ffmpeg/libavcodec/diracdec.c

2385 lines
82 KiB
C

/*
* Copyright (C) 2007 Marco Gerards <marco@gnu.org>
* Copyright (C) 2009 David Conrad
* Copyright (C) 2011 Jordi Ortiz
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Dirac Decoder
* @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
*/
#include "libavutil/mem_internal.h"
#include "libavutil/pixdesc.h"
#include "libavutil/thread.h"
#include "avcodec.h"
#include "get_bits.h"
#include "codec_internal.h"
#include "decode.h"
#include "golomb.h"
#include "dirac_arith.h"
#include "dirac_vlc.h"
#include "mpegpicture.h"
#include "mpegvideoencdsp.h"
#include "dirac_dwt.h"
#include "dirac.h"
#include "diractab.h"
#include "diracdsp.h"
#include "videodsp.h"
/**
* The spec limits this to 3 for frame coding, but in practice can be as high as 6
*/
#define MAX_REFERENCE_FRAMES 8
#define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
#define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
#define MAX_QUANT 255 /* max quant for VC-2 */
#define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
/**
* DiracBlock->ref flags, if set then the block does MC from the given ref
*/
#define DIRAC_REF_MASK_REF1 1
#define DIRAC_REF_MASK_REF2 2
#define DIRAC_REF_MASK_GLOBAL 4
/**
* Value of Picture.reference when Picture is not a reference picture, but
* is held for delayed output.
*/
#define DELAYED_PIC_REF 4
#define CALC_PADDING(size, depth) \
(((size + (1 << depth) - 1) >> depth) << depth)
#define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
typedef struct {
AVFrame *avframe;
int interpolated[3]; /* 1 if hpel[] is valid */
uint8_t *hpel[3][4];
uint8_t *hpel_base[3][4];
int reference;
unsigned picture_number;
} DiracFrame;
typedef struct {
union {
int16_t mv[2][2];
int16_t dc[3];
} u; /* anonymous unions aren't in C99 :( */
uint8_t ref;
} DiracBlock;
typedef struct SubBand {
int level;
int orientation;
int stride; /* in bytes */
int width;
int height;
int pshift;
int quant;
uint8_t *ibuf;
struct SubBand *parent;
/* for low delay */
unsigned length;
const uint8_t *coeff_data;
} SubBand;
typedef struct Plane {
DWTPlane idwt;
int width;
int height;
ptrdiff_t stride;
/* block length */
uint8_t xblen;
uint8_t yblen;
/* block separation (block n+1 starts after this many pixels in block n) */
uint8_t xbsep;
uint8_t ybsep;
/* amount of overspill on each edge (half of the overlap between blocks) */
uint8_t xoffset;
uint8_t yoffset;
SubBand band[MAX_DWT_LEVELS][4];
} Plane;
/* Used by Low Delay and High Quality profiles */
typedef struct DiracSlice {
GetBitContext gb;
int slice_x;
int slice_y;
int bytes;
} DiracSlice;
typedef struct DiracContext {
AVCodecContext *avctx;
MpegvideoEncDSPContext mpvencdsp;
VideoDSPContext vdsp;
DiracDSPContext diracdsp;
DiracVersionInfo version;
GetBitContext gb;
AVDiracSeqHeader seq;
int seen_sequence_header;
int64_t frame_number; /* number of the next frame to display */
Plane plane[3];
int chroma_x_shift;
int chroma_y_shift;
int bit_depth; /* bit depth */
int pshift; /* pixel shift = bit_depth > 8 */
int zero_res; /* zero residue flag */
int is_arith; /* whether coeffs use arith or golomb coding */
int core_syntax; /* use core syntax only */
int low_delay; /* use the low delay syntax */
int hq_picture; /* high quality picture, enables low_delay */
int ld_picture; /* use low delay picture, turns on low_delay */
int dc_prediction; /* has dc prediction */
int globalmc_flag; /* use global motion compensation */
int num_refs; /* number of reference pictures */
/* wavelet decoding */
unsigned wavelet_depth; /* depth of the IDWT */
unsigned wavelet_idx;
/**
* schroedinger older than 1.0.8 doesn't store
* quant delta if only one codebook exists in a band
*/
unsigned old_delta_quant;
unsigned codeblock_mode;
unsigned num_x; /* number of horizontal slices */
unsigned num_y; /* number of vertical slices */
uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */
int threads_num_buf; /* Current # of buffers allocated */
int thread_buf_size; /* Each thread has a buffer this size */
DiracSlice *slice_params_buf;
int slice_params_num_buf;
struct {
unsigned width;
unsigned height;
} codeblock[MAX_DWT_LEVELS+1];
struct {
AVRational bytes; /* average bytes per slice */
uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
} lowdelay;
struct {
unsigned prefix_bytes;
uint64_t size_scaler;
} highquality;
struct {
int pan_tilt[2]; /* pan/tilt vector */
int zrs[2][2]; /* zoom/rotate/shear matrix */
int perspective[2]; /* perspective vector */
unsigned zrs_exp;
unsigned perspective_exp;
} globalmc[2];
/* motion compensation */
uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
int blwidth; /* number of blocks (horizontally) */
int blheight; /* number of blocks (vertically) */
int sbwidth; /* number of superblocks (horizontally) */
int sbheight; /* number of superblocks (vertically) */
uint8_t *sbsplit;
DiracBlock *blmotion;
uint8_t *edge_emu_buffer[4];
uint8_t *edge_emu_buffer_base;
uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
uint8_t *mcscratch;
int buffer_stride;
DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
dirac_weight_func weight_func;
dirac_biweight_func biweight_func;
DiracFrame *current_picture;
DiracFrame *ref_pics[2];
DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
DiracFrame *delay_frames[MAX_DELAY+1];
DiracFrame all_frames[MAX_FRAMES];
} DiracContext;
enum dirac_subband {
subband_ll = 0,
subband_hl = 1,
subband_lh = 2,
subband_hh = 3,
subband_nb,
};
/* magic number division by 3 from schroedinger */
static inline int divide3(int x)
{
return (int)((x+1U)*21845 + 10922) >> 16;
}
static DiracFrame *remove_frame(DiracFrame *framelist[], unsigned picnum)
{
DiracFrame *remove_pic = NULL;
int i, remove_idx = -1;
for (i = 0; framelist[i]; i++)
if (framelist[i]->picture_number == picnum) {
remove_pic = framelist[i];
remove_idx = i;
}
if (remove_pic)
for (i = remove_idx; framelist[i]; i++)
framelist[i] = framelist[i+1];
return remove_pic;
}
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
{
int i;
for (i = 0; i < maxframes; i++)
if (!framelist[i]) {
framelist[i] = frame;
return 0;
}
return -1;
}
static int alloc_sequence_buffers(DiracContext *s)
{
int sbwidth = DIVRNDUP(s->seq.width, 4);
int sbheight = DIVRNDUP(s->seq.height, 4);
int i, w, h, top_padding;
/* todo: think more about this / use or set Plane here */
for (i = 0; i < 3; i++) {
int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
w = s->seq.width >> (i ? s->chroma_x_shift : 0);
h = s->seq.height >> (i ? s->chroma_y_shift : 0);
/* we allocate the max we support here since num decompositions can
* change from frame to frame. Stride is aligned to 16 for SIMD, and
* 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
* MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
* on each side */
top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
s->plane[i].idwt.buf_base = av_calloc(w + max_xblen, h * (2 << s->pshift));
s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
return AVERROR(ENOMEM);
}
/* fixme: allocate using real stride here */
s->sbsplit = av_malloc_array(sbwidth, sbheight);
s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
if (!s->sbsplit || !s->blmotion)
return AVERROR(ENOMEM);
