ffmpeg/libavcodec/mpegvideo.c

1415 lines
43 KiB
C

/*
* The simplest mpeg encoder (well, it was the simplest!)
* Copyright (c) 2000,2001 Gerard Lantau.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"
#ifdef USE_FASTMEMCPY
#include "fastmemcpy.h"
#endif
static void encode_picture(MpegEncContext *s, int picture_number);
static void rate_control_init(MpegEncContext *s);
static int rate_estimate_qscale(MpegEncContext *s);
static void dct_unquantize_mpeg1_c(MpegEncContext *s,
DCTELEM *block, int n, int qscale);
static void dct_unquantize_h263_c(MpegEncContext *s,
DCTELEM *block, int n, int qscale);
static int dct_quantize(MpegEncContext *s, DCTELEM *block, int n, int qscale);
static int dct_quantize_mmx(MpegEncContext *s,
DCTELEM *block, int n,
int qscale);
#define EDGE_WIDTH 16
/* enable all paranoid tests for rounding, overflows, etc... */
//#define PARANOID
//#define DEBUG
/* for jpeg fast DCT */
#define CONST_BITS 14
static const unsigned short aanscales[64] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
static UINT8 h263_chroma_roundtab[16] = {
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
};
/* default motion estimation */
int motion_estimation_method = ME_LOG;
/* XXX: should use variable shift ? */
#define QMAT_SHIFT_MMX 19
#define QMAT_SHIFT 25
static void convert_matrix(int *qmat, const UINT16 *quant_matrix, int qscale)
{
int i;
if (av_fdct == jpeg_fdct_ifast) {
for(i=0;i<64;i++) {
/* 16 <= qscale * quant_matrix[i] <= 7905 */
/* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */
qmat[i] = (int)((UINT64_C(1) << (QMAT_SHIFT + 11)) /
(aanscales[i] * qscale * quant_matrix[i]));
}
} else {
for(i=0;i<64;i++) {
/* We can safely suppose that 16 <= quant_matrix[i] <= 255
So 16 <= qscale * quant_matrix[i] <= 7905
so (1 << QMAT_SHIFT) / 16 >= qmat[i] >= (1 << QMAT_SHIFT) / 7905
*/
qmat[i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[i]);
}
}
}
/* init common structure for both encoder and decoder */
int MPV_common_init(MpegEncContext *s)
{
int c_size, i;
UINT8 *pict;
if (s->out_format == FMT_H263)
s->dct_unquantize = dct_unquantize_h263_c;
else
s->dct_unquantize = dct_unquantize_mpeg1_c;
#ifdef HAVE_MMX
MPV_common_init_mmx(s);
#endif
s->mb_width = (s->width + 15) / 16;
s->mb_height = (s->height + 15) / 16;
s->linesize = s->mb_width * 16 + 2 * EDGE_WIDTH;
for(i=0;i<3;i++) {
int w, h, shift, pict_start;
w = s->linesize;
h = s->mb_height * 16 + 2 * EDGE_WIDTH;
shift = (i == 0) ? 0 : 1;
c_size = (w >> shift) * (h >> shift);
pict_start = (w >> shift) * (EDGE_WIDTH >> shift) + (EDGE_WIDTH >> shift);
pict = av_mallocz(c_size);
if (pict == NULL)
goto fail;
s->last_picture_base[i] = pict;
s->last_picture[i] = pict + pict_start;
pict = av_mallocz(c_size);
if (pict == NULL)
goto fail;
s->next_picture_base[i] = pict;
s->next_picture[i] = pict + pict_start;
if (s->has_b_frames) {
pict = av_mallocz(c_size);
if (pict == NULL)
goto fail;
s->aux_picture_base[i] = pict;
s->aux_picture[i] = pict + pict_start;
}
}
if (s->out_format == FMT_H263) {
int size;
/* MV prediction */
size = (2 * s->mb_width + 2) * (2 * s->mb_height + 2);
s->motion_val = malloc(size * 2 * sizeof(INT16));
if (s->motion_val == NULL)
goto fail;
memset(s->motion_val, 0, size * 2 * sizeof(INT16));
}
if (s->h263_pred) {
int y_size, c_size, i, size;
/* dc values */
y_size = (2 * s->mb_width + 2) * (2 * s->mb_height + 2);
c_size = (s->mb_width + 2) * (s->mb_height + 2);
size = y_size + 2 * c_size;
s->dc_val[0] = malloc(size * sizeof(INT16));
if (s->dc_val[0] == NULL)
goto fail;
s->dc_val[1] = s->dc_val[0] + y_size;
s->dc_val[2] = s->dc_val[1] + c_size;
for(i=0;i<size;i++)
s->dc_val[0][i] = 1024;
/* ac values */
s->ac_val[0] = av_mallocz(size * sizeof(INT16) * 16);
if (s->ac_val[0] == NULL)
goto fail;
s->ac_val[1] = s->ac_val[0] + y_size;
s->ac_val[2] = s->ac_val[1] + c_size;
/* cbp values */
s->coded_block = av_mallocz(y_size);
if (!s->coded_block)
goto fail;
}
/* default structure is frame */
s->picture_structure = PICT_FRAME;
/* init macroblock skip table */
if (!s->encoding) {
