ffmpeg/libavcodec/h264dsp_template.c

329 lines
12 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
* Copyright (c) 2003-2011 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG-4 part10 DSP functions.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "bit_depth_template.c"
#define op_scale1(x) block[x] = av_clip_pixel( (block[x]*weight + offset) >> log2_denom )
#define op_scale2(x) dst[x] = av_clip_pixel( (src[x]*weights + dst[x]*weightd + offset) >> (log2_denom+1))
#define H264_WEIGHT(W) \
static void FUNCC(weight_h264_pixels ## W)(uint8_t *_block, ptrdiff_t stride, int height, \
int log2_denom, int weight, int offset) \
{ \
int y; \
pixel *block = (pixel*)_block; \
stride >>= sizeof(pixel)-1; \
offset = (unsigned)offset << (log2_denom + (BIT_DEPTH-8)); \
if(log2_denom) offset += 1<<(log2_denom-1); \
for (y = 0; y < height; y++, block += stride) { \
op_scale1(0); \
op_scale1(1); \
if(W==2) continue; \
op_scale1(2); \
op_scale1(3); \
if(W==4) continue; \
op_scale1(4); \
op_scale1(5); \
op_scale1(6); \
op_scale1(7); \
if(W==8) continue; \
op_scale1(8); \
op_scale1(9); \
op_scale1(10); \
op_scale1(11); \
op_scale1(12); \
op_scale1(13); \
op_scale1(14); \
op_scale1(15); \
} \
} \
static void FUNCC(biweight_h264_pixels ## W)(uint8_t *_dst, uint8_t *_src, ptrdiff_t stride, int height, \
int log2_denom, int weightd, int weights, int offset) \
{ \
int y; \
pixel *dst = (pixel*)_dst; \
pixel *src = (pixel*)_src; \
stride >>= sizeof(pixel)-1; \
offset = (unsigned)offset << (BIT_DEPTH-8); \
offset = (unsigned)((offset + 1) | 1) << log2_denom; \
for (y = 0; y < height; y++, dst += stride, src += stride) { \
op_scale2(0); \
op_scale2(1); \
if(W==2) continue; \
op_scale2(2); \
op_scale2(3); \
if(W==4) continue; \
op_scale2(4); \
op_scale2(5); \
op_scale2(6); \
op_scale2(7); \
if(W==8) continue; \
op_scale2(8); \
op_scale2(9); \
op_scale2(10); \
op_scale2(11); \
op_scale2(12); \
op_scale2(13); \
op_scale2(14); \
op_scale2(15); \
} \
}
H264_WEIGHT(16)
H264_WEIGHT(8)
H264_WEIGHT(4)
H264_WEIGHT(2)
#undef op_scale1
#undef op_scale2
#undef H264_WEIGHT
static av_always_inline av_flatten void FUNCC(h264_loop_filter_luma)(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
{
pixel *pix = (pixel*)p_pix;
int i, d;
xstride >>= sizeof(pixel)-1;
ystride >>= sizeof(pixel)-1;
alpha <<= BIT_DEPTH - 8;
beta <<= BIT_DEPTH - 8;
for( i = 0; i < 4; i++ ) {
const int tc_orig = tc0[i] * (1 << (BIT_DEPTH - 8));
if( tc_orig < 0 ) {
pix += inner_iters*ystride;
continue;
}
for( d = 0; d < inner_iters; d++ ) {
const int p0 = pix[-1*xstride];
const int p1 = pix[-2*xstride];
const int p2 = pix[-3*xstride];
const int q0 = pix[0];
const int q1 = pix[1*xstride];
const int q2 = pix[2*xstride];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
int tc = tc_orig;
int i_delta;
if( FFABS( p2 - p0 ) < beta ) {
if(tc_orig)
pix[-2*xstride] = p1 + av_clip( (( p2 + ( ( p0 + q0 + 1 ) >> 1 ) ) >> 1) - p1, -tc_orig, tc_orig );
tc++;
}
if( FFABS( q2 - q0 ) < beta ) {
if(tc_orig)
pix[ xstride] = q1 + av_clip( (( q2 + ( ( p0 + q0 + 1 ) >> 1 ) ) >> 1) - q1, -tc_orig, tc_orig );
tc++;
}
i_delta = av_clip( (((q0 - p0 ) * 4) + (p1 - q1) + 4) >> 3, -tc, tc );
pix[-xstride] = av_clip_pixel( p0 + i_delta ); /* p0' */
pix[0] = av_clip_pixel( q0 - i_delta ); /* q0' */
}
pix += ystride;
}
}
}
static void FUNCC(h264_v_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_luma)(pix, stride, sizeof(pixel), 4, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_luma)(pix, sizeof(pixel), stride, 4, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_luma_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_luma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
}
static av_always_inline av_flatten void FUNCC(h264_loop_filter_luma_intra)(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
{
pixel *pix = (pixel*)p_pix;
int d;
xstride >>= sizeof(pixel)-1;
ystride >>= sizeof(pixel)-1;
alpha <<= BIT_DEPTH - 8;