return 0;
}
static int alloc_buffers(DiracContext *s, int stride)
{
int w = s->seq.width;
int h = s->seq.height;
av_assert0(stride >= w);
stride += 64;
if (s->buffer_stride >= stride)
return 0;
s->buffer_stride = 0;
av_freep(&s->edge_emu_buffer_base);
memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
av_freep(&s->mctmp);
av_freep(&s->mcscratch);
s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
return AVERROR(ENOMEM);
s->buffer_stride = stride;
return 0;
}
static void free_sequence_buffers(DiracContext *s)
{
int i, j, k;
for (i = 0; i < MAX_FRAMES; i++) {
if (s->all_frames[i].avframe->data[0]) {
av_frame_unref(s->all_frames[i].avframe);
memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
}
for (j = 0; j < 3; j++)
for (k = 1; k < 4; k++)
av_freep(&s->all_frames[i].hpel_base[j][k]);
}
memset(s->ref_frames, 0, sizeof(s->ref_frames));
memset(s->delay_frames, 0, sizeof(s->delay_frames));
for (i = 0; i < 3; i++) {
av_freep(&s->plane[i].idwt.buf_base);
av_freep(&s->plane[i].idwt.tmp);
}
s->buffer_stride = 0;
av_freep(&s->sbsplit);
av_freep(&s->blmotion);
av_freep(&s->edge_emu_buffer_base);
av_freep(&s->mctmp);
av_freep(&s->mcscratch);
}
static AVOnce dirac_arith_init = AV_ONCE_INIT;
static av_cold int dirac_decode_init(AVCodecContext *avctx)
{
DiracContext *s = avctx->priv_data;
int i, ret;
s->avctx = avctx;
s->frame_number = -1;
s->thread_buf = NULL;
s->threads_num_buf = -1;
s->thread_buf_size = -1;
ff_diracdsp_init(&s->diracdsp);
ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
ff_videodsp_init(&s->vdsp, 8);
for (i = 0; i < MAX_FRAMES; i++) {
s->all_frames[i].avframe = av_frame_alloc();
if (!s->all_frames[i].avframe) {
while (i > 0)
av_frame_free(&s->all_frames[--i].avframe);
return AVERROR(ENOMEM);
}
}
ret = ff_thread_once(&dirac_arith_init, ff_dirac_init_arith_tables);
if (ret != 0)
return AVERROR_UNKNOWN;
return 0;
}
static void dirac_decode_flush(AVCodecContext *avctx)
{
DiracContext *s = avctx->priv_data;
free_sequence_buffers(s);
s->seen_sequence_header = 0;
s->frame_number = -1;
}
static av_cold int dirac_decode_end(AVCodecContext *avctx)
{
DiracContext *s = avctx->priv_data;
int i;
dirac_decode_flush(avctx);
for (i = 0; i < MAX_FRAMES; i++)
av_frame_free(&s->all_frames[i].avframe);
av_freep(&s->thread_buf);
av_freep(&s->slice_params_buf);
return 0;
}
static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
{
int coeff = dirac_get_se_golomb(gb);
const unsigned sign = FFSIGN(coeff);
if (coeff)
coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
return coeff;
}
#define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
#define UNPACK_ARITH(n, type) \
static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
SubBand *b, type *buf, int x, int y) \
{ \
int sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
unsigned coeff; \
const int mstride = -(b->stride >> (1+b->pshift)); \
if (b->parent) { \
const type *pbuf = (type *)b->parent->ibuf; \
const int stride = b->parent->stride >> (1+b->parent->pshift); \
pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
} \
if (b->orientation == subband_hl) \
sign_pred = buf[mstride]; \
if (x) { \
pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
if (b->orientation == subband_lh) \
sign_pred = buf[-1]; \
} else { \
pred_ctx += !buf[mstride]; \
} \
coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
if (coeff) { \
coeff = (coeff * qfactor + qoffset) >> 2; \
sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
coeff = (coeff ^ -sign) + sign; \
} \
*buf = coeff; \
} \
UNPACK_ARITH(8, int16_t)
UNPACK_ARITH(10, int32_t)
/**
* Decode the coeffs in the rectangle defined by left, right, top, bottom
* [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
*/
static inline int codeblock(const DiracContext *s, SubBand *b,
GetBitContext *gb, DiracArith *c,
int left, int right, int top, int bottom,
int blockcnt_one, int is_arith)
{
int x, y, zero_block;
int qoffset, qfactor;
uint8_t *buf;
/* check for any coded coefficients in this codeblock */
if (!blockcnt_one) {
if (is_arith)
zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
else
zero_block = get_bits1(gb);
if (zero_block)
return 0;
}
if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
int quant;
if (is_arith)
quant = dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
else
quant = dirac_get_se_golomb(gb);
if (quant > INT_MAX - b->quant || b->quant + quant < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
return AVERROR_INVALIDDATA;
}
b->quant += quant;
}
if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
b->quant = 0;
return AVERROR_INVALIDDATA;
}
qfactor = ff_dirac_qscale_tab[b->quant];
/* TODO: context pointer? */
if (!s->num_refs)
qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
else
qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
buf = b->ibuf + top * b->stride;
if (is_arith) {
for (y = top; y < bottom; y++) {
if (c->error)
return c->error;
for (x = left; x < right; x++) {
if (b->pshift) {
coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
} else {
coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
}
}
buf += b->stride;
}
} else {
for (y = top; y < bottom; y++) {
if (get_bits_left(gb) < 1)
return AVERROR_INVALIDDATA;
for (x = left; x < right; x++) {
int val = coeff_unpack_golomb(gb, qfactor, qoffset);
if (b->pshift) {
AV_WN32(&buf[4*x], val);
} else {
AV_WN16(&buf[2*x], val);
}
}
buf += b->stride;
}
}
return 0;
}
/**
* Dirac Specification ->
* 13.3 intra_dc_prediction(band)
*/
#define INTRA_DC_PRED(n, type) \
static inline void intra_dc_prediction_##n(SubBand *b) \
{ \
type *buf = (type*)b->ibuf; \
int x, y; \
\
for (x = 1; x < b->width; x++) \
buf[x] += buf[x-1]; \
buf += (b->stride >> (1+b->pshift)); \
\
for (y = 1; y < b->height; y++) { \
buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
\
for (x = 1; x < b->width; x++) { \
int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
buf[x] += divide3(pred); \
} \
buf += (b->stride >> (1+b->pshift)); \
} \
} \
INTRA_DC_PRED(8, int16_t)
INTRA_DC_PRED(10, uint32_t)
/**
* Dirac Specification ->
* 13.4.2 Non-skipped subbands. subband_coeffs()
*/
static av_always_inline int decode_subband_internal(const DiracContext *s,
SubBand *b, int is_arith)
{
int cb_x, cb_y, left, right, top, bottom;
DiracArith c;
GetBitContext gb;
int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
int blockcnt_one = (cb_width + cb_height) == 2;
int ret;
if (!b->length)
return 0;
init_get_bits8(&gb, b->coeff_data, b->length);
if (is_arith)
ff_dirac_init_arith_decoder(&c, &gb, b->length);
top = 0;
for (cb_y = 0; cb_y < cb_height; cb_y++) {
bottom = (b->height * (cb_y+1LL)) / cb_height;
left = 0;
for (cb_x = 0; cb_x < cb_width; cb_x++) {
right = (b->width * (cb_x+1LL)) / cb_width;
ret = codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
if (ret < 0)
return ret;
left = right;
}
top = bottom;
}
if (b->orientation == subband_ll && s->num_refs == 0) {
if (s->pshift) {
intra_dc_prediction_10(b);
} else {
intra_dc_prediction_8(b);
}
}
return 0;
}
static int decode_subband_arith(AVCodecContext *avctx, void *b)
{
const DiracContext *s = avctx->priv_data;
return decode_subband_internal(s, b, 1);
}
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
