mirror of https://git.ffmpeg.org/ffmpeg.git
2047 lines
69 KiB
C
2047 lines
69 KiB
C
/*
|
|
* Copyright (C) 2007 Marco Gerards <marco@gnu.org>
|
|
* Copyright (C) 2009 David Conrad
|
|
* Copyright (C) 2011 Jordi Ortiz
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Dirac Decoder
|
|
* @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
|
|
*/
|
|
|
|
#include "avcodec.h"
|
|
#include "get_bits.h"
|
|
#include "bytestream.h"
|
|
#include "internal.h"
|
|
#include "golomb.h"
|
|
#include "dirac_arith.h"
|
|
#include "mpeg12data.h"
|
|
#include "libavcodec/mpegvideo.h"
|
|
#include "mpegvideoencdsp.h"
|
|
#include "dirac_dwt.h"
|
|
#include "dirac.h"
|
|
#include "diracdsp.h"
|
|
#include "videodsp.h"
|
|
|
|
/**
|
|
* The spec limits the number of wavelet decompositions to 4 for both
|
|
* level 1 (VC-2) and 128 (long-gop default).
|
|
* 5 decompositions is the maximum before >16-bit buffers are needed.
|
|
* Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
|
|
* the others to 4 decompositions (or 3 for the fidelity filter).
|
|
*
|
|
* We use this instead of MAX_DECOMPOSITIONS to save some memory.
|
|
*/
|
|
#define MAX_DWT_LEVELS 5
|
|
|
|
/**
|
|
* The spec limits this to 3 for frame coding, but in practice can be as high as 6
|
|
*/
|
|
#define MAX_REFERENCE_FRAMES 8
|
|
#define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
|
|
#define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
|
|
#define MAX_QUANT 68 /* max quant for VC-2 */
|
|
#define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
|
|
|
|
/**
|
|
* DiracBlock->ref flags, if set then the block does MC from the given ref
|
|
*/
|
|
#define DIRAC_REF_MASK_REF1 1
|
|
#define DIRAC_REF_MASK_REF2 2
|
|
#define DIRAC_REF_MASK_GLOBAL 4
|
|
|
|
/**
|
|
* Value of Picture.reference when Picture is not a reference picture, but
|
|
* is held for delayed output.
|
|
*/
|
|
#define DELAYED_PIC_REF 4
|
|
|
|
#define CALC_PADDING(size, depth) \
|
|
(((size + (1 << depth) - 1) >> depth) << depth)
|
|
|
|
#define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
|
|
|
|
typedef struct {
|
|
AVFrame *avframe;
|
|
int interpolated[3]; /* 1 if hpel[] is valid */
|
|
uint8_t *hpel[3][4];
|
|
uint8_t *hpel_base[3][4];
|
|
int reference;
|
|
} DiracFrame;
|
|
|
|
typedef struct {
|
|
union {
|
|
int16_t mv[2][2];
|
|
int16_t dc[3];
|
|
} u; /* anonymous unions aren't in C99 :( */
|
|
uint8_t ref;
|
|
} DiracBlock;
|
|
|
|
typedef struct SubBand {
|
|
int level;
|
|
int orientation;
|
|
int stride;
|
|
int width;
|
|
int height;
|
|
int quant;
|
|
IDWTELEM *ibuf;
|
|
struct SubBand *parent;
|
|
|
|
/* for low delay */
|
|
unsigned length;
|
|
const uint8_t *coeff_data;
|
|
} SubBand;
|
|
|
|
typedef struct Plane {
|
|
int width;
|
|
int height;
|
|
ptrdiff_t stride;
|
|
|
|
int idwt_width;
|
|
int idwt_height;
|
|
int idwt_stride;
|
|
IDWTELEM *idwt_buf;
|
|
IDWTELEM *idwt_buf_base;
|
|
IDWTELEM *idwt_tmp;
|
|
|
|
/* block length */
|
|
uint8_t xblen;
|
|
uint8_t yblen;
|
|
/* block separation (block n+1 starts after this many pixels in block n) */
|
|
uint8_t xbsep;
|
|
uint8_t ybsep;
|
|
/* amount of overspill on each edge (half of the overlap between blocks) */
|
|
uint8_t xoffset;
|
|
uint8_t yoffset;
|
|
|
|
SubBand band[MAX_DWT_LEVELS][4];
|
|
} Plane;
|
|
|
|
typedef struct DiracContext {
|
|
AVCodecContext *avctx;
|
|
MpegvideoEncDSPContext mpvencdsp;
|
|
VideoDSPContext vdsp;
|
|
DiracDSPContext diracdsp;
|
|
GetBitContext gb;
|
|
dirac_source_params source;
|
|
int seen_sequence_header;
|
|
int frame_number; /* number of the next frame to display */
|
|
Plane plane[3];
|
|
int chroma_x_shift;
|
|
int chroma_y_shift;
|
|
|
|
int zero_res; /* zero residue flag */
|
|
int is_arith; /* whether coeffs use arith or golomb coding */
|
|
int low_delay; /* use the low delay syntax */
|
|
int globalmc_flag; /* use global motion compensation */
|
|
int num_refs; /* number of reference pictures */
|
|
|
|
/* wavelet decoding */
|
|
unsigned wavelet_depth; /* depth of the IDWT */
|
|
unsigned wavelet_idx;
|
|
|
|
/**
|
|
* schroedinger older than 1.0.8 doesn't store
|
|
* quant delta if only one codebook exists in a band
|
|
*/
|
|
unsigned old_delta_quant;
|
|
unsigned codeblock_mode;
|
|
|
|
struct {
|
|
unsigned width;
|
|
unsigned height;
|
|
} codeblock[MAX_DWT_LEVELS+1];
|
|
|
|
struct {
|
|
unsigned num_x; /* number of horizontal slices */
|
|
unsigned num_y; /* number of vertical slices */
|
|
AVRational bytes; /* average bytes per slice */
|
|
uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
|
|
} lowdelay;
|
|
|
|
struct {
|
|
int pan_tilt[2]; /* pan/tilt vector */
|
|
int zrs[2][2]; /* zoom/rotate/shear matrix */
|
|
int perspective[2]; /* perspective vector */
|
|
unsigned zrs_exp;
|
|
unsigned perspective_exp;
|
|
} globalmc[2];
|
|
|
|
/* motion compensation */
|
|
uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
|
|
int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
|
|
unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
|
|
|
|
int blwidth; /* number of blocks (horizontally) */
|
|
int blheight; /* number of blocks (vertically) */
|
|
int sbwidth; /* number of superblocks (horizontally) */
|
|
int sbheight; /* number of superblocks (vertically) */
|
|
|
|
uint8_t *sbsplit;
|
|
DiracBlock *blmotion;
|
|
|
|
uint8_t *edge_emu_buffer[4];
|
|
uint8_t *edge_emu_buffer_base;
|
|
|
|
uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
|
|
uint8_t *mcscratch;
|
|
int buffer_stride;
|
|
|
|
DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
|
|
|
|
void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
|
|
void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
|
|
void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
|
|
dirac_weight_func weight_func;
|
|
dirac_biweight_func biweight_func;
|
|
|
|
DiracFrame *current_picture;
|
|
DiracFrame *ref_pics[2];
|
|
|
|
DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
|
|
DiracFrame *delay_frames[MAX_DELAY+1];
|
|
DiracFrame all_frames[MAX_FRAMES];
|
|
} DiracContext;
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* Parse code values. 9.6.1 Table 9.1
|
|
*/
|
|
enum dirac_parse_code {
|
|
pc_seq_header = 0x00,
|
|
pc_eos = 0x10,
|
|
pc_aux_data = 0x20,
|
|
pc_padding = 0x30,
|
|
};
|
|
|
|
enum dirac_subband {
|
|
subband_ll = 0,
|
|
subband_hl = 1,
|
|
subband_lh = 2,
|
|
subband_hh = 3,
|
|
subband_nb,
|
|
};
|
|
|
|
static const uint8_t default_qmat[][4][4] = {
|
|
{ { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
|
|
{ { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
|
|
{ { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
|
|
{ { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
|
|
{ { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
|
|
{ { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
|
|
{ { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
|
|
};
|
|
|
|
static const int qscale_tab[MAX_QUANT+1] = {
|
|
4, 5, 6, 7, 8, 10, 11, 13,
|
|
16, 19, 23, 27, 32, 38, 45, 54,
|
|
64, 76, 91, 108, 128, 152, 181, 215,
|
|
256, 304, 362, 431, 512, 609, 724, 861,
|
|
1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
|
|
4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
