * sizeof(*out2));
memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size],
size2 * sizeof(*out2));
tctx->fdsp->butterflies_float(out1, out2, mtab->size);
}
}
static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
enum TwinVQFrameType ftype)
{
const TwinVQModeTab *mtab = tctx->mtab;
TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
int channels = tctx->avctx->ch_layout.nb_channels;
int sub = mtab->fmode[ftype].sub;
int block_size = mtab->size / sub;
float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
int i, j;
dequant(tctx, bits->main_coeffs, out, ftype,
mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
mtab->fmode[ftype].cb_len_read);
dec_gain(tctx, ftype, gain);
if (ftype == TWINVQ_FT_LONG) {
int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
tctx->n_div[3];
dequant(tctx, bits->ppc_coeffs, ppc_shape,
TWINVQ_FT_PPC, mtab->ppc_shape_cb,
mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
cb_len_p);
}
for (i = 0; i < channels; i++) {
float *chunk = out + mtab->size * i;
float lsp[TWINVQ_LSP_COEFS_MAX];
for (j = 0; j < sub; j++) {
tctx->dec_bark_env(tctx, bits->bark1[i][j],
bits->bark_use_hist[i][j], i,
tctx->tmp_buf, gain[sub * i + j], ftype);
tctx->fdsp->vector_fmul(chunk + block_size * j,
chunk + block_size * j,
tctx->tmp_buf, block_size);
}
if (ftype == TWINVQ_FT_LONG)
tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
ppc_shape + i * mtab->ppc_shape_len, chunk);
decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
for (j = 0; j < mtab->fmode[ftype].sub; j++) {
tctx->fdsp->vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
chunk += block_size;
}
}
}
const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = {
TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG,
TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_MEDIUM,
TWINVQ_FT_MEDIUM
};
int ff_twinvq_decode_frame(AVCodecContext *avctx, AVFrame *frame,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
TwinVQContext *tctx = avctx->priv_data;
const TwinVQModeTab *mtab = tctx->mtab;
float **out = NULL;
int ret;
/* get output buffer */
if (tctx->discarded_packets >= 2) {
frame->nb_samples = mtab->size * tctx->frames_per_packet;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
out = (float **)frame->extended_data;
}
if (buf_size < avctx->block_align) {
av_log(avctx, AV_LOG_ERROR,
"Frame too small (%d bytes). Truncated file?\n", buf_size);
return AVERROR(EINVAL);
}
if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
return ret;
for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet;
tctx->cur_frame++) {
read_and_decode_spectrum(tctx, tctx->spectrum,
tctx->bits[tctx->cur_frame].ftype);
imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype,
tctx->bits[tctx->cur_frame].window_type, out,
tctx->cur_frame * mtab->size);
FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
}
if (tctx->discarded_packets < 2) {
tctx->discarded_packets++;
*got_frame_ptr = 0;
return buf_size;
}
*got_frame_ptr = 1;
// VQF can deliver packets 1 byte greater than block align
if (buf_size == avctx->block_align + 1)
return buf_size;
return avctx->block_align;
}
/**
* Init IMDCT and windowing tables
*/
static av_cold int init_mdct_win(TwinVQContext *tctx)
{
int i, j, ret;
const TwinVQModeTab *mtab = tctx->mtab;
int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
int channels = tctx->avctx->ch_layout.nb_channels;
float norm = channels == 1 ? 2.0 : 1.0;
int table_size = 2 * mtab->size * channels;
for (i = 0; i < 3; i++) {
int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
const float scale = -sqrt(norm / bsize) / (1 << 15);
if ((ret = av_tx_init(&tctx->tx[i], &tctx->tx_fn[i], AV_TX_FLOAT_MDCT,
1, bsize, &scale, 0)))
return ret;
}
if (!FF_ALLOC_TYPED_ARRAY(tctx->tmp_buf, mtab->size) ||
!FF_ALLOC_TYPED_ARRAY(tctx->spectrum, table_size) ||
!FF_ALLOC_TYPED_ARRAY(tctx->curr_frame, table_size) ||
!FF_ALLOC_TYPED_ARRAY(tctx->prev_frame, table_size))
return AVERROR(ENOMEM);
for (i = 0; i < 3; i++) {
int m = 4 * mtab->size / mtab->fmode[i].sub;
double freq = 2 * M_PI / m;
if (!FF_ALLOC_TYPED_ARRAY(tctx->cos_tabs[i], m / 4))
return AVERROR(ENOMEM);
for (j = 0; j <= m / 8; j++)
tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
for (j = 1; j < m / 8; j++)
tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
}
ff_init_ff_sine_windows(av_log2(size_m));
ff_init_ff_sine_windows(av_log2(size_s / 2));
ff_init_ff_sine_windows(av_log2(mtab->size));
return 0;
}
/**
* Interpret the data as if it were a num_blocks x line_len[0] matrix and for
* each line do a cyclic permutation, i.e.
* abcdefghijklm -> defghijklmabc
* where the amount to be shifted is evaluated depending on the column.