s->mbskip_table = av_mallocz(s->mb_width * s->mb_height);
if (!s->mbskip_table)
goto fail;
}
s->context_initialized = 1;
return 0;
fail:
if (s->motion_val)
free(s->motion_val);
if (s->dc_val[0])
free(s->dc_val[0]);
if (s->ac_val[0])
free(s->ac_val[0]);
if (s->coded_block)
free(s->coded_block);
if (s->mbskip_table)
free(s->mbskip_table);
for(i=0;i<3;i++) {
if (s->last_picture_base[i])
free(s->last_picture_base[i]);
if (s->next_picture_base[i])
free(s->next_picture_base[i]);
if (s->aux_picture_base[i])
free(s->aux_picture_base[i]);
}
return -1;
}
/* init common structure for both encoder and decoder */
void MPV_common_end(MpegEncContext *s)
{
int i;
if (s->motion_val)
free(s->motion_val);
if (s->h263_pred) {
free(s->dc_val[0]);
free(s->ac_val[0]);
free(s->coded_block);
}
if (s->mbskip_table)
free(s->mbskip_table);
for(i=0;i<3;i++) {
free(s->last_picture_base[i]);
free(s->next_picture_base[i]);
if (s->has_b_frames)
free(s->aux_picture_base[i]);
}
s->context_initialized = 0;
}
/* init video encoder */
int MPV_encode_init(AVCodecContext *avctx)
{
MpegEncContext *s = avctx->priv_data;
int i;
s->bit_rate = avctx->bit_rate;
s->frame_rate = avctx->frame_rate;
s->width = avctx->width;
s->height = avctx->height;
s->gop_size = avctx->gop_size;
s->rtp_mode = avctx->rtp_mode;
s->rtp_payload_size = avctx->rtp_payload_size;
if (s->gop_size <= 1) {
s->intra_only = 1;
s->gop_size = 12;
} else {
s->intra_only = 0;
}
s->full_search = motion_estimation_method;
s->fixed_qscale = (avctx->flags & CODEC_FLAG_QSCALE);
switch(avctx->codec->id) {
case CODEC_ID_MPEG1VIDEO:
s->out_format = FMT_MPEG1;
break;
case CODEC_ID_MJPEG:
s->out_format = FMT_MJPEG;
s->intra_only = 1; /* force intra only for jpeg */
if (mjpeg_init(s) < 0)
return -1;
break;
case CODEC_ID_H263:
if (h263_get_picture_format(s->width, s->height) == 7)
return -1;
s->out_format = FMT_H263;
break;
case CODEC_ID_H263P:
s->out_format = FMT_H263;
s->rtp_mode = 1;
s->rtp_payload_size = 1200;
s->h263_plus = 1;
s->unrestricted_mv = 1;
/* These are just to be sure */
s->umvplus = 0;
s->umvplus_dec = 0;
break;
case CODEC_ID_RV10:
s->out_format = FMT_H263;
s->h263_rv10 = 1;
break;
case CODEC_ID_MPEG4:
s->out_format = FMT_H263;
s->h263_pred = 1;
s->unrestricted_mv = 1;
break;
case CODEC_ID_MSMPEG4:
s->out_format = FMT_H263;
s->h263_msmpeg4 = 1;
s->h263_pred = 1;
s->unrestricted_mv = 1;
break;
default:
return -1;
}
if (s->out_format == FMT_H263)
h263_encode_init_vlc(s);
s->encoding = 1;
/* init */
if (MPV_common_init(s) < 0)
return -1;
/* init default q matrix */
for(i=0;i<64;i++) {
s->intra_matrix[i] = default_intra_matrix[i];
s->non_intra_matrix[i] = default_non_intra_matrix[i];
}
/* rate control init */
rate_control_init(s);
s->picture_number = 0;
s->fake_picture_number = 0;
/* motion detector init */
s->f_code = 1;
return 0;
}
int MPV_encode_end(AVCodecContext *avctx)
{
MpegEncContext *s = avctx->priv_data;
#ifdef STATS
print_stats();
#endif
MPV_common_end(s);
if (s->out_format == FMT_MJPEG)
mjpeg_close(s);
return 0;
}
/* draw the edges of width 'w' of an image of size width, height */
static void draw_edges(UINT8 *buf, int wrap, int width, int height, int w)
{
UINT8 *ptr, *last_line;
int i;
last_line = buf + (height - 1) * wrap;
for(i=0;i<w;i++) {
/* top and bottom */
memcpy(buf - (i + 1) * wrap, buf, width);
memcpy(last_line + (i + 1) * wrap, last_line, width);
}
/* left and right */
ptr = buf;
for(i=0;i<height;i++) {
memset(ptr - w, ptr[0], w);
memset(ptr + width, ptr[width-1], w);
ptr += wrap;
}
/* corners */
for(i=0;i<w;i++) {
memset(buf - (i + 1) * wrap - w, buf[0], w); /* top left */
memset(buf - (i + 1) * wrap + width, buf[width-1], w); /* top right */
memset(last_line + (i + 1) * wrap - w, last_line[0], w); /* top left */
memset(last_line + (i + 1) * wrap + width, last_line[width-1], w); /* top right */
}
}
/* generic function for encode/decode called before a frame is coded/decoded */
void MPV_frame_start(MpegEncContext *s)
{
int i;
UINT8 *tmp;
s->mb_skiped = 0;
if (s->pict_type == B_TYPE) {
for(i=0;i<3;i++) {