|
|
16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109,
|
|
65536, 77936
|
|
};
|
|
|
|
static const int qoffset_intra_tab[MAX_QUANT+1] = {
|
|
1, 2, 3, 4, 4, 5, 6, 7,
|
|
8, 10, 12, 14, 16, 19, 23, 27,
|
|
32, 38, 46, 54, 64, 76, 91, 108,
|
|
128, 152, 181, 216, 256, 305, 362, 431,
|
|
512, 609, 724, 861, 1024, 1218, 1448, 1722,
|
|
2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
|
|
8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555,
|
|
32768, 38968
|
|
};
|
|
|
|
static const int qoffset_inter_tab[MAX_QUANT+1] = {
|
|
1, 2, 2, 3, 3, 4, 4, 5,
|
|
6, 7, 9, 10, 12, 14, 17, 20,
|
|
24, 29, 34, 41, 48, 57, 68, 81,
|
|
96, 114, 136, 162, 192, 228, 272, 323,
|
|
384, 457, 543, 646, 768, 913, 1086, 1292,
|
|
1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
|
|
6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
|
|
24576, 29226
|
|
};
|
|
|
|
/* magic number division by 3 from schroedinger */
|
|
static inline int divide3(int x)
|
|
{
|
|
return ((x+1)*21845 + 10922) >> 16;
|
|
}
|
|
|
|
static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
|
|
{
|
|
DiracFrame *remove_pic = NULL;
|
|
int i, remove_idx = -1;
|
|
|
|
for (i = 0; framelist[i]; i++)
|
|
if (framelist[i]->avframe->display_picture_number == picnum) {
|
|
remove_pic = framelist[i];
|
|
remove_idx = i;
|
|
}
|
|
|
|
if (remove_pic)
|
|
for (i = remove_idx; framelist[i]; i++)
|
|
framelist[i] = framelist[i+1];
|
|
|
|
return remove_pic;
|
|
}
|
|
|
|
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
|
|
{
|
|
int i;
|
|
for (i = 0; i < maxframes; i++)
|
|
if (!framelist[i]) {
|
|
framelist[i] = frame;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int alloc_sequence_buffers(DiracContext *s)
|
|
{
|
|
int sbwidth = DIVRNDUP(s->source.width, 4);
|
|
int sbheight = DIVRNDUP(s->source.height, 4);
|
|
int i, w, h, top_padding;
|
|
|
|
/* todo: think more about this / use or set Plane here */
|
|
for (i = 0; i < 3; i++) {
|
|
int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
|
|
int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
|
|
w = s->source.width >> (i ? s->chroma_x_shift : 0);
|
|
h = s->source.height >> (i ? s->chroma_y_shift : 0);
|
|
|
|
/* we allocate the max we support here since num decompositions can
|
|
* change from frame to frame. Stride is aligned to 16 for SIMD, and
|
|
* 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
|
|
* MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
|
|
* on each side */
|
|
top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
|
|
w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
|
|
h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
|
|
|
|
s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * sizeof(IDWTELEM));
|
|
s->plane[i].idwt_tmp = av_malloc_array((w+16), sizeof(IDWTELEM));
|
|
s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w;
|
|
if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
/* fixme: allocate using real stride here */
|
|
s->sbsplit = av_malloc_array(sbwidth, sbheight);
|
|
s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
|
|
|
|
if (!s->sbsplit || !s->blmotion)
|
|
return AVERROR(ENOMEM);
|
|
return 0;
|
|
}
|
|
|
|
static int alloc_buffers(DiracContext *s, int stride)
|
|
{
|
|
int w = s->source.width;
|
|
int h = s->source.height;
|
|
|
|
av_assert0(stride >= w);
|
|
stride += 64;
|
|
|
|
if (s->buffer_stride >= stride)
|
|
return 0;
|
|
s->buffer_stride = 0;
|
|
|
|
av_freep(&s->edge_emu_buffer_base);
|
|
memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
|
|
av_freep(&s->mctmp);
|
|
av_freep(&s->mcscratch);
|
|
|
|
s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
|
|
|
|
s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
|
|
s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
|
|
|
|
if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
|
|
return AVERROR(ENOMEM);
|
|
|
|
s->buffer_stride = stride;
|
|
return 0;
|
|
}
|
|
|
|
static void free_sequence_buffers(DiracContext *s)
|
|
{
|
|
int i, j, k;
|
|
|
|
for (i = 0; i < MAX_FRAMES; i++) {
|
|
if (s->all_frames[i].avframe->data[0]) {
|
|
av_frame_unref(s->all_frames[i].avframe);
|
|
memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
|
|
}
|
|
|
|
for (j = 0; j < 3; j++)
|
|
for (k = 1; k < 4; k++)
|
|
av_freep(&s->all_frames[i].hpel_base[j][k]);
|
|
}
|
|
|
|
memset(s->ref_frames, 0, sizeof(s->ref_frames));
|
|
memset(s->delay_frames, 0, sizeof(s->delay_frames));
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
av_freep(&s->plane[i].idwt_buf_base);
|
|
av_freep(&s->plane[i].idwt_tmp);
|
|
}
|
|
|
|
s->buffer_stride = 0;
|
|
av_freep(&s->sbsplit);
|
|
av_freep(&s->blmotion);
|
|
av_freep(&s->edge_emu_buffer_base);
|
|
|
|
av_freep(&s->mctmp);
|
|
av_freep(&s->mcscratch);
|
|
}
|
|
|
|
static av_cold int dirac_decode_init(AVCodecContext *avctx)
|
|
{
|
|
DiracContext *s = avctx->priv_data;
|
|
int i;
|
|
|
|
s->avctx = avctx;
|
|
s->frame_number = -1;
|
|
|
|
ff_diracdsp_init(&s->diracdsp);
|
|
ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
|
|
ff_videodsp_init(&s->vdsp, 8);
|
|
|
|
for (i = 0; i < MAX_FRAMES; i++) {
|
|
s->all_frames[i].avframe = av_frame_alloc();
|
|
if (!s->all_frames[i].avframe) {
|
|
while (i > 0)
|
|
av_frame_free(&s->all_frames[--i].avframe);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dirac_decode_flush(AVCodecContext *avctx)
|
|
{
|
|
DiracContext *s = avctx->priv_data;
|
|
free_sequence_buffers(s);
|
|
s->seen_sequence_header = 0;
|
|
s->frame_number = -1;
|
|
}
|
|
|
|
static av_cold int dirac_decode_end(AVCodecContext *avctx)
|
|
{
|
|
DiracContext *s = avctx->priv_data;
|
|
int i;
|
|
|
|
dirac_decode_flush(avctx);
|
|
for (i = 0; i < MAX_FRAMES; i++)
|
|
av_frame_free(&s->all_frames[i].avframe);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
|
|
|
|
static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset,
|
|
SubBand *b, IDWTELEM *buf, int x, int y)
|
|
{
|
|
int coeff, sign;
|
|
int sign_pred = 0;
|
|
int pred_ctx = CTX_ZPZN_F1;
|
|
|
|
/* Check if the parent subband has a 0 in the corresponding position */
|
|
if (b->parent)
|
|
pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1;
|
|
|
|
if (b->orientation == subband_hl)
|
|
sign_pred = buf[-b->stride];
|
|
|
|
/* Determine if the pixel has only zeros in its neighbourhood */
|
|
if (x) {
|
|
pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]);
|
|
if (b->orientation == subband_lh)
|
|
sign_pred = buf[-1];
|
|
} else {
|
|
pred_ctx += !buf[-b->stride];
|
|
}
|
|
|
|
coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA);
|
|
if (coeff) {
|
|
coeff = (coeff * qfactor + qoffset + 2) >> 2;
|
|
sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred));
|
|
coeff = (coeff ^ -sign) + sign;
|
|
}
|
|
*buf = coeff;
|
|
}
|
|
|
|
static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
|
|
{
|
|
int sign, coeff;
|
|
|
|
coeff = svq3_get_ue_golomb(gb);
|
|
if (coeff) {
|
|
coeff = (coeff * qfactor + qoffset + 2) >> 2;
|
|
sign = get_bits1(gb);
|
|
coeff = (coeff ^ -sign) + sign;
|
|
}
|
|
return coeff;
|
|
}
|
|
|
|
/**
|
|
* Decode the coeffs in the rectangle defined by left, right, top, bottom
|
|
* [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