{
const DiracContext *s = avctx->priv_data;
SubBand **b = arg;
return decode_subband_internal(s, *b, 0);
}
/**
* Dirac Specification ->
* [DIRAC_STD] 13.4.1 core_transform_data()
*/
static int decode_component(DiracContext *s, int comp)
{
AVCodecContext *avctx = s->avctx;
SubBand *bands[3*MAX_DWT_LEVELS+1];
enum dirac_subband orientation;
int level, num_bands = 0;
int ret[3*MAX_DWT_LEVELS+1];
int i;
int damaged_count = 0;
/* Unpack all subbands at all levels. */
for (level = 0; level < s->wavelet_depth; level++) {
for (orientation = !!level; orientation < 4; orientation++) {
SubBand *b = &s->plane[comp].band[level][orientation];
bands[num_bands++] = b;
align_get_bits(&s->gb);
/* [DIRAC_STD] 13.4.2 subband() */
b->length = get_interleaved_ue_golomb(&s->gb);
if (b->length) {
b->quant = get_interleaved_ue_golomb(&s->gb);
if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
b->quant = 0;
return AVERROR_INVALIDDATA;
}
align_get_bits(&s->gb);
b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
if (b->length > FFMAX(get_bits_left(&s->gb)/8, 0)) {
b->length = FFMAX(get_bits_left(&s->gb)/8, 0);
damaged_count ++;
}
skip_bits_long(&s->gb, b->length*8);
}
}
/* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
if (s->is_arith)
avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
ret + 3*level + !!level, 4-!!level, sizeof(SubBand));
}
/* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
if (!s->is_arith)
avctx->execute(avctx, decode_subband_golomb, bands, ret, num_bands, sizeof(SubBand*));
for (i = 0; i < s->wavelet_depth * 3 + 1; i++) {
if (ret[i] < 0)
damaged_count++;
}
if (damaged_count > (s->wavelet_depth * 3 + 1) /2)
return AVERROR_INVALIDDATA;
return 0;
}
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
type *buf = (type *)buf1; \
buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
if (get_bits_count(gb) >= ebits) \
return; \
if (buf2) { \
buf = (type *)buf2; \
buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
if (get_bits_count(gb) >= ebits) \
return; \
} \
static void decode_subband(const DiracContext *s, GetBitContext *gb, int quant,
int slice_x, int slice_y, int bits_end,
const SubBand *b1, const SubBand *b2)
{
int left = b1->width * slice_x / s->num_x;
int right = b1->width *(slice_x+1) / s->num_x;
int top = b1->height * slice_y / s->num_y;
int bottom = b1->height *(slice_y+1) / s->num_y;
int qfactor, qoffset;
uint8_t *buf1 = b1->ibuf + top * b1->stride;
uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
int x, y;
if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
return;
}
qfactor = ff_dirac_qscale_tab[quant];
qoffset = ff_dirac_qoffset_intra_tab[quant] + 2;
/* we have to constantly check for overread since the spec explicitly
requires this, with the meaning that all remaining coeffs are set to 0 */
if (get_bits_count(gb) >= bits_end)
return;
if (s->pshift) {
for (y = top; y < bottom; y++) {
for (x = left; x < right; x++) {
PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
}
buf1 += b1->stride;
if (buf2)
buf2 += b2->stride;
}
}
else {
for (y = top; y < bottom; y++) {
for (x = left; x < right; x++) {
PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
}
buf1 += b1->stride;
if (buf2)
buf2 += b2->stride;
}
}
}
/**
* Dirac Specification ->
* 13.5.2 Slices. slice(sx,sy)
*/
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
{
const DiracContext *s = avctx->priv_data;
DiracSlice *slice = arg;
GetBitContext *gb = &slice->gb;
enum dirac_subband orientation;
int level, quant, chroma_bits, chroma_end;
int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
int length_bits = av_log2(8 * slice->bytes)+1;
int luma_bits = get_bits_long(gb, length_bits);
int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
/* [DIRAC_STD] 13.5.5.2 luma_slice_band */
for (level = 0; level < s->wavelet_depth; level++)
for (orientation = !!level; orientation < 4; orientation++) {
quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
&s->plane[0].band[level][orientation], NULL);
}
/* consume any unused bits from luma */
skip_bits_long(gb, get_bits_count(gb) - luma_end);
chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
/* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
for (level = 0; level < s->wavelet_depth; level++)
for (orientation = !!level; orientation < 4; orientation++) {
quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
&s->plane[1].band[level][orientation],
&s->plane[2].band[level][orientation]);
}
return 0;
}
typedef struct SliceCoeffs {
int left;
int top;
int tot_h;
int tot_v;
int tot;
} SliceCoeffs;
static int subband_coeffs(const DiracContext *s, int x, int y, int p,
SliceCoeffs c[MAX_DWT_LEVELS])
{
int level, coef = 0;
for (level = 0; level < s->wavelet_depth; level++) {
SliceCoeffs *o = &c[level];
const SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */
o->top = b->height * y / s->num_y;
o->left = b->width * x / s->num_x;
o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left;
o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top;
o->tot = o->tot_h*o->tot_v;
coef += o->tot * (4 - !!level);
}
return coef;
}
/**
* VC-2 Specification ->
* 13.5.3 hq_slice(sx,sy)
*/
static int decode_hq_slice(const DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
{
int i, level, orientation, quant_idx;
int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4];
GetBitContext *gb = &slice->gb;
SliceCoeffs coeffs_num[MAX_DWT_LEVELS];
skip_bits_long(gb, 8*s->highquality.prefix_bytes);
quant_idx = get_bits(gb, 8);
if (quant_idx > DIRAC_MAX_QUANT_INDEX - 1) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx);
return AVERROR_INVALIDDATA;
}
/* Slice quantization (slice_quantizers() in the specs) */
for (level = 0; level < s->wavelet_depth; level++) {
for (orientation = !!level; orientation < 4; orientation++) {
const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
qfactor[level][orientation] = ff_dirac_qscale_tab[quant];
qoffset[level][orientation] = ff_dirac_qoffset_intra_tab[quant] + 2;
}
}
/* Luma + 2 Chroma planes */
for (i = 0; i < 3; i++) {
int coef_num, coef_par, off = 0;
int64_t length = s->highquality.size_scaler*get_bits(gb, 8);
int64_t bits_end = get_bits_count(gb) + 8*length;
const uint8_t *addr = align_get_bits(gb);
if (length*8 > get_bits_left(gb)) {
av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
return AVERROR_INVALIDDATA;
}
coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num);
if (s->pshift)
coef_par = ff_dirac_golomb_read_32bit(addr, length,
tmp_buf, coef_num);
else
coef_par = ff_dirac_golomb_read_16bit(addr, length,
tmp_buf, coef_num);
if (coef_num > coef_par) {
const int start_b = coef_par * (1 << (s->pshift + 1));
const int end_b = coef_num * (1 << (s->pshift + 1));
memset(&tmp_buf[start_b], 0, end_b - start_b);
}
for (level = 0; level < s->wavelet_depth; level++) {
const SliceCoeffs *c = &coeffs_num[level];
for (orientation = !!level; orientation < 4; orientation++) {
const SubBand *b1 = &s->plane[i].band[level][orientation];
uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1));
/* Change to c->tot_h <= 4 for AVX2 dequantization */
const int qfunc = s->pshift + 2*(c->tot_h <= 2);
s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride,