s->current_picture[i] = s->aux_picture[i];
}
} else {
for(i=0;i<3;i++) {
/* swap next and last */
tmp = s->last_picture[i];
s->last_picture[i] = s->next_picture[i];
s->next_picture[i] = tmp;
s->current_picture[i] = tmp;
}
}
}
/* generic function for encode/decode called after a frame has been coded/decoded */
void MPV_frame_end(MpegEncContext *s)
{
/* draw edge for correct motion prediction if outside */
if (s->pict_type != B_TYPE) {
#if 1
draw_edges(s->current_picture[0], s->linesize, s->mb_width*16, s->mb_height*16, EDGE_WIDTH);
draw_edges(s->current_picture[1], s->linesize/2, s->mb_width*8, s->mb_height*8, EDGE_WIDTH/2);
draw_edges(s->current_picture[2], s->linesize/2, s->mb_width*8, s->mb_height*8, EDGE_WIDTH/2);
#else
draw_edges(s->current_picture[0], s->linesize, s->width, s->height, EDGE_WIDTH);
draw_edges(s->current_picture[1], s->linesize/2, s->width/2, s->height/2, EDGE_WIDTH/2);
draw_edges(s->current_picture[2], s->linesize/2, s->width/2, s->height/2, EDGE_WIDTH/2);
#endif
}
}
int MPV_encode_picture(AVCodecContext *avctx,
unsigned char *buf, int buf_size, void *data)
{
MpegEncContext *s = avctx->priv_data;
AVPicture *pict = data;
int i, j;
if (s->fixed_qscale)
s->qscale = avctx->quality;
init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
if (!s->intra_only) {
/* first picture of GOP is intra */
if ((s->picture_number % s->gop_size) == 0)
s->pict_type = I_TYPE;
else
s->pict_type = P_TYPE;
} else {
s->pict_type = I_TYPE;
}
avctx->key_frame = (s->pict_type == I_TYPE);
MPV_frame_start(s);
for(i=0;i<3;i++) {
UINT8 *src = pict->data[i];
UINT8 *dest = s->current_picture[i];
int src_wrap = pict->linesize[i];
int dest_wrap = s->linesize;
int w = s->width;
int h = s->height;
if (i >= 1) {
dest_wrap >>= 1;
w >>= 1;
h >>= 1;
}
for(j=0;j<h;j++) {
memcpy(dest, src, w);
dest += dest_wrap;
src += src_wrap;
}
s->new_picture[i] = s->current_picture[i];
}
encode_picture(s, s->picture_number);
MPV_frame_end(s);
s->picture_number++;
if (s->out_format == FMT_MJPEG)
mjpeg_picture_trailer(s);
flush_put_bits(&s->pb);
s->total_bits += (s->pb.buf_ptr - s->pb.buf) * 8;
avctx->quality = s->qscale;
return s->pb.buf_ptr - s->pb.buf;
}
static inline int clip(int a, int amin, int amax)
{
if (a < amin)
return amin;
else if (a > amax)
return amax;
else
return a;
}
/* apply one mpeg motion vector to the three components */
static inline void mpeg_motion(MpegEncContext *s,
UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
int dest_offset,
UINT8 **ref_picture, int src_offset,
int field_based, op_pixels_func *pix_op,
int motion_x, int motion_y, int h)
{
UINT8 *ptr;
int dxy, offset, mx, my, src_x, src_y, height, linesize;
dxy = ((motion_y & 1) << 1) | (motion_x & 1);
src_x = s->mb_x * 16 + (motion_x >> 1);
src_y = s->mb_y * (16 >> field_based) + (motion_y >> 1);
/* WARNING: do no forget half pels */
height = s->height >> field_based;
src_x = clip(src_x, -16, s->width);
if (src_x == s->width)
dxy &= ~1;
src_y = clip(src_y, -16, height);
if (src_y == height)
dxy &= ~2;
linesize = s->linesize << field_based;
ptr = ref_picture[0] + (src_y * linesize) + (src_x) + src_offset;
dest_y += dest_offset;
pix_op[dxy](dest_y, ptr, linesize, h);
pix_op[dxy](dest_y + 8, ptr + 8, linesize, h);
if (s->out_format == FMT_H263) {
dxy = 0;
if ((motion_x & 3) != 0)
dxy |= 1;
if ((motion_y & 3) != 0)
dxy |= 2;
mx = motion_x >> 2;
my = motion_y >> 2;
} else {
mx = motion_x / 2;
my = motion_y / 2;
dxy = ((my & 1) << 1) | (mx & 1);
mx >>= 1;
my >>= 1;
}
src_x = s->mb_x * 8 + mx;
src_y = s->mb_y * (8 >> field_based) + my;
src_x = clip(src_x, -8, s->width >> 1);
if (src_x == (s->width >> 1))
dxy &= ~1;
src_y = clip(src_y, -8, height >> 1);
if (src_y == (height >> 1))
dxy &= ~2;
offset = (src_y * (linesize >> 1)) + src_x + (src_offset >> 1);
ptr = ref_picture[1] + offset;
pix_op[dxy](dest_cb + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
ptr = ref_picture[2] + offset;
pix_op[dxy](dest_cr + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
}
static inline void MPV_motion(MpegEncContext *s,
UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
int dir, UINT8 **ref_picture,
op_pixels_func *pix_op)
{
int dxy, offset, mx, my, src_x, src_y, motion_x, motion_y;
int mb_x, mb_y, i;
UINT8 *ptr, *dest;
mb_x = s->mb_x;
mb_y = s->mb_y;
switch(s->mv_type) {
case MV_TYPE_16X16:
mpeg_motion(s, dest_y, dest_cb, dest_cr, 0,
ref_picture, 0,
0, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 16);
break;
case MV_TYPE_8X8:
for(i=0;i<4;i++) {
motion_x = s->mv[dir][i][0];
motion_y = s->mv[dir][i][1];
dxy = ((motion_y & 1) << 1) | (motion_x & 1);
src_x = mb_x * 16 + (motion_x >> 1) + (i & 1) * 8;
src_y = mb_y * 16 + (motion_y >> 1) + ((i >> 1) & 1) * 8;
/* WARNING: do no forget half pels */
src_x = clip(src_x, -16, s->width);
if (src_x == s->width)
dxy &= ~1;
src_y = clip(src_y, -16, s->height);
if (src_y == s->height)
dxy &= ~2;
ptr = ref_picture[0] + (src_y * s->linesize) + (src_x);
dest = dest_y + ((i & 1) * 8) + (i >> 1) * 8 * s->linesize;
pix_op[dxy](dest, ptr, s->linesize, 8);
}
/* In case of 8X8, we construct a single chroma motion vector
with a special rounding */
mx = 0;
my = 0;
for(i=0;i<4;i++) {
mx += s->mv[dir][i][0];
my += s->mv[dir][i][1];
}
if (mx >= 0)
mx = (h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1));
else {
mx = -mx;
mx = -(h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1));
}
if (my >= 0)
my = (h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1));
else {
my = -my;
my = -(h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1));
}
dxy = ((my & 1) << 1) | (mx & 1);
mx >>= 1;
my >>= 1;
src_x = mb_x * 8 + mx;
src_y = mb_y * 8 + my;
src_x = clip(src_x, -8, s->width/2);
if (src_x == s->width/2)
dxy &= ~1;
src_y = clip(src_y, -8, s->height/2);
if (src_y == s->height/2)
dxy &= ~2;
offset = (src_y * (s->linesize >> 1)) + src_x;
ptr = ref_picture[1] + offset;
pix_op[dxy](dest_cb, ptr, s->linesize >> 1, 8);
ptr = ref_picture[2] + offset;
pix_op[dxy](dest_cr, ptr, s->linesize >> 1, 8);
break;
case MV_TYPE_FIELD:
if (s->picture_structure == PICT_FRAME) {
/* top field */
mpeg_motion(s, dest_y, dest_cb, dest_cr, 0,
ref_picture, s->field_select[dir][0] ? s->linesize : 0,
1, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 8);
/* bottom field */
mpeg_motion(s, dest_y, dest_cb, dest_cr, s->linesize,
ref_picture, s->field_select[dir][1] ? s->linesize : 0,
1, pix_op,
s->mv[dir][1][0], s->mv[dir][1][1], 8);
} else {
}
break;
}
}
/* put block[] to dest[] */
static inline void put_dct(MpegEncContext *s,
DCTELEM *block, int i, UINT8 *dest, int line_size)
{
if (!s->mpeg2)
s->dct_unquantize(s, block, i, s->qscale);
ff_idct (block);
put_pixels_clamped(block, dest, line_size);
}
/* add block[] to dest[] */
static inline void add_dct(MpegEncContext *s,
DCTELEM *block, int i, UINT8 *dest, int line_size)
{
if (s->block_last_index[i] >= 0) {
if (!s->mpeg2)
s->dct_unquantize(s, block, i, s->qscale);
ff_idct (block);
add_pixels_clamped(block, dest, line_size);
}
}
/* generic function called after a macroblock has been parsed by the
decoder or after it has been encoded by the encoder.
Important variables used:
s->mb_intra : true if intra macroblock
s->mv_dir : motion vector direction
s->mv_type : motion vector type
s->mv : motion vector
s->interlaced_dct : true if interlaced dct used (mpeg2)
*/
void MPV_decode_mb(MpegEncContext *s, DCTELEM block[6][64])
{
int mb_x, mb_y, motion_x, motion_y;
int dct_linesize, dct_offset;
op_pixels_func *op_pix;
mb_x = s->mb_x;
mb_y = s->mb_y;
#ifdef FF_POSTPROCESS
quant_store[mb_y][mb_x]=s->qscale;
//printf("[%02d][%02d] %d\n",mb_x,mb_y,s->qscale);
#endif
/* update DC predictors for P macroblocks */
if (!s->mb_intra) {
if (s->h263_pred) {
int wrap, x, y, v;
wrap = 2 * s->mb_width + 2;
v = 1024;
x = 2 * mb_x + 1;
y = 2 * mb_y + 1;
s->dc_val[0][(x) + (y) * wrap] = v;
s->dc_val[0][(x + 1) + (y) * wrap] = v;
s->dc_val[0][(x) + (y + 1) * wrap] = v;
s->dc_val[0][(x + 1) + (y + 1) * wrap] = v;
/* ac pred */
memset(s->ac_val[0][(x) + (y) * wrap], 0, 16 * sizeof(INT16));
memset(s->ac_val[0][(x + 1) + (y) * wrap], 0, 16 * sizeof(INT16));