|
|
*/
|
|
static inline void codeblock(DiracContext *s, SubBand *b,
|
|
GetBitContext *gb, DiracArith *c,
|
|
int left, int right, int top, int bottom,
|
|
int blockcnt_one, int is_arith)
|
|
{
|
|
int x, y, zero_block;
|
|
int qoffset, qfactor;
|
|
IDWTELEM *buf;
|
|
|
|
/* check for any coded coefficients in this codeblock */
|
|
if (!blockcnt_one) {
|
|
if (is_arith)
|
|
zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
|
|
else
|
|
zero_block = get_bits1(gb);
|
|
|
|
if (zero_block)
|
|
return;
|
|
}
|
|
|
|
if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
|
|
int quant = b->quant;
|
|
if (is_arith)
|
|
quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
|
|
else
|
|
quant += dirac_get_se_golomb(gb);
|
|
if (quant < 0) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
|
|
return;
|
|
}
|
|
b->quant = quant;
|
|
}
|
|
|
|
b->quant = FFMIN(b->quant, MAX_QUANT);
|
|
|
|
qfactor = qscale_tab[b->quant];
|
|
/* TODO: context pointer? */
|
|
if (!s->num_refs)
|
|
qoffset = qoffset_intra_tab[b->quant];
|
|
else
|
|
qoffset = qoffset_inter_tab[b->quant];
|
|
|
|
buf = b->ibuf + top * b->stride;
|
|
for (y = top; y < bottom; y++) {
|
|
for (x = left; x < right; x++) {
|
|
/* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
|
|
if (is_arith)
|
|
coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y);
|
|
else
|
|
buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
|
|
}
|
|
buf += b->stride;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* 13.3 intra_dc_prediction(band)
|
|
*/
|
|
static inline void intra_dc_prediction(SubBand *b)
|
|
{
|
|
IDWTELEM *buf = b->ibuf;
|
|
int x, y;
|
|
|
|
for (x = 1; x < b->width; x++)
|
|
buf[x] += buf[x-1];
|
|
buf += b->stride;
|
|
|
|
for (y = 1; y < b->height; y++) {
|
|
buf[0] += buf[-b->stride];
|
|
|
|
for (x = 1; x < b->width; x++) {
|
|
int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1];
|
|
buf[x] += divide3(pred);
|
|
}
|
|
buf += b->stride;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* 13.4.2 Non-skipped subbands. subband_coeffs()
|
|
*/
|
|
static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
|
|
{
|
|
int cb_x, cb_y, left, right, top, bottom;
|
|
DiracArith c;
|
|
GetBitContext gb;
|
|
int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
|
|
int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
|
|
int blockcnt_one = (cb_width + cb_height) == 2;
|
|
|
|
if (!b->length)
|
|
return;
|
|
|
|
init_get_bits8(&gb, b->coeff_data, b->length);
|
|
|
|
if (is_arith)
|
|
ff_dirac_init_arith_decoder(&c, &gb, b->length);
|
|
|
|
top = 0;
|
|
for (cb_y = 0; cb_y < cb_height; cb_y++) {
|
|
bottom = (b->height * (cb_y+1LL)) / cb_height;
|
|
left = 0;
|
|
for (cb_x = 0; cb_x < cb_width; cb_x++) {
|
|
right = (b->width * (cb_x+1LL)) / cb_width;
|
|
codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
|
|
left = right;
|
|
}
|
|
top = bottom;
|
|
}
|
|
|
|
if (b->orientation == subband_ll && s->num_refs == 0)
|
|
intra_dc_prediction(b);
|
|
}
|
|
|
|
static int decode_subband_arith(AVCodecContext *avctx, void *b)
|
|
{
|
|
DiracContext *s = avctx->priv_data;
|
|
decode_subband_internal(s, b, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
|
|
{
|
|
DiracContext *s = avctx->priv_data;
|
|
SubBand **b = arg;
|
|
decode_subband_internal(s, *b, 0);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* [DIRAC_STD] 13.4.1 core_transform_data()
|
|
*/
|
|
static void decode_component(DiracContext *s, int comp)
|
|
{
|
|
AVCodecContext *avctx = s->avctx;
|
|
SubBand *bands[3*MAX_DWT_LEVELS+1];
|
|
enum dirac_subband orientation;
|
|
int level, num_bands = 0;
|
|
|
|
/* Unpack all subbands at all levels. */
|
|
for (level = 0; level < s->wavelet_depth; level++) {
|
|
for (orientation = !!level; orientation < 4; orientation++) {
|
|
SubBand *b = &s->plane[comp].band[level][orientation];
|
|
bands[num_bands++] = b;
|
|
|
|
align_get_bits(&s->gb);
|
|
/* [DIRAC_STD] 13.4.2 subband() */
|
|
b->length = svq3_get_ue_golomb(&s->gb);
|
|
if (b->length) {
|
|
b->quant = svq3_get_ue_golomb(&s->gb);
|
|
align_get_bits(&s->gb);
|
|
b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
|
|
b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
|
|
skip_bits_long(&s->gb, b->length*8);
|
|
}
|
|
}
|
|
/* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
|
|
if (s->is_arith)
|
|
avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
|
|
NULL, 4-!!level, sizeof(SubBand));
|
|
}
|
|
/* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
|
|
if (!s->is_arith)
|
|
avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
|
|
}
|
|
|
|
/* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
|
|
/* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
|
|
static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
|
|
int slice_x, int slice_y, int bits_end,
|
|
SubBand *b1, SubBand *b2)
|
|
{
|
|
int left = b1->width * slice_x / s->lowdelay.num_x;
|
|
int right = b1->width *(slice_x+1) / s->lowdelay.num_x;
|
|
int top = b1->height * slice_y / s->lowdelay.num_y;
|
|
int bottom = b1->height *(slice_y+1) / s->lowdelay.num_y;
|
|
|
|
int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
|
|
int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
|
|
|
|
IDWTELEM *buf1 = b1->ibuf + top * b1->stride;
|
|
IDWTELEM *buf2 = b2 ? b2->ibuf + top * b2->stride : NULL;
|
|
int x, y;
|
|
/* we have to constantly check for overread since the spec explicitly
|
|
requires this, with the meaning that all remaining coeffs are set to 0 */
|
|
if (get_bits_count(gb) >= bits_end)
|
|
return;
|
|
|
|
for (y = top; y < bottom; y++) {
|
|
for (x = left; x < right; x++) {
|
|
buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
|
|
if (get_bits_count(gb) >= bits_end)
|
|
return;
|
|
if (buf2) {
|
|
buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
|
|
if (get_bits_count(gb) >= bits_end)
|
|
return;
|
|
}
|
|
}
|
|
buf1 += b1->stride;
|
|
if (buf2)
|
|
buf2 += b2->stride;
|
|
}
|
|
}
|
|
|
|
struct lowdelay_slice {
|
|
GetBitContext gb;
|
|
int slice_x;
|
|
int slice_y;
|
|
int bytes;
|
|
};
|
|
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* 13.5.2 Slices. slice(sx,sy)
|
|
*/
|
|
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
|
|
{
|
|
DiracContext *s = avctx->priv_data;
|
|
struct lowdelay_slice *slice = arg;
|
|
GetBitContext *gb = &slice->gb;
|
|
enum dirac_subband orientation;
|
|
int level, quant, chroma_bits, chroma_end;
|
|
|
|
int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
|
|
int length_bits = av_log2(8 * slice->bytes)+1;
|
|
int luma_bits = get_bits_long(gb, length_bits);
|
|
int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
|
|
|
|
/* [DIRAC_STD] 13.5.5.2 luma_slice_band */
|
|
for (level = 0; level < s->wavelet_depth; level++)
|
|
for (orientation = !!level; orientation < 4; orientation++) {
|
|
quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
|
|
lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
|
|
&s->plane[0].band[level][orientation], NULL);
|
|
}
|
|
|
|
/* consume any unused bits from luma */
|
|
skip_bits_long(gb, get_bits_count(gb) - luma_end);
|
|
|
|
chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
|
|
chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