qfactor[level][orientation],
qoffset[level][orientation],
c->tot_v, c->tot_h);
off += c->tot << (s->pshift + 1);
}
}
skip_bits_long(gb, bits_end - get_bits_count(gb));
}
return 0;
}
static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
{
int i;
const DiracContext *s = avctx->priv_data;
DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr;
uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr];
for (i = 0; i < s->num_x; i++)
decode_hq_slice(s, &slices[i], thread_buf);
return 0;
}
/**
* Dirac Specification ->
* 13.5.1 low_delay_transform_data()
*/
static int decode_lowdelay(DiracContext *s)
{
AVCodecContext *avctx = s->avctx;
int slice_x, slice_y, bufsize;
int64_t coef_buf_size, bytes = 0;
const uint8_t *buf;
DiracSlice *slices;
SliceCoeffs tmp[MAX_DWT_LEVELS];
int slice_num = 0;
if (s->slice_params_num_buf != (s->num_x * s->num_y)) {
s->slice_params_buf = av_realloc_f(s->slice_params_buf, s->num_x * s->num_y, sizeof(DiracSlice));
if (!s->slice_params_buf) {
av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n");
s->slice_params_num_buf = 0;
return AVERROR(ENOMEM);
}
s->slice_params_num_buf = s->num_x * s->num_y;
}
slices = s->slice_params_buf;
/* 8 becacuse that's how much the golomb reader could overread junk data
* from another plane/slice at most, and 512 because SIMD */
coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8;
coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512;
if (s->threads_num_buf != avctx->thread_count ||
s->thread_buf_size != coef_buf_size) {
s->threads_num_buf = avctx->thread_count;
s->thread_buf_size = coef_buf_size;
s->thread_buf = av_realloc_f(s->thread_buf, avctx->thread_count, s->thread_buf_size);
if (!s->thread_buf) {
av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n");
return AVERROR(ENOMEM);
}
}
align_get_bits(&s->gb);
/*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
buf = s->gb.buffer + get_bits_count(&s->gb)/8;
bufsize = get_bits_left(&s->gb);
if (s->hq_picture) {
int i;
for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
bytes = s->highquality.prefix_bytes + 1;
for (i = 0; i < 3; i++) {
if (bytes <= bufsize/8)
bytes += buf[bytes] * s->highquality.size_scaler + 1;
}
if (bytes >= INT_MAX || bytes*8 > bufsize) {
av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
return AVERROR_INVALIDDATA;
}
slices[slice_num].bytes = bytes;
slices[slice_num].slice_x = slice_x;
slices[slice_num].slice_y = slice_y;
init_get_bits(&slices[slice_num].gb, buf, bufsize);
slice_num++;
buf += bytes;
if (bufsize/8 >= bytes)
bufsize -= bytes*8;
else
bufsize = 0;
}
}
if (s->num_x*s->num_y != slice_num) {
av_log(s->avctx, AV_LOG_ERROR, "too few slices\n");
return AVERROR_INVALIDDATA;
}
avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y);
} else {
for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
- slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
if (bytes >= INT_MAX || bytes*8 > bufsize) {
av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
return AVERROR_INVALIDDATA;
}
slices[slice_num].bytes = bytes;
slices[slice_num].slice_x = slice_x;
slices[slice_num].slice_y = slice_y;
init_get_bits(&slices[slice_num].gb, buf, bufsize);
slice_num++;
buf += bytes;
if (bufsize/8 >= bytes)
bufsize -= bytes*8;
else
bufsize = 0;
}
}
avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
}
if (s->dc_prediction) {
if (s->pshift) {
intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
} else {
intra_dc_prediction_8(&s->plane[0].band[0][0]);
intra_dc_prediction_8(&s->plane[1].band[0][0]);
intra_dc_prediction_8(&s->plane[2].band[0][0]);
}
}
return 0;
}
static void init_planes(DiracContext *s)
{
int i, w, h, level, orientation;
for (i = 0; i < 3; i++) {
Plane *p = &s->plane[i];
p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
for (level = s->wavelet_depth-1; level >= 0; level--) {
w = w>>1;
h = h>>1;
for (orientation = !!level; orientation < 4; orientation++) {
SubBand *b = &p->band[level][orientation];
b->pshift = s->pshift;
b->ibuf = p->idwt.buf;
b->level = level;
b->stride = p->idwt.stride << (s->wavelet_depth - level);
b->width = w;
b->height = h;
b->orientation = orientation;
if (orientation & 1)
b->ibuf += w << (1+b->pshift);
if (orientation > 1)
b->ibuf += (b->stride>>1);
if (level)
b->parent = &p->band[level-1][orientation];
}
}
if (i > 0) {
p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
}
p->xoffset = (p->xblen - p->xbsep)/2;
p->yoffset = (p->yblen - p->ybsep)/2;
}
}
/**
* Unpack the motion compensation parameters
* Dirac Specification ->
* 11.2 Picture prediction data. picture_prediction()
*/
static int dirac_unpack_prediction_parameters(DiracContext *s)
{
static const uint8_t default_blen[] = { 4, 12, 16, 24 };
GetBitContext *gb = &s->gb;
unsigned idx, ref;
align_get_bits(gb);
/* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
/* Luma and Chroma are equal. 11.2.3 */
idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */
if (idx > 4) {
av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
return AVERROR_INVALIDDATA;
}
if (idx == 0) {
s->plane[0].xblen = get_interleaved_ue_golomb(gb);
s->plane[0].yblen = get_interleaved_ue_golomb(gb);
s->plane[0].xbsep = get_interleaved_ue_golomb(gb);
s->plane[0].ybsep = get_interleaved_ue_golomb(gb);
} else {
/*[DIRAC_STD] preset_block_params(index). Table 11.1 */
s->plane[0].xblen = default_blen[idx-1];
s->plane[0].yblen = default_blen[idx-1];
s->plane[0].xbsep = 4 * idx;
s->plane[0].ybsep = 4 * idx;
}
/*[DIRAC_STD] 11.2.4 motion_data_dimensions()
Calculated in function dirac_unpack_block_motion_data */
if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
!s->plane[0].xblen || !s->plane[0].yblen) {
av_log(s->avctx, AV_LOG_ERROR,
"invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
return AVERROR_INVALIDDATA;
}
if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
return AVERROR_INVALIDDATA;
}
if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
return AVERROR_INVALIDDATA;
}
if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
return AVERROR_PATCHWELCOME;
}
/*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
Read motion vector precision */
s->mv_precision = get_interleaved_ue_golomb(gb);
if (s->mv_precision > 3) {
av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
return AVERROR_INVALIDDATA;
}
/*[DIRAC_STD] 11.2.6 Global motion. global_motion()
Read the global motion compensation parameters */
s->globalmc_flag = get_bits1(gb);
if (s->globalmc_flag) {
memset(s->globalmc, 0, sizeof(s->globalmc));
/* [DIRAC_STD] pan_tilt(gparams) */
for (ref = 0; ref < s->num_refs; ref++) {
if (get_bits1(gb)) {
s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
}
/* [DIRAC_STD] zoom_rotate_shear(gparams)
zoom/rotation/shear parameters */
if (get_bits1(gb)) {
s->globalmc[ref].zrs_exp = get_interleaved_ue_golomb(gb);
s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
} else {
s->globalmc[ref].zrs[0][0] = 1;
s->globalmc[ref].zrs[1][1] = 1;
}
/* [DIRAC_STD] perspective(gparams) */
if (get_bits1(gb)) {
s->globalmc[ref].perspective_exp = get_interleaved_ue_golomb(gb);
s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
}
if (s->globalmc[ref].perspective_exp + (uint64_t)s->globalmc[ref].zrs_exp > 30) {
return AVERROR_INVALIDDATA;