memset(s->ac_val[0][(x) + (y + 1) * wrap], 0, 16 * sizeof(INT16));
memset(s->ac_val[0][(x + 1) + (y + 1) * wrap], 0, 16 * sizeof(INT16));
if (s->h263_msmpeg4) {
s->coded_block[(x) + (y) * wrap] = 0;
s->coded_block[(x + 1) + (y) * wrap] = 0;
s->coded_block[(x) + (y + 1) * wrap] = 0;
s->coded_block[(x + 1) + (y + 1) * wrap] = 0;
}
/* chroma */
wrap = s->mb_width + 2;
x = mb_x + 1;
y = mb_y + 1;
s->dc_val[1][(x) + (y) * wrap] = v;
s->dc_val[2][(x) + (y) * wrap] = v;
/* ac pred */
memset(s->ac_val[1][(x) + (y) * wrap], 0, 16 * sizeof(INT16));
memset(s->ac_val[2][(x) + (y) * wrap], 0, 16 * sizeof(INT16));
} else {
s->last_dc[0] = 128 << s->intra_dc_precision;
s->last_dc[1] = 128 << s->intra_dc_precision;
s->last_dc[2] = 128 << s->intra_dc_precision;
}
}
/* update motion predictor */
if (s->out_format == FMT_H263) {
int x, y, wrap;
x = 2 * mb_x + 1;
y = 2 * mb_y + 1;
wrap = 2 * s->mb_width + 2;
if (s->mb_intra) {
motion_x = 0;
motion_y = 0;
goto motion_init;
} else if (s->mv_type == MV_TYPE_16X16) {
motion_x = s->mv[0][0][0];
motion_y = s->mv[0][0][1];
motion_init:
/* no update if 8X8 because it has been done during parsing */
s->motion_val[(x) + (y) * wrap][0] = motion_x;
s->motion_val[(x) + (y) * wrap][1] = motion_y;
s->motion_val[(x + 1) + (y) * wrap][0] = motion_x;
s->motion_val[(x + 1) + (y) * wrap][1] = motion_y;
s->motion_val[(x) + (y + 1) * wrap][0] = motion_x;
s->motion_val[(x) + (y + 1) * wrap][1] = motion_y;
s->motion_val[(x + 1) + (y + 1) * wrap][0] = motion_x;
s->motion_val[(x + 1) + (y + 1) * wrap][1] = motion_y;
}
}
if (!s->intra_only) {
UINT8 *dest_y, *dest_cb, *dest_cr;
UINT8 *mbskip_ptr;
/* avoid copy if macroblock skipped in last frame too */
if (!s->encoding && s->pict_type != B_TYPE) {
mbskip_ptr = &s->mbskip_table[s->mb_y * s->mb_width + s->mb_x];
if (s->mb_skiped) {
s->mb_skiped = 0;
/* if previous was skipped too, then nothing to do ! */
if (*mbskip_ptr != 0)
goto the_end;
*mbskip_ptr = 1; /* indicate that this time we skiped it */
} else {
*mbskip_ptr = 0; /* not skipped */
}
}
dest_y = s->current_picture[0] + (mb_y * 16 * s->linesize) + mb_x * 16;
dest_cb = s->current_picture[1] + (mb_y * 8 * (s->linesize >> 1)) + mb_x * 8;
dest_cr = s->current_picture[2] + (mb_y * 8 * (s->linesize >> 1)) + mb_x * 8;
if (s->interlaced_dct) {
dct_linesize = s->linesize * 2;
dct_offset = s->linesize;
} else {
dct_linesize = s->linesize;
dct_offset = s->linesize * 8;
}
if (!s->mb_intra) {
/* motion handling */
if (!s->no_rounding)
op_pix = put_pixels_tab;
else
op_pix = put_no_rnd_pixels_tab;
if (s->mv_dir & MV_DIR_FORWARD) {
MPV_motion(s, dest_y, dest_cb, dest_cr, 0, s->last_picture, op_pix);
if (!s->no_rounding)
op_pix = avg_pixels_tab;
else
op_pix = avg_no_rnd_pixels_tab;
}
if (s->mv_dir & MV_DIR_BACKWARD) {
MPV_motion(s, dest_y, dest_cb, dest_cr, 1, s->next_picture, op_pix);
}
/* add dct residue */
add_dct(s, block[0], 0, dest_y, dct_linesize);
add_dct(s, block[1], 1, dest_y + 8, dct_linesize);
add_dct(s, block[2], 2, dest_y + dct_offset, dct_linesize);
add_dct(s, block[3], 3, dest_y + dct_offset + 8, dct_linesize);
add_dct(s, block[4], 4, dest_cb, s->linesize >> 1);
add_dct(s, block[5], 5, dest_cr, s->linesize >> 1);
} else {
/* dct only in intra block */
put_dct(s, block[0], 0, dest_y, dct_linesize);
put_dct(s, block[1], 1, dest_y + 8, dct_linesize);
put_dct(s, block[2], 2, dest_y + dct_offset, dct_linesize);
put_dct(s, block[3], 3, dest_y + dct_offset + 8, dct_linesize);
put_dct(s, block[4], 4, dest_cb, s->linesize >> 1);
put_dct(s, block[5], 5, dest_cr, s->linesize >> 1);
}
}
the_end:
emms_c();
}
static void encode_picture(MpegEncContext *s, int picture_number)
{
int mb_x, mb_y, wrap, last_gob;
UINT8 *ptr;
int i, motion_x, motion_y;
s->picture_number = picture_number;
if (!s->fixed_qscale)
s->qscale = rate_estimate_qscale(s);
/* precompute matrix */
if (s->out_format == FMT_MJPEG) {
/* for mjpeg, we do include qscale in the matrix */
s->intra_matrix[0] = default_intra_matrix[0];
for(i=1;i<64;i++)
s->intra_matrix[i] = (default_intra_matrix[i] * s->qscale) >> 3;