|
|
/* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
|
|
for (level = 0; level < s->wavelet_depth; level++)
|
|
for (orientation = !!level; orientation < 4; orientation++) {
|
|
quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
|
|
lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
|
|
&s->plane[1].band[level][orientation],
|
|
&s->plane[2].band[level][orientation]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* 13.5.1 low_delay_transform_data()
|
|
*/
|
|
static int decode_lowdelay(DiracContext *s)
|
|
{
|
|
AVCodecContext *avctx = s->avctx;
|
|
int slice_x, slice_y, bytes, bufsize;
|
|
const uint8_t *buf;
|
|
struct lowdelay_slice *slices;
|
|
int slice_num = 0;
|
|
|
|
slices = av_mallocz_array(s->lowdelay.num_x, s->lowdelay.num_y * sizeof(struct lowdelay_slice));
|
|
if (!slices)
|
|
return AVERROR(ENOMEM);
|
|
|
|
align_get_bits(&s->gb);
|
|
/*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
|
|
buf = s->gb.buffer + get_bits_count(&s->gb)/8;
|
|
bufsize = get_bits_left(&s->gb);
|
|
|
|
for (slice_y = 0; bufsize > 0 && slice_y < s->lowdelay.num_y; slice_y++)
|
|
for (slice_x = 0; bufsize > 0 && slice_x < s->lowdelay.num_x; slice_x++) {
|
|
bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
|
|
- slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
|
|
|
|
slices[slice_num].bytes = bytes;
|
|
slices[slice_num].slice_x = slice_x;
|
|
slices[slice_num].slice_y = slice_y;
|
|
init_get_bits(&slices[slice_num].gb, buf, bufsize);
|
|
slice_num++;
|
|
|
|
buf += bytes;
|
|
if (bufsize/8 >= bytes)
|
|
bufsize -= bytes*8;
|
|
else
|
|
bufsize = 0;
|
|
}
|
|
|
|
avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
|
|
sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
|
|
intra_dc_prediction(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
|
|
intra_dc_prediction(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
|
|
intra_dc_prediction(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
|
|
av_free(slices);
|
|
return 0;
|
|
}
|
|
|
|
static void init_planes(DiracContext *s)
|
|
{
|
|
int i, w, h, level, orientation;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
Plane *p = &s->plane[i];
|
|
|
|
p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
|
|
p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
|
|
p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
|
|
p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
|
|
p->idwt_stride = FFALIGN(p->idwt_width, 8);
|
|
|
|
for (level = s->wavelet_depth-1; level >= 0; level--) {
|
|
w = w>>1;
|
|
h = h>>1;
|
|
for (orientation = !!level; orientation < 4; orientation++) {
|
|
SubBand *b = &p->band[level][orientation];
|
|
|
|
b->ibuf = p->idwt_buf;
|
|
b->level = level;
|
|
b->stride = p->idwt_stride << (s->wavelet_depth - level);
|
|
b->width = w;
|
|
b->height = h;
|
|
b->orientation = orientation;
|
|
|
|
if (orientation & 1)
|
|
b->ibuf += w;
|
|
if (orientation > 1)
|
|
b->ibuf += b->stride>>1;
|
|
|
|
if (level)
|
|
b->parent = &p->band[level-1][orientation];
|
|
}
|
|
}
|
|
|
|
if (i > 0) {
|
|
p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
|
|
p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
|
|
p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
|
|
p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
|
|
}
|
|
|
|
p->xoffset = (p->xblen - p->xbsep)/2;
|
|
p->yoffset = (p->yblen - p->ybsep)/2;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Unpack the motion compensation parameters
|
|
* Dirac Specification ->
|
|
* 11.2 Picture prediction data. picture_prediction()
|
|
*/
|
|
static int dirac_unpack_prediction_parameters(DiracContext *s)
|
|
{
|
|
static const uint8_t default_blen[] = { 4, 12, 16, 24 };
|
|
|
|
GetBitContext *gb = &s->gb;
|
|
unsigned idx, ref;
|
|
|
|
align_get_bits(gb);
|
|
/* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
|
|
/* Luma and Chroma are equal. 11.2.3 */
|
|
idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
|
|
|
|
if (idx > 4) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (idx == 0) {
|
|
s->plane[0].xblen = svq3_get_ue_golomb(gb);
|
|
s->plane[0].yblen = svq3_get_ue_golomb(gb);
|
|
s->plane[0].xbsep = svq3_get_ue_golomb(gb);
|
|
s->plane[0].ybsep = svq3_get_ue_golomb(gb);
|
|
} else {
|
|
/*[DIRAC_STD] preset_block_params(index). Table 11.1 */
|
|
s->plane[0].xblen = default_blen[idx-1];
|
|
s->plane[0].yblen = default_blen[idx-1];
|
|
s->plane[0].xbsep = 4 * idx;
|
|
s->plane[0].ybsep = 4 * idx;
|
|
}
|
|
/*[DIRAC_STD] 11.2.4 motion_data_dimensions()
|
|
Calculated in function dirac_unpack_block_motion_data */
|
|
|
|
if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
|
|
s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
|
|
!s->plane[0].xblen || !s->plane[0].yblen) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
|
|
s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
/*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
|
|
Read motion vector precision */
|
|
s->mv_precision = svq3_get_ue_golomb(gb);
|
|
if (s->mv_precision > 3) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/*[DIRAC_STD] 11.2.6 Global motion. global_motion()
|
|
Read the global motion compensation parameters */
|
|
s->globalmc_flag = get_bits1(gb);
|
|
if (s->globalmc_flag) {
|
|
memset(s->globalmc, 0, sizeof(s->globalmc));
|
|
/* [DIRAC_STD] pan_tilt(gparams) */
|
|
for (ref = 0; ref < s->num_refs; ref++) {
|
|
if (get_bits1(gb)) {
|
|
s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
|
|
s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
|
|
}
|
|
/* [DIRAC_STD] zoom_rotate_shear(gparams)
|
|
zoom/rotation/shear parameters */
|
|
if (get_bits1(gb)) {
|
|
s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
|
|
s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
|
|
s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
|
|
s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
|
|
s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
|
|
} else {
|
|
s->globalmc[ref].zrs[0][0] = 1;
|
|
s->globalmc[ref].zrs[1][1] = 1;
|
|
}
|
|
/* [DIRAC_STD] perspective(gparams) */
|
|
if (get_bits1(gb)) {
|
|
s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
|
|
s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
|
|
s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
|
|
Picture prediction mode, not currently used. */
|
|
if (svq3_get_ue_golomb(gb)) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
|
|
just data read, weight calculation will be done later on. */
|
|
s->weight_log2denom = 1;
|
|
s->weight[0] = 1;
|
|
s->weight[1] = 1;
|
|
|
|
if (get_bits1(gb)) {
|
|
s->weight_log2denom = svq3_get_ue_golomb(gb);
|
|
s->weight[0] = dirac_get_se_golomb(gb);
|
|
if (s->num_refs == 2)
|
|
s->weight[1] = dirac_get_se_golomb(gb);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* 11.3 Wavelet transform data. wavelet_transform()
|
|
*/
|
|
static int dirac_unpack_idwt_params(DiracContext *s)
|
|
{
|
|
GetBitContext *gb = &s->gb;
|
|
int i, level;
|
|
unsigned tmp;
|
|
|
|
#define CHECKEDREAD(dst, cond, errmsg) \
|
|
tmp = svq3_get_ue_golomb(gb); \
|
|
if (cond) { \
|
|
av_log(s->avctx, AV_LOG_ERROR, errmsg); \
|
|
return AVERROR_INVALIDDATA; \
|
|
}\
|
|