}
}
}
/*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
Picture prediction mode, not currently used. */
if (get_interleaved_ue_golomb(gb)) {
av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
return AVERROR_INVALIDDATA;
}
/* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
just data read, weight calculation will be done later on. */
s->weight_log2denom = 1;
s->weight[0] = 1;
s->weight[1] = 1;
if (get_bits1(gb)) {
s->weight_log2denom = get_interleaved_ue_golomb(gb);
if (s->weight_log2denom < 1 || s->weight_log2denom > 8) {
av_log(s->avctx, AV_LOG_ERROR, "weight_log2denom unsupported or invalid\n");
s->weight_log2denom = 1;
return AVERROR_INVALIDDATA;
}
s->weight[0] = dirac_get_se_golomb(gb);
if (s->num_refs == 2)
s->weight[1] = dirac_get_se_golomb(gb);
}
return 0;
}
/**
* Dirac Specification ->
* 11.3 Wavelet transform data. wavelet_transform()
*/
static int dirac_unpack_idwt_params(DiracContext *s)
{
GetBitContext *gb = &s->gb;
int i, level;
unsigned tmp;
#define CHECKEDREAD(dst, cond, errmsg) \
tmp = get_interleaved_ue_golomb(gb); \
if (cond) { \
av_log(s->avctx, AV_LOG_ERROR, errmsg); \
return AVERROR_INVALIDDATA; \
}\
dst = tmp;
align_get_bits(gb);
s->zero_res = s->num_refs ? get_bits1(gb) : 0;
if (s->zero_res)
return 0;
/*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
if (!s->low_delay) {
/* Codeblock parameters (core syntax only) */
if (get_bits1(gb)) {
for (i = 0; i <= s->wavelet_depth; i++) {
CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
}
CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
}
else {
for (i = 0; i <= s->wavelet_depth; i++)
s->codeblock[i].width = s->codeblock[i].height = 1;
}
}
else {
s->num_x = get_interleaved_ue_golomb(gb);
s->num_y = get_interleaved_ue_golomb(gb);
if (s->num_x * s->num_y == 0 || s->num_x * (uint64_t)s->num_y > INT_MAX ||
s->num_x * (uint64_t)s->avctx->width > INT_MAX ||
s->num_y * (uint64_t)s->avctx->height > INT_MAX ||
s->num_x > s->avctx->width ||
s->num_y > s->avctx->height
) {
av_log(s->avctx,AV_LOG_ERROR,"Invalid numx/y\n");
s->num_x = s->num_y = 0;
return AVERROR_INVALIDDATA;
}
if (s->ld_picture) {
s->lowdelay.bytes.num = get_interleaved_ue_golomb(gb);
s->lowdelay.bytes.den = get_interleaved_ue_golomb(gb);
if (s->lowdelay.bytes.den <= 0) {
av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
return AVERROR_INVALIDDATA;
}
} else if (s->hq_picture) {
s->highquality.prefix_bytes = get_interleaved_ue_golomb(gb);
s->highquality.size_scaler = get_interleaved_ue_golomb(gb);
if (s->highquality.prefix_bytes >= INT_MAX / 8) {
av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
return AVERROR_INVALIDDATA;
}
}
/* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
if (get_bits1(gb)) {
av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
/* custom quantization matrix */
for (level = 0; level < s->wavelet_depth; level++) {
for (i = !!level; i < 4; i++) {
s->lowdelay.quant[level][i] = get_interleaved_ue_golomb(gb);
}
}
} else {
if (s->wavelet_depth > 4) {
av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
return AVERROR_INVALIDDATA;
}
/* default quantization matrix */
for (level = 0; level < s->wavelet_depth; level++)
for (i = 0; i < 4; i++) {
s->lowdelay.quant[level][i] = ff_dirac_default_qmat[s->wavelet_idx][level][i];
/* haar with no shift differs for different depths */
if (s->wavelet_idx == 3)
s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
}
}
}
return 0;
}
static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
{
static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
if (!(x|y))
return 0;
else if (!y)
return sbsplit[-1];
else if (!x)
return sbsplit[-stride];
return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
}
static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
{
int pred;
if (!(x|y))
return 0;
else if (!y)
return block[-1].ref & refmask;
else if (!x)
return block[-stride].ref & refmask;
/* return the majority */
pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
return (pred >> 1) & refmask;
}
static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
{
int i, n = 0;
memset(block->u.dc, 0, sizeof(block->u.dc));
if (x && !(block[-1].ref & 3)) {
for (i = 0; i < 3; i++)
block->u.dc[i] += block[-1].u.dc[i];
n++;
}
if (y && !(block[-stride].ref & 3)) {
for (i = 0; i < 3; i++)
block->u.dc[i] += block[-stride].u.dc[i];
n++;
}
if (x && y && !(block[-1-stride].ref & 3)) {
for (i = 0; i < 3; i++)
block->u.dc[i] += block[-1-stride].u.dc[i];
n++;
}
if (n == 2) {
for (i = 0; i < 3; i++)
block->u.dc[i] = (block->u.dc[i]+1)>>1;
} else if (n == 3) {
for (i = 0; i < 3; i++)
block->u.dc[i] = divide3(block->u.dc[i]);
}
}
static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
{
int16_t *pred[3];
int refmask = ref+1;
int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
int n = 0;
if (x && (block[-1].ref & mask) == refmask)
pred[n++] = block[-1].u.mv[ref];
if (y && (block[-stride].ref & mask) == refmask)
pred[n++] = block[-stride].u.mv[ref];
if (x && y && (block[-stride-1].ref & mask) == refmask)
pred[n++] = block[-stride-1].u.mv[ref];
switch (n) {
case 0:
block->u.mv[ref][0] = 0;
block->u.mv[ref][1] = 0;
break;
case 1:
block->u.mv[ref][0] = pred[0][0];
block->u.mv[ref][1] = pred[0][1];
break;
case 2:
block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
break;
case 3:
block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
break;
}
}
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
{
int ez = s->globalmc[ref].zrs_exp;
int ep = s->globalmc[ref].perspective_exp;
int (*A)[2] = s->globalmc[ref].zrs;
int *b = s->globalmc[ref].pan_tilt;
int *c = s->globalmc[ref].perspective;
int64_t m = (1<<ep) - (c[0]*(int64_t)x + c[1]*(int64_t)y);
int64_t mx = m * (uint64_t)((A[0][0] * (int64_t)x + A[0][1]*(int64_t)y) + (1LL<<ez) * b[0]);
int64_t my = m * (uint64_t)((A[1][0] * (int64_t)x + A[1][1]*(int64_t)y) + (1LL<<ez) * b[1]);
block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
}
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
int stride, int x, int y)
{
int i;
block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
if (s->num_refs == 2) {
block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
}
if (!block->ref) {
pred_block_dc(block, stride, x, y);
for (i = 0; i < 3; i++)
block->u.dc[i] += (unsigned)dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
return;
}
if (s->globalmc_flag) {
block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
}
for (i = 0; i < s->num_refs; i++)
if (block->ref & (i+1)) {
if (block->ref & DIRAC_REF_MASK_GLOBAL) {
global_mv(s, block, x, y, i);
} else {
pred_mv(block, stride, x, y, i);
block->u.mv[i][0] += (unsigned)dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
block->u.mv[i][1] += (unsigned)dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
}
}
}
/**
* Copies the current block to the other blocks covered by the current superblock split mode
*/
static void propagate_block_data(DiracBlock *block, int stride, int size)
{
int x, y;
DiracBlock *dst = block;
for (x = 1; x < size; x++)
dst[x] = *block;
for (y = 1; y < size; y++) {
dst += stride;
for (x = 0; x < size; x++)
dst[x] = *block;
}
}
/**
* Dirac Specification ->
* 12. Block motion data syntax
*/