convert_matrix(s->q_intra_matrix, s->intra_matrix, 8);
} else {
convert_matrix(s->q_intra_matrix, s->intra_matrix, s->qscale);
convert_matrix(s->q_non_intra_matrix, s->non_intra_matrix, s->qscale);
}
switch(s->out_format) {
case FMT_MJPEG:
mjpeg_picture_header(s);
break;
case FMT_H263:
if (s->h263_msmpeg4)
msmpeg4_encode_picture_header(s, picture_number);
else if (s->h263_pred)
mpeg4_encode_picture_header(s, picture_number);
else if (s->h263_rv10)
rv10_encode_picture_header(s, picture_number);
else
h263_encode_picture_header(s, picture_number);
break;
case FMT_MPEG1:
mpeg1_encode_picture_header(s, picture_number);
break;
}
/* init last dc values */
/* note: quant matrix value (8) is implied here */
s->last_dc[0] = 128;
s->last_dc[1] = 128;
s->last_dc[2] = 128;
s->mb_incr = 1;
s->last_mv[0][0][0] = 0;
s->last_mv[0][0][1] = 0;
s->mv_type = MV_TYPE_16X16;
s->mv_dir = MV_DIR_FORWARD;
/* Get the GOB height based on picture height */
if (s->out_format == FMT_H263 && s->h263_plus) {
if (s->height <= 400)
s->gob_index = 1;
else if (s->height <= 800)
s->gob_index = 2;
else
s->gob_index = 4;
}
for(mb_y=0; mb_y < s->mb_height; mb_y++) {
/* Put GOB header based on RTP MTU */
if (!mb_y) {
s->ptr_lastgob = s->pb.buf_ptr;
s->ptr_last_mb_line = s->pb.buf_ptr;
} else if (s->out_format == FMT_H263 && s->h263_plus) {
last_gob = h263_encode_gob_header(s, mb_y);
if (last_gob) {
//fprintf(stderr,"\nLast GOB size: %d", last_gob);
s->first_gob_line = 1;
} else
s->first_gob_line = 0;
}
for(mb_x=0; mb_x < s->mb_width; mb_x++) {
s->mb_x = mb_x;
s->mb_y = mb_y;
/* compute motion vector and macro block type (intra or non intra) */
motion_x = 0;
motion_y = 0;
if (s->pict_type == P_TYPE) {
s->mb_intra = estimate_motion(s, mb_x, mb_y,
&motion_x,
&motion_y);
} else {
s->mb_intra = 1;
}
/* get the pixels */
wrap = s->linesize;
ptr = s->new_picture[0] + (mb_y * 16 * wrap) + mb_x * 16;
get_pixels(s->block[0], ptr, wrap);
get_pixels(s->block[1], ptr + 8, wrap);
get_pixels(s->block[2], ptr + 8 * wrap, wrap);
get_pixels(s->block[3], ptr + 8 * wrap + 8, wrap);
wrap = s->linesize >> 1;
ptr = s->new_picture[1] + (mb_y * 8 * wrap) + mb_x * 8;
get_pixels(s->block[4], ptr, wrap);
wrap = s->linesize >> 1;
ptr = s->new_picture[2] + (mb_y * 8 * wrap) + mb_x * 8;
get_pixels(s->block[5], ptr, wrap);
/* subtract previous frame if non intra */
if (!s->mb_intra) {
int dxy, offset, mx, my;
dxy = ((motion_y & 1) << 1) | (motion_x & 1);
ptr = s->last_picture[0] +
((mb_y * 16 + (motion_y >> 1)) * s->linesize) +
(mb_x * 16 + (motion_x >> 1));
sub_pixels_2(s->block[0], ptr, s->linesize, dxy);
sub_pixels_2(s->block[1], ptr + 8, s->linesize, dxy);
sub_pixels_2(s->block[2], ptr + s->linesize * 8, s->linesize, dxy);
sub_pixels_2(s->block[3], ptr + 8 + s->linesize * 8, s->linesize ,dxy);
if (s->out_format == FMT_H263) {
/* special rounding for h263 */
dxy = 0;
if ((motion_x & 3) != 0)
dxy |= 1;
if ((motion_y & 3) != 0)
dxy |= 2;
mx = motion_x >> 2;
my = motion_y >> 2;
} else {
mx = motion_x / 2;
my = motion_y / 2;
dxy = ((my & 1) << 1) | (mx & 1);
mx >>= 1;
my >>= 1;
}
offset = ((mb_y * 8 + my) * (s->linesize >> 1)) + (mb_x * 8 + mx);
ptr = s->last_picture[1] + offset;
sub_pixels_2(s->block[4], ptr, s->linesize >> 1, dxy);
ptr = s->last_picture[2] + offset;
sub_pixels_2(s->block[5], ptr, s->linesize >> 1, dxy);
}
emms_c();
/* DCT & quantize */
if (s->h263_msmpeg4) {
msmpeg4_dc_scale(s);
} else if (s->h263_pred) {
h263_dc_scale(s);
} else {
/* default quantization values */
s->y_dc_scale = 8;
s->c_dc_scale = 8;
}
for(i=0;i<6;i++) {
int last_index;
if (av_fdct == jpeg_fdct_ifast)
last_index = dct_quantize(s, s->block[i], i, s->qscale);
else
last_index = dct_quantize_mmx(s, s->block[i], i, s->qscale);
s->block_last_index[i] = last_index;
}
/* huffman encode */
switch(s->out_format) {
case FMT_MPEG1:
mpeg1_encode_mb(s, s->block, motion_x, motion_y);
break;
case FMT_H263:
if (s->h263_msmpeg4)
msmpeg4_encode_mb(s, s->block, motion_x, motion_y);
else
h263_encode_mb(s, s->block, motion_x, motion_y);
break;
case FMT_MJPEG:
mjpeg_encode_mb(s, s->block);
break;
}
/* decompress blocks so that we keep the state of the decoder */
s->mv[0][0][0] = motion_x;
s->mv[0][0][1] = motion_y;
MPV_decode_mb(s, s->block);
}
/* Obtain average MB line size for RTP */
if (!mb_y)
s->mb_line_avgsize = s->pb.buf_ptr - s->ptr_last_mb_line;
else
s->mb_line_avgsize = (s->mb_line_avgsize + s->pb.buf_ptr - s->ptr_last_mb_line) >> 1;
//fprintf(stderr, "\nMB line: %d\tSize: %u\tAvg. Size: %u", s->mb_y,
// (s->pb.buf_ptr - s->ptr_last_mb_line), s->mb_line_avgsize);
s->ptr_last_mb_line = s->pb.buf_ptr;
}
//if (s->gob_number)
// fprintf(stderr,"\nNumber of GOB: %d", s->gob_number);
}
static int dct_quantize(MpegEncContext *s,
DCTELEM *block, int n,
int qscale)
{
int i, j, level, last_non_zero, q;
const int *qmat;
av_fdct (block);
/* we need this permutation so that we correct the IDCT
permutation. will be moved into DCT code */
block_permute(block);
if (s->mb_intra) {
if (n < 4)
q = s->y_dc_scale;
else
q = s->c_dc_scale;
q = q << 3;
/* note: block[0] is assumed to be positive */
block[0] = (block[0] + (q >> 1)) / q;
i = 1;
last_non_zero = 0;
if (s->out_format == FMT_H263) {
qmat = s->q_non_intra_matrix;
} else {
qmat = s->q_intra_matrix;
}
} else {
i = 0;
last_non_zero = -1;
qmat = s->q_non_intra_matrix;
}
for(;i<64;i++) {
j = zigzag_direct[i];
level = block[j];
level = level * qmat[j];
#ifdef PARANOID
{
static int count = 0;
int level1, level2, qmat1;
double val;
if (qmat == s->q_non_intra_matrix) {
qmat1 = default_non_intra_matrix[j] * s->qscale;
} else {
qmat1 = default_intra_matrix[j] * s->qscale;
}
if (av_fdct != jpeg_fdct_ifast)
val = ((double)block[j] * 8.0) / (double)qmat1;
else
val = ((double)block[j] * 8.0 * 2048.0) /
((double)qmat1 * aanscales[j]);
level1 = (int)val;
level2 = level / (1 << (QMAT_SHIFT - 3));
if (level1 != level2) {
fprintf(stderr, "%d: quant error qlevel=%d wanted=%d level=%d qmat1=%d qmat=%d wantedf=%0.6f\n",
count, level2, level1, block[j], qmat1, qmat[j],
val);
count++;
}
}
#endif
/* XXX: slight error for the low range. Test should be equivalent to
(level <= -(1 << (QMAT_SHIFT - 3)) || level >= (1 <<
(QMAT_SHIFT - 3)))
*/
if (((level << (31 - (QMAT_SHIFT - 3))) >> (31 - (QMAT_SHIFT - 3))) !=
level) {
level = level / (1 << (QMAT_SHIFT - 3));
/* XXX: currently, this code is not optimal. the range should be:
mpeg1: -255..255
mpeg2: -2048..2047
h263: -128..127
mpeg4: -2048..2047
*/
if (level > 127)
level = 127;
else if (level < -128)
level = -128;
block[j] = level;
last_non_zero = i;
} else {
block[j] = 0;
}
}
return last_non_zero;
}
static int dct_quantize_mmx(MpegEncContext *s,
DCTELEM *block, int n,
int qscale)
{
int i, j, level, last_non_zero, q;
const int *qmat;
av_fdct (block);
/* we need this permutation so that we correct the IDCT
permutation. will be moved into DCT code */
block_permute(block);
if (s->mb_intra) {
if (n < 4)
q = s->y_dc_scale;
else
q = s->c_dc_scale;
/* note: block[0] is assumed to be positive */
block[0] = (block[0] + (q >> 1)) / q;
i = 1;
last_non_zero = 0;
if (s->out_format == FMT_H263) {
qmat = s->q_non_intra_matrix;
} else {
qmat = s->q_intra_matrix;
}
} else {
i = 0;
last_non_zero = -1;
qmat = s->q_non_intra_matrix;
}
for(;i<64;i++) {
j = zigzag_direct[i];
level = block[j];
level = level * qmat[j];
/* XXX: slight error for the low range. Test should be equivalent to
(level <= -(1 << (QMAT_SHIFT_MMX - 3)) || level >= (1 <<
(QMAT_SHIFT_MMX - 3)))
*/
if (((level << (31 - (QMAT_SHIFT_MMX - 3))) >> (31 - (QMAT_SHIFT_MMX - 3))) !=
level) {
level = level / (1 << (QMAT_SHIFT_MMX - 3));
/* XXX: currently, this code is not optimal. the range should be:
mpeg1: -255..255
mpeg2: -2048..2047
h263: -128..127
mpeg4: -2048..2047
*/
if (level > 127)
level = 127;
else if (level < -128)
level = -128;
block[j] = level;
last_non_zero = i;
} else {
block[j] = 0;
}
}
return last_non_zero;
}
static void dct_unquantize_mpeg1_c(MpegEncContext *s,
DCTELEM *block, int n, int qscale)
{
int i, level;
const UINT16 *quant_matrix;
if (s->mb_intra) {
if (n < 4)
block[0] = block[0] * s->y_dc_scale;