dst = tmp;
|
|
|
|
align_get_bits(gb);
|
|
|
|
s->zero_res = s->num_refs ? get_bits1(gb) : 0;
|
|
if (s->zero_res)
|
|
return 0;
|
|
|
|
/*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
|
|
CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
|
|
|
|
CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
|
|
|
|
if (!s->low_delay) {
|
|
/* Codeblock parameters (core syntax only) */
|
|
if (get_bits1(gb)) {
|
|
for (i = 0; i <= s->wavelet_depth; i++) {
|
|
CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
|
|
CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
|
|
}
|
|
|
|
CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
|
|
} else
|
|
for (i = 0; i <= s->wavelet_depth; i++)
|
|
s->codeblock[i].width = s->codeblock[i].height = 1;
|
|
} else {
|
|
/* Slice parameters + quantization matrix*/
|
|
/*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
|
|
s->lowdelay.num_x = svq3_get_ue_golomb(gb);
|
|
s->lowdelay.num_y = svq3_get_ue_golomb(gb);
|
|
s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
|
|
s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
|
|
|
|
if (s->lowdelay.bytes.den <= 0) {
|
|
av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
|
|
if (get_bits1(gb)) {
|
|
av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
|
|
/* custom quantization matrix */
|
|
s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
|
|
for (level = 0; level < s->wavelet_depth; level++) {
|
|
s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
|
|
s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
|
|
s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
|
|
}
|
|
} else {
|
|
if (s->wavelet_depth > 4) {
|
|
av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
/* default quantization matrix */
|
|
for (level = 0; level < s->wavelet_depth; level++)
|
|
for (i = 0; i < 4; i++) {
|
|
s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
|
|
/* haar with no shift differs for different depths */
|
|
if (s->wavelet_idx == 3)
|
|
s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
|
|
{
|
|
static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
|
|
|
|
if (!(x|y))
|
|
return 0;
|
|
else if (!y)
|
|
return sbsplit[-1];
|
|
else if (!x)
|
|
return sbsplit[-stride];
|
|
|
|
return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
|
|
}
|
|
|
|
static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
|
|
{
|
|
int pred;
|
|
|
|
if (!(x|y))
|
|
return 0;
|
|
else if (!y)
|
|
return block[-1].ref & refmask;
|
|
else if (!x)
|
|
return block[-stride].ref & refmask;
|
|
|
|
/* return the majority */
|
|
pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
|
|
return (pred >> 1) & refmask;
|
|
}
|
|
|
|
static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
|
|
{
|
|
int i, n = 0;
|
|
|
|
memset(block->u.dc, 0, sizeof(block->u.dc));
|
|
|
|
if (x && !(block[-1].ref & 3)) {
|
|
for (i = 0; i < 3; i++)
|
|
block->u.dc[i] += block[-1].u.dc[i];
|
|
n++;
|
|
}
|
|
|
|
if (y && !(block[-stride].ref & 3)) {
|
|
for (i = 0; i < 3; i++)
|
|
block->u.dc[i] += block[-stride].u.dc[i];
|
|
n++;
|
|
}
|
|
|
|
if (x && y && !(block[-1-stride].ref & 3)) {
|
|
for (i = 0; i < 3; i++)
|
|
block->u.dc[i] += block[-1-stride].u.dc[i];
|
|
n++;
|
|
}
|
|
|
|
if (n == 2) {
|
|
for (i = 0; i < 3; i++)
|
|
block->u.dc[i] = (block->u.dc[i]+1)>>1;
|
|
} else if (n == 3) {
|
|
for (i = 0; i < 3; i++)
|
|
block->u.dc[i] = divide3(block->u.dc[i]);
|
|
}
|
|
}
|
|
|
|
static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
|
|
{
|
|
int16_t *pred[3];
|
|
int refmask = ref+1;
|
|
int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
|
|
int n = 0;
|
|
|
|
if (x && (block[-1].ref & mask) == refmask)
|
|
pred[n++] = block[-1].u.mv[ref];
|
|
|
|
if (y && (block[-stride].ref & mask) == refmask)
|
|
pred[n++] = block[-stride].u.mv[ref];
|
|
|
|
if (x && y && (block[-stride-1].ref & mask) == refmask)
|
|
pred[n++] = block[-stride-1].u.mv[ref];
|
|
|
|
switch (n) {
|
|
case 0:
|
|
block->u.mv[ref][0] = 0;
|
|
block->u.mv[ref][1] = 0;
|
|
break;
|
|
case 1:
|
|
block->u.mv[ref][0] = pred[0][0];
|
|
block->u.mv[ref][1] = pred[0][1];
|
|
break;
|
|
case 2:
|
|
block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
|
|
block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
|
|
break;
|
|
case 3:
|
|
block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
|
|
block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
|
|
{
|
|
int ez = s->globalmc[ref].zrs_exp;
|
|
int ep = s->globalmc[ref].perspective_exp;
|
|
int (*A)[2] = s->globalmc[ref].zrs;
|
|
int *b = s->globalmc[ref].pan_tilt;
|
|
int *c = s->globalmc[ref].perspective;
|
|
|
|
int m = (1<<ep) - (c[0]*x + c[1]*y);
|
|
int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
|
|
int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
|
|
|
|
block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
|
|
block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
|
|
}
|
|
|
|
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
|
|
int stride, int x, int y)
|
|
{
|
|
int i;
|
|
|
|
block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
|
|
block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
|
|
|
|
if (s->num_refs == 2) {
|
|
block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
|
|
block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
|
|
}
|
|
|
|
if (!block->ref) {
|
|
pred_block_dc(block, stride, x, y);
|
|
for (i = 0; i < 3; i++)
|
|
block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
|
|
return;
|
|
}
|
|
|
|
if (s->globalmc_flag) {
|
|
block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
|
|
block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
|
|
}
|
|
|
|
for (i = 0; i < s->num_refs; i++)
|
|
if (block->ref & (i+1)) {
|
|
if (block->ref & DIRAC_REF_MASK_GLOBAL) {
|
|
global_mv(s, block, x, y, i);
|
|
} else {
|
|
pred_mv(block, stride, x, y, i);
|
|
block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
|
|
block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Copies the current block to the other blocks covered by the current superblock split mode
|
|
*/
|
|
static void propagate_block_data(DiracBlock *block, int stride, int size)
|
|
{
|
|
int x, y;
|
|
DiracBlock *dst = block;
|
|
|
|
for (x = 1; x < size; x++)
|
|
dst[x] = *block;
|
|
|
|
for (y = 1; y < size; y++) {
|
|
dst += stride;
|
|
for (x = 0; x < size; x++)
|
|
dst[x] = *block;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* 12. Block motion data syntax
|
|
*/
|
|
static int dirac_unpack_block_motion_data(DiracContext *s)
|
|
{
|
|
GetBitContext *gb = &s->gb;
|
|
uint8_t *sbsplit = s->sbsplit;
|
|
int i, x, y, q, p;
|
|
DiracArith arith[8];
|
|
|
|
align_get_bits(gb);
|
|
|
|
/* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
|
|
s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
|
|
s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
|
|
s->blwidth = 4 * s->sbwidth;
|
|
s->blheight = 4 * s->sbheight;
|
|
|
|
/* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
|
|
decode superblock split modes */
|
|
ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
|
|
for (y = 0; y < s->sbheight; y++) {
|
|
for (x = 0; x < s->sbwidth; x++) {
|
|
unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
|
|
if (split > 2)
|
|
return AVERROR_INVALIDDATA;
|
|
sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
|
|
}
|
|
sbsplit += s->sbwidth;
|
|
}
|
|
|
|
/* setup arith decoding */
|
|
ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
|
|
for (i = 0; i < s->num_refs; i++) {
|
|
ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
|
|
ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
|
|
}
|
|
for (i = 0; i < 3; i++)
|
|
ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
|
|
|
|
for (y = 0; y < s->sbheight; y++)
|
|
for (x = 0; x < s->sbwidth; x++) {
|
|
int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
|
|
int step = 4 >> s->sbsplit[y * s->sbwidth + x];
|
|
|
|
for (q = 0; q < blkcnt; q++)
|
|
for (p = 0; p < blkcnt; p++) {
|
|
int bx = 4 * x + p*step;
|
|
int by = 4 * y + q*step;
|
|
DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
|
|
decode_block_params(s, arith, block, s->blwidth, bx, by);
|
|
propagate_block_data(block, s->blwidth, step);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int weight(int i, int blen, int offset)
|
|
{
|
|
#define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
|
|
(1 + (6*(i) + offset - 1) / (2*offset - 1))
|
|
|
|
if (i < 2*offset)
|
|
return ROLLOFF(i);
|
|
else if (i > blen-1 - 2*offset)
|
|
return ROLLOFF(blen-1 - i);
|
|
return 8;
|
|
}
|
|
|
|
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
|
|
int left, int right, int wy)
|
|
{
|
|
int x;
|
|
for (x = 0; left && x < p->xblen >> 1; x++)
|
|
obmc_weight[x] = wy*8;
|
|
for (; x < p->xblen >> right; x++)
|
|
obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
|
|
for (; x < p->xblen; x++)
|
|
obmc_weight[x] = wy*8;
|
|
for (; x < stride; x++)
|
|
obmc_weight[x] = 0;
|
|
}
|
|
|
|
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
|
|
int left, int right, int top, int bottom)
|
|
{
|
|
int y;
|
|
for (y = 0; top && y < p->yblen >> 1; y++) {
|
|
init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
|
|
obmc_weight += stride;
|
|
}
|
|
for (; y < p->yblen >> bottom; y++) {
|
|
int wy = weight(y, p->yblen, p->yoffset);
|
|
init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
|
|
obmc_weight += stride;
|
|
}
|
|
for (; y < p->yblen; y++) {
|
|
init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
|
|
obmc_weight += stride;
|
|
}
|
|
}
|
|
|
|
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
|
|
{
|
|
int top = !by;
|
|
int bottom = by == s->blheight-1;
|
|
|
|
/* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
|
|
if (top || bottom || by == 1) {
|
|
init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
|
|
init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
|
|
init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
|
|
}
|
|
}
|
|
|
|
static const uint8_t epel_weights[4][4][4] = {
|
|
{{ 16, 0, 0, 0 },
|
|
{ 12, 4, 0, 0 },
|
|
{ 8, 8, 0, 0 },
|
|
{ 4, 12, 0, 0 }},
|
|
{{ 12, 0, 4, 0 },
|
|
{ 9, 3, 3, 1 },
|
|
{ 6, 6, 2, 2 },
|
|
{ 3, 9, 1, 3 }},
|
|
{{ 8, 0, 8, 0 },
|
|
{ 6, 2, 6, 2 },
|
|
{ 4, 4, 4, 4 },
|
|
{ 2, 6, 2, 6 }},
|
|
{{ 4, 0, 12, 0 },
|
|
{ 3, 1, 9, 3 },
|
|
{ 2, 2, 6, 6 },
|
|
{ 1, 3, 3, 9 }}
|
|
};
|
|
|
|
/**
|
|
* For block x,y, determine which of the hpel planes to do bilinear
|
|
* interpolation from and set src[] to the location in each hpel plane
|
|
* to MC from.
|
|
*
|
|
* @return the index of the put_dirac_pixels_tab function to use
|
|
* 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
|
|
*/
|
|
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
|
|
int x, int y, int ref, int plane)
|
|
{
|
|
Plane *p = &s->plane[plane];
|
|
uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
|
|
int motion_x = block->u.mv[ref][0];
|
|
int motion_y = block->u.mv[ref][1];
|
|
int mx, my, i, epel, nplanes = 0;
|
|
|
|
if (plane) {
|
|
motion_x >>= s->chroma_x_shift;
|
|
motion_y >>= s->chroma_y_shift;
|
|
}
|
|
|
|
mx = motion_x & ~(-1U << s->mv_precision);
|
|
my = motion_y & ~(-1U << s->mv_precision);
|
|
motion_x >>= s->mv_precision;
|
|
motion_y >>= s->mv_precision;
|
|
/* normalize subpel coordinates to epel */
|
|
/* TODO: template this function? */
|
|
mx <<= 3 - s->mv_precision;
|
|
my <<= 3 - s->mv_precision;
|
|
|
|
x += motion_x;
|
|
y += motion_y;
|
|
epel = (mx|my)&1;
|
|
|
|
/* hpel position */
|
|
if (!((mx|my)&3)) {
|
|
nplanes = 1;
|
|
src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
|
|
} else {
|
|
/* qpel or epel */
|
|
nplanes = 4;
|
|
for (i = 0; i < 4; i++)
|
|
src[i] = ref_hpel[i] + y*p->stride + x;
|
|
|
|
/* if we're interpolating in the right/bottom halves, adjust the planes as needed
|
|
we increment x/y because the edge changes for half of the pixels */
|
|
if (mx > 4) {
|
|
src[0] += 1;
|
|
src[2] += 1;
|
|
x++;
|
|
}
|
|
if (my > 4) {
|
|
src[0] += p->stride;
|
|
src[1] += p->stride;
|
|
y++;
|
|
}
|
|
|
|
/* hpel planes are:
|
|
[0]: F [1]: H
|
|
[2]: V [3]: C */
|
|
if (!epel) {
|
|
/* check if we really only need 2 planes since either mx or my is
|
|
a hpel position. (epel weights of 0 handle this there) */
|
|
if (!(mx&3)) {
|
|
/* mx == 0: average [0] and [2]
|
|
mx == 4: average [1] and [3] */
|
|
src[!mx] = src[2 + !!mx];
|
|
nplanes = 2;
|
|
} else if (!(my&3)) {
|
|
src[0] = src[(my>>1) ];
|
|
src[1] = src[(my>>1)+1];
|
|
nplanes = 2;
|
|
}
|
|
} else {
|
|
/* adjust the ordering if needed so the weights work */
|
|
if (mx > 4) {
|
|
FFSWAP(const uint8_t *, src[0], src[1]);
|
|
FFSWAP(const uint8_t *, src[2], src[3]);
|
|
}
|
|
if (my > 4) {
|
|
FFSWAP(const uint8_t *, src[0], src[2]);
|
|
FFSWAP(const uint8_t *, src[1], src[3]);
|
|
}
|
|
src[4] = epel_weights[my&3][mx&3];
|
|
}
|
|
}
|
|
|
|
/* fixme: v/h _edge_pos */
|
|
if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
|
|
y + p->yblen > p->height+EDGE_WIDTH/2 ||
|
|
x < 0 || y < 0) {
|
|
for (i = 0; i < nplanes; i++) {
|
|
s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
|
|
p->stride, p->stride,
|
|
p->xblen, p->yblen, x, y,
|
|
p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
|
|
src[i] = s->edge_emu_buffer[i];
|
|
}
|
|
}
|
|
return (nplanes>>1) + epel;
|
|
}
|
|
|
|
static void add_dc(uint16_t *dst, int dc, int stride,
|
|
uint8_t *obmc_weight, int xblen, int yblen)
|
|
{
|
|
int x, y;
|
|
dc += 128;
|
|
|
|
for (y = 0; y < yblen; y++) {
|
|
for (x = 0; x < xblen; x += 2) {
|
|
dst[x ] += dc * obmc_weight[x ];
|
|
dst[x+1] += dc * obmc_weight[x+1];
|
|
}
|
|
dst += stride;
|
|
obmc_weight += MAX_BLOCKSIZE;
|
|
}
|
|
}
|
|
|
|
static void block_mc(DiracContext *s, DiracBlock *block,
|
|
uint16_t *mctmp, uint8_t *obmc_weight,
|
|
int plane, int dstx, int dsty)
|
|
{
|
|
Plane *p = &s->plane[plane];
|
|
const uint8_t *src[5];
|
|
int idx;
|
|
|
|
switch (block->ref&3) {
|
|
case 0: /* DC */
|
|
add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
|
|
return;
|
|
case 1:
|
|
case 2:
|
|
idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
|
|
s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
|
|
if (s->weight_func)
|
|
s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
|
|
s->weight[0] + s->weight[1], p->yblen);
|
|
break;
|
|
case 3:
|
|
idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
|
|