static int dirac_unpack_block_motion_data(DiracContext *s)
{
GetBitContext *gb = &s->gb;
uint8_t *sbsplit = s->sbsplit;
int i, x, y, q, p;
DiracArith arith[8];
align_get_bits(gb);
/* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
s->blwidth = 4 * s->sbwidth;
s->blheight = 4 * s->sbheight;
/* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
decode superblock split modes */
ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */
for (y = 0; y < s->sbheight; y++) {
for (x = 0; x < s->sbwidth; x++) {
unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
if (split > 2)
return AVERROR_INVALIDDATA;
sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
}
sbsplit += s->sbwidth;
}
/* setup arith decoding */
ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb));
for (i = 0; i < s->num_refs; i++) {
ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb));
ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb));
}
for (i = 0; i < 3; i++)
ff_dirac_init_arith_decoder(arith+1+i, gb, get_interleaved_ue_golomb(gb));
for (y = 0; y < s->sbheight; y++)
for (x = 0; x < s->sbwidth; x++) {
int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
int step = 4 >> s->sbsplit[y * s->sbwidth + x];
for (q = 0; q < blkcnt; q++)
for (p = 0; p < blkcnt; p++) {
int bx = 4 * x + p*step;
int by = 4 * y + q*step;
DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
decode_block_params(s, arith, block, s->blwidth, bx, by);
propagate_block_data(block, s->blwidth, step);
}
}
for (i = 0; i < 4 + 2*s->num_refs; i++) {
if (arith[i].error)
return arith[i].error;
}
return 0;
}
static int weight(int i, int blen, int offset)
{
#define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
(1 + (6*(i) + offset - 1) / (2*offset - 1))
if (i < 2*offset)
return ROLLOFF(i);
else if (i > blen-1 - 2*offset)
return ROLLOFF(blen-1 - i);
return 8;
}
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
int left, int right, int wy)
{
int x;
for (x = 0; left && x < p->xblen >> 1; x++)
obmc_weight[x] = wy*8;
for (; x < p->xblen >> right; x++)
obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
for (; x < p->xblen; x++)
obmc_weight[x] = wy*8;
for (; x < stride; x++)
obmc_weight[x] = 0;
}
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
int left, int right, int top, int bottom)
{
int y;
for (y = 0; top && y < p->yblen >> 1; y++) {
init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
obmc_weight += stride;
}
for (; y < p->yblen >> bottom; y++) {
int wy = weight(y, p->yblen, p->yoffset);
init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
obmc_weight += stride;
}
for (; y < p->yblen; y++) {
init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
obmc_weight += stride;
}
}
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
{
int top = !by;
int bottom = by == s->blheight-1;
/* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
if (top || bottom || by == 1) {
init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
}
}
static const uint8_t epel_weights[4][4][4] = {
{{ 16, 0, 0, 0 },
{ 12, 4, 0, 0 },
{ 8, 8, 0, 0 },
{ 4, 12, 0, 0 }},
{{ 12, 0, 4, 0 },
{ 9, 3, 3, 1 },
{ 6, 6, 2, 2 },
{ 3, 9, 1, 3 }},
{{ 8, 0, 8, 0 },
{ 6, 2, 6, 2 },
{ 4, 4, 4, 4 },
{ 2, 6, 2, 6 }},
{{ 4, 0, 12, 0 },
{ 3, 1, 9, 3 },
{ 2, 2, 6, 6 },
{ 1, 3, 3, 9 }}
};
/**
* For block x,y, determine which of the hpel planes to do bilinear
* interpolation from and set src[] to the location in each hpel plane
* to MC from.
*
* @return the index of the put_dirac_pixels_tab function to use
* 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
*/
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
int x, int y, int ref, int plane)
{
Plane *p = &s->plane[plane];
uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
int motion_x = block->u.mv[ref][0];
int motion_y = block->u.mv[ref][1];
int mx, my, i, epel, nplanes = 0;
if (plane) {
motion_x >>= s->chroma_x_shift;
motion_y >>= s->chroma_y_shift;
}
mx = motion_x & ~(-1U << s->mv_precision);
my = motion_y & ~(-1U << s->mv_precision);
motion_x >>= s->mv_precision;
motion_y >>= s->mv_precision;
/* normalize subpel coordinates to epel */
/* TODO: template this function? */
mx <<= 3 - s->mv_precision;
my <<= 3 - s->mv_precision;
x += motion_x;
y += motion_y;
epel = (mx|my)&1;
/* hpel position */
if (!((mx|my)&3)) {
nplanes = 1;
src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
} else {
/* qpel or epel */
nplanes = 4;
for (i = 0; i < 4; i++)
src[i] = ref_hpel[i] + y*p->stride + x;
/* if we're interpolating in the right/bottom halves, adjust the planes as needed
we increment x/y because the edge changes for half of the pixels */
if (mx > 4) {
src[0] += 1;
src[2] += 1;
x++;
}
if (my > 4) {
src[0] += p->stride;
src[1] += p->stride;
y++;
}
/* hpel planes are:
[0]: F [1]: H
[2]: V [3]: C */
if (!epel) {
/* check if we really only need 2 planes since either mx or my is
a hpel position. (epel weights of 0 handle this there) */
if (!(mx&3)) {
/* mx == 0: average [0] and [2]
mx == 4: average [1] and [3] */
src[!mx] = src[2 + !!mx];
nplanes = 2;
} else if (!(my&3)) {
src[0] = src[(my>>1) ];
src[1] = src[(my>>1)+1];
nplanes = 2;
}
} else {
/* adjust the ordering if needed so the weights work */
if (mx > 4) {
FFSWAP(const uint8_t *, src[0], src[1]);
FFSWAP(const uint8_t *, src[2], src[3]);
}
if (my > 4) {
FFSWAP(const uint8_t *, src[0], src[2]);
FFSWAP(const uint8_t *, src[1], src[3]);
}
src[4] = epel_weights[my&3][mx&3];
}
}
/* fixme: v/h _edge_pos */
if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
y + p->yblen > p->height+EDGE_WIDTH/2 ||
x < 0 || y < 0) {
for (i = 0; i < nplanes; i++) {
s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
p->stride, p->stride,
p->xblen, p->yblen, x, y,
p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
src[i] = s->edge_emu_buffer[i];
}
}
return (nplanes>>1) + epel;
}
static void add_dc(uint16_t *dst, int dc, int stride,
uint8_t *obmc_weight, int xblen, int yblen)
{
int x, y;
dc += 128;
for (y = 0; y < yblen; y++) {
for (x = 0; x < xblen; x += 2) {
dst[x ] += dc * obmc_weight[x ];
dst[x+1] += dc * obmc_weight[x+1];
}
dst += stride;
obmc_weight += MAX_BLOCKSIZE;
}
}
static void block_mc(DiracContext *s, DiracBlock *block,
uint16_t *mctmp, uint8_t *obmc_weight,
int plane, int dstx, int dsty)
{
Plane *p = &s->plane[plane];
const uint8_t *src[5];
int idx;
switch (block->ref&3) {
case 0: /* DC */
add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
return;
case 1:
case 2:
idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
if (s->weight_func)
s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
s->weight[0] + s->weight[1], p->yblen);
break;
case 3:
idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
if (s->biweight_func) {
/* fixme: +32 is a quick hack */
s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
s->weight[0], s->weight[1], p->yblen);
} else
s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
break;
}
s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
}
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
{
Plane *p = &s->plane[plane];
int x, dstx = p->xbsep - p->xoffset;
block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
mctmp += p->xbsep;
for (x = 1; x < s->blwidth-1; x++) {