else
block[0] = block[0] * s->c_dc_scale;
/* XXX: only mpeg1 */
quant_matrix = s->intra_matrix;
for(i=1;i<64;i++) {
level = block[i];
if (level) {
if (level < 0) {
level = -level;
level = (int)(level * qscale * quant_matrix[i]) >> 3;
level = (level - 1) | 1;
level = -level;
} else {
level = (int)(level * qscale * quant_matrix[i]) >> 3;
level = (level - 1) | 1;
}
#ifdef PARANOID
if (level < -2048 || level > 2047)
fprintf(stderr, "unquant error %d %d\n", i, level);
#endif
block[i] = level;
}
}
} else {
i = 0;
quant_matrix = s->non_intra_matrix;
for(;i<64;i++) {
level = block[i];
if (level) {
if (level < 0) {
level = -level;
level = (((level << 1) + 1) * qscale *
((int) (quant_matrix[i]))) >> 4;
level = (level - 1) | 1;
level = -level;
} else {
level = (((level << 1) + 1) * qscale *
((int) (quant_matrix[i]))) >> 4;
level = (level - 1) | 1;
}
#ifdef PARANOID
if (level < -2048 || level > 2047)
fprintf(stderr, "unquant error %d %d\n", i, level);
#endif
block[i] = level;
}
}
}
}
static void dct_unquantize_h263_c(MpegEncContext *s,
DCTELEM *block, int n, int qscale)
{
int i, level, qmul, qadd;
if (s->mb_intra) {
if (n < 4)
block[0] = block[0] * s->y_dc_scale;
else
block[0] = block[0] * s->c_dc_scale;
i = 1;
} else {
i = 0;
}
qmul = s->qscale << 1;
qadd = (s->qscale - 1) | 1;
for(;i<64;i++) {
level = block[i];
if (level) {
if (level < 0) {
level = level * qmul - qadd;
} else {
level = level * qmul + qadd;
}
#ifdef PARANOID
if (level < -2048 || level > 2047)
fprintf(stderr, "unquant error %d %d\n", i, level);
#endif
block[i] = level;
}
}
}
/* rate control */
/* an I frame is I_FRAME_SIZE_RATIO bigger than a P frame */
#define I_FRAME_SIZE_RATIO 3.0
#define QSCALE_K 20
static void rate_control_init(MpegEncContext *s)
{
s->wanted_bits = 0;
if (s->intra_only) {
s->I_frame_bits = ((INT64)s->bit_rate * FRAME_RATE_BASE) / s->frame_rate;
s->P_frame_bits = s->I_frame_bits;
} else {
s->P_frame_bits = (int) ((float)(s->gop_size * s->bit_rate) /
(float)((float)s->frame_rate / FRAME_RATE_BASE * (I_FRAME_SIZE_RATIO + s->gop_size - 1)));
s->I_frame_bits = (int)(s->P_frame_bits * I_FRAME_SIZE_RATIO);
}
#if defined(DEBUG)
printf("I_frame_size=%d P_frame_size=%d\n",
s->I_frame_bits, s->P_frame_bits);
#endif
}
/*
* This heuristic is rather poor, but at least we do not have to
* change the qscale at every macroblock.
*/
static int rate_estimate_qscale(MpegEncContext *s)
{
INT64 total_bits = s->total_bits;
float q;
int qscale, diff, qmin;
if (s->pict_type == I_TYPE) {
s->wanted_bits += s->I_frame_bits;
} else {
s->wanted_bits += s->P_frame_bits;
}
diff = s->wanted_bits - total_bits;
q = 31.0 - (float)diff / (QSCALE_K * s->mb_height * s->mb_width);
/* adjust for I frame */
if (s->pict_type == I_TYPE && !s->intra_only) {
q /= I_FRAME_SIZE_RATIO;
}
/* using a too small Q scale leeds to problems in mpeg1 and h263
because AC coefficients are clamped to 255 or 127 */
qmin = 3;
if (q < qmin)
q = qmin;
else if (q > 31)
q = 31;
qscale = (int)(q + 0.5);
#if defined(DEBUG)
printf("%d: total=%0.0f br=%0.1f diff=%d qest=%0.1f\n",
s->picture_number,
(double)total_bits,
(float)s->frame_rate / FRAME_RATE_BASE *
total_bits / s->picture_number,
diff, q);
#endif
return qscale;
}
AVCodec mpeg1video_encoder = {
"mpeg1video",
CODEC_TYPE_VIDEO,
CODEC_ID_MPEG1VIDEO,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec h263_encoder = {
"h263",
CODEC_TYPE_VIDEO,
CODEC_ID_H263,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec h263p_encoder = {
"h263p",
CODEC_TYPE_VIDEO,
CODEC_ID_H263P,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec rv10_encoder = {
"rv10",
CODEC_TYPE_VIDEO,
CODEC_ID_RV10,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec mjpeg_encoder = {
"mjpeg",
CODEC_TYPE_VIDEO,
CODEC_ID_MJPEG,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec mpeg4_encoder = {
"mpeg4",
CODEC_TYPE_VIDEO,
CODEC_ID_MPEG4,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec msmpeg4_encoder = {
"msmpeg4",
CODEC_TYPE_VIDEO,
CODEC_ID_MSMPEG4,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};