s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
|
|
idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
|
|
if (s->biweight_func) {
|
|
/* fixme: +32 is a quick hack */
|
|
s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
|
|
s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
|
|
s->weight[0], s->weight[1], p->yblen);
|
|
} else
|
|
s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
|
|
break;
|
|
}
|
|
s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
|
|
}
|
|
|
|
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
|
|
{
|
|
Plane *p = &s->plane[plane];
|
|
int x, dstx = p->xbsep - p->xoffset;
|
|
|
|
block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
|
|
mctmp += p->xbsep;
|
|
|
|
for (x = 1; x < s->blwidth-1; x++) {
|
|
block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
|
|
dstx += p->xbsep;
|
|
mctmp += p->xbsep;
|
|
}
|
|
block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
|
|
}
|
|
|
|
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
|
|
{
|
|
int idx = 0;
|
|
if (xblen > 8)
|
|
idx = 1;
|
|
if (xblen > 16)
|
|
idx = 2;
|
|
|
|
memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
|
|
memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
|
|
s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
|
|
if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
|
|
s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
|
|
s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
|
|
} else {
|
|
s->weight_func = NULL;
|
|
s->biweight_func = NULL;
|
|
}
|
|
}
|
|
|
|
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
|
|
{
|
|
/* chroma allocates an edge of 8 when subsampled
|
|
which for 4:2:2 means an h edge of 16 and v edge of 8
|
|
just use 8 for everything for the moment */
|
|
int i, edge = EDGE_WIDTH/2;
|
|
|
|
ref->hpel[plane][0] = ref->avframe->data[plane];
|
|
s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
|
|
|
|
/* no need for hpel if we only have fpel vectors */
|
|
if (!s->mv_precision)
|
|
return 0;
|
|
|
|
for (i = 1; i < 4; i++) {
|
|
if (!ref->hpel_base[plane][i])
|
|
ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
|
|
if (!ref->hpel_base[plane][i]) {
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
/* we need to be 16-byte aligned even for chroma */
|
|
ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
|
|
}
|
|
|
|
if (!ref->interpolated[plane]) {
|
|
s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
|
|
ref->hpel[plane][3], ref->hpel[plane][0],
|
|
ref->avframe->linesize[plane], width, height);
|
|
s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
|
|
s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
|
|
s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
|
|
}
|
|
ref->interpolated[plane] = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* 13.0 Transform data syntax. transform_data()
|
|
*/
|
|
static int dirac_decode_frame_internal(DiracContext *s)
|
|
{
|
|
DWTContext d;
|
|
int y, i, comp, dsty;
|
|
int ret;
|
|
|
|
if (s->low_delay) {
|
|
/* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
|
|
for (comp = 0; comp < 3; comp++) {
|
|
Plane *p = &s->plane[comp];
|
|
memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
|
|
}
|
|
if (!s->zero_res) {
|
|
if ((ret = decode_lowdelay(s)) < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
for (comp = 0; comp < 3; comp++) {
|
|
Plane *p = &s->plane[comp];
|
|
uint8_t *frame = s->current_picture->avframe->data[comp];
|
|
|
|
/* FIXME: small resolutions */
|
|
for (i = 0; i < 4; i++)
|
|
s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
|
|
|
|
if (!s->zero_res && !s->low_delay)
|
|
{
|
|
memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
|
|
decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
|
|
}
|
|
ret = ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
|
|
s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!s->num_refs) { /* intra */
|
|
for (y = 0; y < p->height; y += 16) {
|
|
ff_spatial_idwt_slice2(&d, y+16); /* decode */
|
|
s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride,
|
|
p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
|
|
}
|
|
} else { /* inter */
|
|
int rowheight = p->ybsep*p->stride;
|
|
|
|
select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
|
|
|
|
for (i = 0; i < s->num_refs; i++) {
|
|
int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
memset(s->mctmp, 0, 4*p->yoffset*p->stride);
|
|
|
|
dsty = -p->yoffset;
|
|
for (y = 0; y < s->blheight; y++) {
|
|
int h = 0,
|
|
start = FFMAX(dsty, 0);
|
|
uint16_t *mctmp = s->mctmp + y*rowheight;
|
|
DiracBlock *blocks = s->blmotion + y*s->blwidth;
|
|
|
|
init_obmc_weights(s, p, y);
|
|
|
|
if (y == s->blheight-1 || start+p->ybsep > p->height)
|
|
h = p->height - start;
|
|
else
|
|
h = p->ybsep - (start - dsty);
|
|
if (h < 0)
|
|
break;
|
|
|
|
memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
|
|
mc_row(s, blocks, mctmp, comp, dsty);
|
|
|
|
mctmp += (start - dsty)*p->stride + p->xoffset;
|
|
ff_spatial_idwt_slice2(&d, start + h); /* decode */
|
|
s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
|
|
p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h);
|
|
|
|
dsty += p->ybsep;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
|
|
{
|
|
int ret, i;
|
|
int chroma_x_shift, chroma_y_shift;
|
|
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
|
|
|
|
f->width = avctx->width + 2 * EDGE_WIDTH;
|
|
f->height = avctx->height + 2 * EDGE_WIDTH + 2;
|
|
ret = ff_get_buffer(avctx, f, flags);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; f->data[i]; i++) {
|
|
int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
|
|
f->linesize[i] + 32;
|
|
f->data[i] += offset;
|
|
}
|
|
f->width = avctx->width;
|
|
f->height = avctx->height;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* 11.1.1 Picture Header. picture_header()
|
|
*/
|
|
static int dirac_decode_picture_header(DiracContext *s)
|
|
{
|
|
unsigned retire, picnum;
|
|
int i, j, ret;
|
|
int64_t refdist, refnum;
|
|
GetBitContext *gb = &s->gb;
|
|
|
|
/* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
|
|
picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
|
|
|
|
|
|
av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
|
|
|
|
/* if this is the first keyframe after a sequence header, start our
|
|
reordering from here */
|
|
if (s->frame_number < 0)
|
|
s->frame_number = picnum;
|
|
|
|
s->ref_pics[0] = s->ref_pics[1] = NULL;
|
|
for (i = 0; i < s->num_refs; i++) {
|
|
refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
|
|
refdist = INT64_MAX;
|
|
|
|
/* find the closest reference to the one we want */
|
|
/* Jordi: this is needed if the referenced picture hasn't yet arrived */
|
|
for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
|
|
if (s->ref_frames[j]
|
|
&& FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
|
|
s->ref_pics[i] = s->ref_frames[j];
|
|
refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
|
|
}
|
|
|
|
if (!s->ref_pics[i] || refdist)
|
|
av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
|
|
|
|
/* if there were no references at all, allocate one */
|
|
if (!s->ref_pics[i])
|
|
for (j = 0; j < MAX_FRAMES; j++)
|
|
if (!s->all_frames[j].avframe->data[0]) {