block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
dstx += p->xbsep;
mctmp += p->xbsep;
}
block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
}
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
{
int idx = 0;
if (xblen > 8)
idx = 1;
if (xblen > 16)
idx = 2;
memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
} else {
s->weight_func = NULL;
s->biweight_func = NULL;
}
}
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
{
/* chroma allocates an edge of 8 when subsampled
which for 4:2:2 means an h edge of 16 and v edge of 8
just use 8 for everything for the moment */
int i, edge = EDGE_WIDTH/2;
ref->hpel[plane][0] = ref->avframe->data[plane];
s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
/* no need for hpel if we only have fpel vectors */
if (!s->mv_precision)
return 0;
for (i = 1; i < 4; i++) {
if (!ref->hpel_base[plane][i])
ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
if (!ref->hpel_base[plane][i]) {
return AVERROR(ENOMEM);
}
/* we need to be 16-byte aligned even for chroma */
ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
}
if (!ref->interpolated[plane]) {
s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
ref->hpel[plane][3], ref->hpel[plane][0],
ref->avframe->linesize[plane], width, height);
s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
}
ref->interpolated[plane] = 1;
return 0;
}
/**
* Dirac Specification ->
* 13.0 Transform data syntax. transform_data()
*/
static int dirac_decode_frame_internal(DiracContext *s)
{
DWTContext d;
int y, i, comp, dsty;
int ret;
if (s->low_delay) {
/* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
if (!s->hq_picture) {
for (comp = 0; comp < 3; comp++) {
Plane *p = &s->plane[comp];
memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
}
}
if (!s->zero_res) {
if ((ret = decode_lowdelay(s)) < 0)
return ret;
}
}
for (comp = 0; comp < 3; comp++) {
Plane *p = &s->plane[comp];
uint8_t *frame = s->current_picture->avframe->data[comp];
/* FIXME: small resolutions */
for (i = 0; i < 4; i++)
s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
if (!s->zero_res && !s->low_delay)
{
memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
ret = decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
if (ret < 0)
return ret;
}
ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
s->wavelet_depth, s->bit_depth);
if (ret < 0)
return ret;
if (!s->num_refs) { /* intra */
for (y = 0; y < p->height; y += 16) {
int idx = (s->bit_depth - 8) >> 1;
ff_spatial_idwt_slice2(&d, y+16); /* decode */
s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
p->stride,
p->idwt.buf + y*p->idwt.stride,
p->idwt.stride, p->width, 16);
}
} else { /* inter */
int rowheight = p->ybsep*p->stride;
select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
for (i = 0; i < s->num_refs; i++) {
int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
if (ret < 0)
return ret;
}
memset(s->mctmp, 0, 4*p->yoffset*p->stride);
dsty = -p->yoffset;
for (y = 0; y < s->blheight; y++) {
int h = 0,
start = FFMAX(dsty, 0);
uint16_t *mctmp = s->mctmp + y*rowheight;
DiracBlock *blocks = s->blmotion + y*s->blwidth;
init_obmc_weights(s, p, y);
if (y == s->blheight-1 || start+p->ybsep > p->height)
h = p->height - start;
else
h = p->ybsep - (start - dsty);
if (h < 0)
break;
memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
mc_row(s, blocks, mctmp, comp, dsty);
mctmp += (start - dsty)*p->stride + p->xoffset;
ff_spatial_idwt_slice2(&d, start + h); /* decode */
/* NOTE: add_rect_clamped hasn't been templated hence the shifts.
* idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
(int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
dsty += p->ybsep;
}
}
}
return 0;
}
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
{
int ret, i;
int chroma_x_shift, chroma_y_shift;
ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift,
&chroma_y_shift);
if (ret < 0)
return ret;
f->width = avctx->width + 2 * EDGE_WIDTH;
f->height = avctx->height + 2 * EDGE_WIDTH + 2;
ret = ff_get_buffer(avctx, f, flags);
if (ret < 0)
return ret;
for (i = 0; f->data[i]; i++) {
int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
f->linesize[i] + 32;
f->data[i] += offset;
}
f->width = avctx->width;
f->height = avctx->height;
return 0;
}
/**
* Dirac Specification ->
* 11.1.1 Picture Header. picture_header()
*/
static int dirac_decode_picture_header(DiracContext *s)
{
unsigned retire, picnum;
int i, j, ret;
int64_t refdist, refnum;
GetBitContext *gb = &s->gb;
/* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
picnum = s->current_picture->picture_number = get_bits_long(gb, 32);
av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
/* if this is the first keyframe after a sequence header, start our
reordering from here */
if (s->frame_number < 0)
s->frame_number = picnum;
s->ref_pics[0] = s->ref_pics[1] = NULL;
for (i = 0; i < s->num_refs; i++) {
refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
refdist = INT64_MAX;
/* find the closest reference to the one we want */
/* Jordi: this is needed if the referenced picture hasn't yet arrived */
for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
if (s->ref_frames[j]
&& FFABS(s->ref_frames[j]->picture_number - refnum) < refdist) {
s->ref_pics[i] = s->ref_frames[j];
refdist = FFABS(s->ref_frames[j]->picture_number - refnum);
}
if (!s->ref_pics[i] || refdist)
av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
/* if there were no references at all, allocate one */
if (!s->ref_pics[i])
for (j = 0; j < MAX_FRAMES; j++)
if (!s->all_frames[j].avframe->data[0]) {
s->ref_pics[i] = &s->all_frames[j];
ret = get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
if (ret < 0)
return ret;
break;
}
if (!s->ref_pics[i]) {
av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
return AVERROR_INVALIDDATA;
}
}
/* retire the reference frames that are not used anymore */
if (s->current_picture->reference) {
retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
if (retire != picnum) {
DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
if (retire_pic)
retire_pic->reference &= DELAYED_PIC_REF;
else
av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
}
/* if reference array is full, remove the oldest as per the spec */
while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
remove_frame(s->ref_frames, s->ref_frames[0]->picture_number)->reference &= DELAYED_PIC_REF;
}
}
if (s->num_refs) {
ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
if (ret < 0)
return ret;
ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
if (ret < 0)
return ret;
}
ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
if (ret < 0)
return ret;
init_planes(s);
return 0;
}
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
{
DiracFrame *out = s->delay_frames[0];
int i, out_idx = 0;
int ret;
/* find frame with lowest picture number */
for (i = 1; s->delay_frames[i]; i++)
if (s->delay_frames[i]->picture_number < out->picture_number) {
out = s->delay_frames[i];
out_idx = i;
}
for (i = out_idx; s->delay_frames[i]; i++)
s->delay_frames[i] = s->delay_frames[i+1];
if (out) {
out->reference ^= DELAYED_PIC_REF;
if((ret = av_frame_ref(picture, out->avframe)) < 0)
return ret;
#if FF_API_FRAME_PICTURE_NUMBER