*/
static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
int block_size,
const uint8_t line_len[2], int length_div,
enum TwinVQFrameType ftype)
{
int i, j;
for (i = 0; i < line_len[0]; i++) {
int shift;
if (num_blocks == 1 ||
(ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
(ftype != TWINVQ_FT_LONG && num_vect & 1) ||
i == line_len[1]) {
shift = 0;
} else if (ftype == TWINVQ_FT_LONG) {
shift = i;
} else
shift = i * i;
for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
}
}
/**
* Interpret the input data as in the following table:
*
* @verbatim
*
* abcdefgh
* ijklmnop
* qrstuvw
* x123456
*
* @endverbatim
*
* and transpose it, giving the output
* aiqxbjr1cks2dlt3emu4fvn5gow6hp
*/
static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
const uint8_t line_len[2], int length_div)
{
int i, j;
int cont = 0;
for (i = 0; i < num_vect; i++)
for (j = 0; j < line_len[i >= length_div]; j++)
out[cont++] = in[j * num_vect + i];
}
static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
{
int block_size = size / n_blocks;
int i;
for (i = 0; i < size; i++)
out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
}
static av_cold void construct_perm_table(TwinVQContext *tctx,
enum TwinVQFrameType ftype)
{
int block_size, size;
const TwinVQModeTab *mtab = tctx->mtab;
int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
if (ftype == TWINVQ_FT_PPC) {
size = tctx->avctx->ch_layout.nb_channels;
block_size = mtab->ppc_shape_len;
} else {
size = tctx->avctx->ch_layout.nb_channels * mtab->fmode[ftype].sub;
block_size = mtab->size / mtab->fmode[ftype].sub;
}
permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
block_size, tctx->length[ftype],
tctx->length_change[ftype], ftype);
transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
tctx->length[ftype], tctx->length_change[ftype]);
linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
size * block_size);
}
static av_cold void init_bitstream_params(TwinVQContext *tctx)
{
const TwinVQModeTab *mtab = tctx->mtab;
int n_ch = tctx->avctx->ch_layout.nb_channels;
int total_fr_bits = tctx->avctx->bit_rate * mtab->size /
tctx->avctx->sample_rate;
int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
mtab->lsp_split * mtab->lsp_bit2);
int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
mtab->ppc_period_bit);
int bsize_no_main_cb[3], bse_bits[3], i;
enum TwinVQFrameType frametype;
for (i = 0; i < 3; i++)
// +1 for history usage switch
bse_bits[i] = n_ch *
(mtab->fmode[i].bark_n_coef *
mtab->fmode[i].bark_n_bit + 1);
bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS;
for (i = 0; i < 2; i++)
bsize_no_main_cb[i] =
lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
TWINVQ_WINDOW_TYPE_BITS +
mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) {
bsize_no_main_cb[1] += 2;
bsize_no_main_cb[2] += 2;
}
// The remaining bits are all used for the main spectrum coefficients
for (i = 0; i < 4; i++) {
int bit_size, vect_size;
int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
if (i == 3) {
bit_size = n_ch * mtab->ppc_shape_bit;
vect_size = n_ch * mtab->ppc_shape_len;
} else {
bit_size = total_fr_bits - bsize_no_main_cb[i];
vect_size = n_ch * mtab->size;
}
tctx->n_div[i] = (bit_size + 13) / 14;
rounded_up = (bit_size + tctx->n_div[i] - 1) /
tctx->n_div[i];
rounded_down = (bit_size) / tctx->n_div[i];
num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
num_rounded_up = tctx->n_div[i] - num_rounded_down;
tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2;
tctx->bits_main_spec[1][i][0] = rounded_up / 2;
tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2;
tctx->bits_main_spec[1][i][1] = rounded_down / 2;
tctx->bits_main_spec_change[i] = num_rounded_up;
rounded_up = (vect_size + tctx->n_div[i] - 1) /
tctx->n_div[i];
rounded_down = (vect_size) / tctx->n_div[i];
num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
num_rounded_up = tctx->n_div[i] - num_rounded_down;
tctx->length[i][0] = rounded_up;
tctx->length[i][1] = rounded_down;
tctx->length_change[i] = num_rounded_up;
}
for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
construct_perm_table(tctx, frametype);
}
av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
{
TwinVQContext *tctx = avctx->priv_data;
int i;
for (i = 0; i < 3; i++) {
av_tx_uninit(&tctx->tx[i]);
av_freep(&tctx->cos_tabs[i]);
}
av_freep(&tctx->curr_frame);
av_freep(&tctx->spectrum);
av_freep(&tctx->prev_frame);
av_freep(&tctx->tmp_buf);
av_freep(&tctx->fdsp);
return 0;
}
av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
{
int ret;
TwinVQContext *tctx = avctx->priv_data;
int64_t frames_per_packet;
tctx->avctx = avctx;
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
if (!avctx->block_align) {
avctx->block_align = tctx->frame_size + 7 >> 3;
}
frames_per_packet = avctx->block_align * 8LL / tctx->frame_size;
if (frames_per_packet <= 0) {
av_log(avctx, AV_LOG_ERROR, "Block align is %"PRId64" bits, expected %d\n",
avctx->block_align * (int64_t)8, tctx->frame_size);
return AVERROR_INVALIDDATA;
}
if (frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) {
av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%"PRId64")\n",
frames_per_packet);
return AVERROR_INVALIDDATA;
}
tctx->frames_per_packet = frames_per_packet;
tctx->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
if (!tctx->fdsp)
return AVERROR(ENOMEM);
if ((ret = init_mdct_win(tctx))) {
av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
return ret;
}
init_bitstream_params(tctx);
twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
FF_ARRAY_ELEMS(tctx->bark_hist));
return 0;
}