beta <<= BIT_DEPTH - 8;
for( d = 0; d < 4 * inner_iters; d++ ) {
const int p2 = pix[-3*xstride];
const int p1 = pix[-2*xstride];
const int p0 = pix[-1*xstride];
const int q0 = pix[ 0*xstride];
const int q1 = pix[ 1*xstride];
const int q2 = pix[ 2*xstride];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
if( FFABS( p2 - p0 ) < beta)
{
const int p3 = pix[-4*xstride];
/* p0', p1', p2' */
pix[-1*xstride] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
pix[-2*xstride] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
pix[-3*xstride] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
} else {
/* p0' */
pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
}
if( FFABS( q2 - q0 ) < beta)
{
const int q3 = pix[3*xstride];
/* q0', q1', q2' */
pix[0*xstride] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
pix[1*xstride] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
pix[2*xstride] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
} else {
/* q0' */
pix[0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
}else{
/* p0', q0' */
pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
pix[ 0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
}
pix += ystride;
}
}
static void FUNCC(h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_luma_intra)(pix, stride, sizeof(pixel), 4, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_luma_intra)(pix, sizeof(pixel), stride, 4, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_luma_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_luma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
}
static av_always_inline av_flatten void FUNCC(h264_loop_filter_chroma)(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
{
pixel *pix = (pixel*)p_pix;
int i, d;
alpha <<= BIT_DEPTH - 8;
beta <<= BIT_DEPTH - 8;
xstride >>= sizeof(pixel)-1;
ystride >>= sizeof(pixel)-1;
for( i = 0; i < 4; i++ ) {
const int tc = ((tc0[i] - 1U) << (BIT_DEPTH - 8)) + 1;
if( tc <= 0 ) {
pix += inner_iters*ystride;
continue;
}
for( d = 0; d < inner_iters; d++ ) {
const int p0 = pix[-1*xstride];
const int p1 = pix[-2*xstride];
const int q0 = pix[0];
const int q1 = pix[1*xstride];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
int delta = av_clip( ((q0 - p0) * 4 + (p1 - q1) + 4) >> 3, -tc, tc );
pix[-xstride] = av_clip_pixel( p0 + delta ); /* p0' */
pix[0] = av_clip_pixel( q0 - delta ); /* q0' */
}
pix += ystride;
}
}
}
static void FUNCC(h264_v_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_chroma)(pix, stride, sizeof(pixel), 2, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_chroma_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 1, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_chroma422)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 4, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_chroma422_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
}
static av_always_inline av_flatten void FUNCC(h264_loop_filter_chroma_intra)(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
{
pixel *pix = (pixel*)p_pix;
int d;
xstride >>= sizeof(pixel)-1;
ystride >>= sizeof(pixel)-1;
alpha <<= BIT_DEPTH - 8;
beta <<= BIT_DEPTH - 8;
for( d = 0; d < 4 * inner_iters; d++ ) {
const int p0 = pix[-1*xstride];
const int p1 = pix[-2*xstride];
const int q0 = pix[0];
const int q1 = pix[1*xstride];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
pix[-xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
}
pix += ystride;
}
}
static void FUNCC(h264_v_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_chroma_intra)(pix, stride, sizeof(pixel), 2, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_chroma_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 1, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_chroma422_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 4, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_chroma422_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
}