FF_DISABLE_DEPRECATION_WARNINGS
picture->display_picture_number = out->picture_number;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
*got_frame = 1;
}
return 0;
}
/**
* Dirac Specification ->
* 9.6 Parse Info Header Syntax. parse_info()
* 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
*/
#define DATA_UNIT_HEADER_SIZE 13
/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
inside the function parse_sequence() */
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
{
DiracContext *s = avctx->priv_data;
DiracFrame *pic = NULL;
AVDiracSeqHeader *dsh;
int ret, i;
uint8_t parse_code;
unsigned tmp;
if (size < DATA_UNIT_HEADER_SIZE)
return AVERROR_INVALIDDATA;
parse_code = buf[4];
init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
if (s->seen_sequence_header)
return 0;
/* [DIRAC_STD] 10. Sequence header */
ret = av_dirac_parse_sequence_header(&dsh, buf + DATA_UNIT_HEADER_SIZE, size - DATA_UNIT_HEADER_SIZE, avctx);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
return ret;
}
if (CALC_PADDING((int64_t)dsh->width, MAX_DWT_LEVELS) * CALC_PADDING((int64_t)dsh->height, MAX_DWT_LEVELS) * 5LL > avctx->max_pixels)
ret = AVERROR(ERANGE);
if (ret >= 0)
ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
if (ret < 0) {
av_freep(&dsh);
return ret;
}
ff_set_sar(avctx, dsh->sample_aspect_ratio);
avctx->pix_fmt = dsh->pix_fmt;
avctx->color_range = dsh->color_range;
avctx->color_trc = dsh->color_trc;
avctx->color_primaries = dsh->color_primaries;
avctx->colorspace = dsh->colorspace;
avctx->profile = dsh->profile;
avctx->level = dsh->level;
avctx->framerate = dsh->framerate;
s->bit_depth = dsh->bit_depth;
s->version.major = dsh->version.major;
s->version.minor = dsh->version.minor;
s->seq = *dsh;
av_freep(&dsh);
s->pshift = s->bit_depth > 8;
ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt,
&s->chroma_x_shift,
&s->chroma_y_shift);
if (ret < 0)
return ret;
ret = alloc_sequence_buffers(s);
if (ret < 0)
return ret;
s->seen_sequence_header = 1;
} else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
free_sequence_buffers(s);
s->seen_sequence_header = 0;
} else if (parse_code == DIRAC_PCODE_AUX) {
if (buf[13] == 1) { /* encoder implementation/version */
int ver[3];
/* versions older than 1.0.8 don't store quant delta for
subbands with only one codeblock */
if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
s->old_delta_quant = 1;
}
} else if (parse_code & 0x8) { /* picture data unit */
if (!s->seen_sequence_header) {
av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
return AVERROR_INVALIDDATA;
}
/* find an unused frame */
for (i = 0; i < MAX_FRAMES; i++)
if (s->all_frames[i].avframe->data[0] == NULL)
pic = &s->all_frames[i];
if (!pic) {
av_log(avctx, AV_LOG_ERROR, "framelist full\n");
return AVERROR_INVALIDDATA;
}
av_frame_unref(pic->avframe);
/* [DIRAC_STD] Defined in 9.6.1 ... */
tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
if (tmp > 2) {
av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
return AVERROR_INVALIDDATA;
}
s->num_refs = tmp;
s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
/* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
if (s->version.minor == 2 && parse_code == 0x88)
s->ld_picture = 1;
if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
return AVERROR_INVALIDDATA;
}
if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
return ret;
s->current_picture = pic;
s->plane[0].stride = pic->avframe->linesize[0];
s->plane[1].stride = pic->avframe->linesize[1];
s->plane[2].stride = pic->avframe->linesize[2];
if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
return AVERROR(ENOMEM);
/* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
ret = dirac_decode_picture_header(s);
if (ret < 0)
return ret;
/* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
ret = dirac_decode_frame_internal(s);
if (ret < 0)
return ret;
}
return 0;
}
static int dirac_decode_frame(AVCodecContext *avctx, AVFrame *picture,
int *got_frame, AVPacket *pkt)
{
DiracContext *s = avctx->priv_data;
const uint8_t *buf = pkt->data;
int buf_size = pkt->size;
int i, buf_idx = 0;
int ret;
unsigned data_unit_size;
/* release unused frames */
for (i = 0; i < MAX_FRAMES; i++)
if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
av_frame_unref(s->all_frames[i].avframe);
memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
}
s->current_picture = NULL;
*got_frame = 0;
/* end of stream, so flush delayed pics */
if (buf_size == 0)
return get_delayed_pic(s, picture, got_frame);
for (;;) {
/*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
[DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
BBCD start code search */
for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
break;
}
/* BBCD found or end of data */
if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
break;
data_unit_size = AV_RB32(buf+buf_idx+5);
if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
if(data_unit_size > buf_size - buf_idx)
av_log(s->avctx, AV_LOG_ERROR,
"Data unit with size %d is larger than input buffer, discarding\n",
data_unit_size);
buf_idx += 4;
continue;
}
/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
if (ret < 0)
{
av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
return ret;
}
buf_idx += data_unit_size;
}
if (!s->current_picture)
return buf_size;
if (s->current_picture->picture_number > s->frame_number) {
DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
s->current_picture->reference |= DELAYED_PIC_REF;
if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
unsigned min_num = s->delay_frames[0]->picture_number;
/* Too many delayed frames, so we display the frame with the lowest pts */
av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
for (i = 1; s->delay_frames[i]; i++)
if (s->delay_frames[i]->picture_number < min_num)
min_num = s->delay_frames[i]->picture_number;
delayed_frame = remove_frame(s->delay_frames, min_num);
add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
}
if (delayed_frame) {
delayed_frame->reference ^= DELAYED_PIC_REF;
if((ret = av_frame_ref(picture, delayed_frame->avframe)) < 0)
return ret;
s->frame_number = delayed_frame->picture_number + 1LL;
#if FF_API_FRAME_PICTURE_NUMBER
FF_DISABLE_DEPRECATION_WARNINGS
picture->display_picture_number = delayed_frame->picture_number;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
*got_frame = 1;
}
} else if (s->current_picture->picture_number == s->frame_number) {
/* The right frame at the right time :-) */
if((ret = av_frame_ref(picture, s->current_picture->avframe)) < 0)
return ret;
s->frame_number = s->current_picture->picture_number + 1LL;
#if FF_API_FRAME_PICTURE_NUMBER
FF_DISABLE_DEPRECATION_WARNINGS
picture->display_picture_number = s->current_picture->picture_number;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
*got_frame = 1;
}
return buf_idx;
}
const FFCodec ff_dirac_decoder = {
.p.name = "dirac",
CODEC_LONG_NAME("BBC Dirac VC-2"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_DIRAC,
.priv_data_size = sizeof(DiracContext),
.init = dirac_decode_init,
.close = dirac_decode_end,
FF_CODEC_DECODE_CB(dirac_decode_frame),
.p.capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_DR1,
.flush = dirac_decode_flush,
};