|
|
s->ref_pics[i] = &s->all_frames[j];
|
|
get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
|
|
break;
|
|
}
|
|
|
|
if (!s->ref_pics[i]) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
}
|
|
|
|
/* retire the reference frames that are not used anymore */
|
|
if (s->current_picture->reference) {
|
|
retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
|
|
if (retire != picnum) {
|
|
DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
|
|
|
|
if (retire_pic)
|
|
retire_pic->reference &= DELAYED_PIC_REF;
|
|
else
|
|
av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
|
|
}
|
|
|
|
/* if reference array is full, remove the oldest as per the spec */
|
|
while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
|
|
remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF;
|
|
}
|
|
}
|
|
|
|
if (s->num_refs) {
|
|
ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
init_planes(s);
|
|
return 0;
|
|
}
|
|
|
|
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
|
|
{
|
|
DiracFrame *out = s->delay_frames[0];
|
|
int i, out_idx = 0;
|
|
int ret;
|
|
|
|
/* find frame with lowest picture number */
|
|
for (i = 1; s->delay_frames[i]; i++)
|
|
if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
|
|
out = s->delay_frames[i];
|
|
out_idx = i;
|
|
}
|
|
|
|
for (i = out_idx; s->delay_frames[i]; i++)
|
|
s->delay_frames[i] = s->delay_frames[i+1];
|
|
|
|
if (out) {
|
|
out->reference ^= DELAYED_PIC_REF;
|
|
*got_frame = 1;
|
|
if((ret = av_frame_ref(picture, out->avframe)) < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Dirac Specification ->
|
|
* 9.6 Parse Info Header Syntax. parse_info()
|
|
* 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
|
|
*/
|
|
#define DATA_UNIT_HEADER_SIZE 13
|
|
|
|
/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
|
|
inside the function parse_sequence() */
|
|
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
|
|
{
|
|
DiracContext *s = avctx->priv_data;
|
|
DiracFrame *pic = NULL;
|
|
int ret, i, parse_code;
|
|
unsigned tmp;
|
|
|
|
if (size < DATA_UNIT_HEADER_SIZE)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
parse_code = buf[4];
|
|
|
|
init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
|
|
|
|
if (parse_code == pc_seq_header) {
|
|
if (s->seen_sequence_header)
|
|
return 0;
|
|
|
|
/* [DIRAC_STD] 10. Sequence header */
|
|
ret = avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
|
|
|
|
ret = alloc_sequence_buffers(s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
s->seen_sequence_header = 1;
|
|
} else if (parse_code == pc_eos) { /* [DIRAC_STD] End of Sequence */
|
|
free_sequence_buffers(s);
|
|
s->seen_sequence_header = 0;
|
|
} else if (parse_code == pc_aux_data) {
|
|
if (buf[13] == 1) { /* encoder implementation/version */
|
|
int ver[3];
|
|
/* versions older than 1.0.8 don't store quant delta for
|
|
subbands with only one codeblock */
|
|
if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
|
|
if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
|
|
s->old_delta_quant = 1;
|
|
}
|
|
} else if (parse_code & 0x8) { /* picture data unit */
|
|
if (!s->seen_sequence_header) {
|
|
av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/* find an unused frame */
|
|
for (i = 0; i < MAX_FRAMES; i++)
|
|
if (s->all_frames[i].avframe->data[0] == NULL)
|
|
pic = &s->all_frames[i];
|
|
if (!pic) {
|
|
av_log(avctx, AV_LOG_ERROR, "framelist full\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
av_frame_unref(pic->avframe);
|
|
|
|
/* [DIRAC_STD] Defined in 9.6.1 ... */
|
|
tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
|
|
if (tmp > 2) {
|
|
av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
s->num_refs = tmp;
|
|
s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
|
|
s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
|
|
pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
|
|
pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
|
|
pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
|
|
|
|
if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
|
|
return ret;
|
|
s->current_picture = pic;
|
|
s->plane[0].stride = pic->avframe->linesize[0];
|
|
s->plane[1].stride = pic->avframe->linesize[1];
|
|
s->plane[2].stride = pic->avframe->linesize[2];
|
|
|
|
if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
|
|
return AVERROR(ENOMEM);
|
|
|
|
/* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
|
|
ret = dirac_decode_picture_header(s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
|
|
ret = dirac_decode_frame_internal(s);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
|
|
{
|
|
DiracContext *s = avctx->priv_data;
|
|
AVFrame *picture = data;
|
|
uint8_t *buf = pkt->data;
|
|
int buf_size = pkt->size;
|
|
int i, buf_idx = 0;
|
|
int ret;
|
|
unsigned data_unit_size;
|
|
|
|
/* release unused frames */
|
|
for (i = 0; i < MAX_FRAMES; i++)
|
|
if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
|
|
av_frame_unref(s->all_frames[i].avframe);
|
|
memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
|
|
}
|
|
|
|
s->current_picture = NULL;
|
|
*got_frame = 0;
|
|
|
|
/* end of stream, so flush delayed pics */
|
|
if (buf_size == 0)
|
|
return get_delayed_pic(s, (AVFrame *)data, got_frame);
|
|
|
|
for (;;) {
|
|
/*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
|
|
[DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
|
|
BBCD start code search */
|
|
for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
|
|
if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
|
|
buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
|
|
break;
|
|
}
|
|
/* BBCD found or end of data */
|
|
if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
|
|
break;
|
|
|
|
data_unit_size = AV_RB32(buf+buf_idx+5);
|
|
if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
|
|
if(data_unit_size > buf_size - buf_idx)
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"Data unit with size %d is larger than input buffer, discarding\n",
|
|
data_unit_size);
|
|
buf_idx += 4;
|
|
continue;
|
|
}
|
|
/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
|
|
ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
|
|
if (ret < 0)
|
|
{
|
|
av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
|
|
return ret;
|
|
}
|
|
buf_idx += data_unit_size;
|
|
}
|
|
|
|
if (!s->current_picture)
|
|
return buf_size;
|
|
|
|
if (s->current_picture->avframe->display_picture_number > s->frame_number) {
|
|
DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
|
|
|
|
s->current_picture->reference |= DELAYED_PIC_REF;
|
|
|
|
if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
|
|
int min_num = s->delay_frames[0]->avframe->display_picture_number;
|
|
/* Too many delayed frames, so we display the frame with the lowest pts */
|
|
av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
|
|
|
|
for (i = 1; s->delay_frames[i]; i++)
|
|
if (s->delay_frames[i]->avframe->display_picture_number < min_num)
|
|
min_num = s->delay_frames[i]->avframe->display_picture_number;
|
|
|
|
delayed_frame = remove_frame(s->delay_frames, min_num);
|
|
add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
|
|
}
|
|
|
|
if (delayed_frame) {
|
|
delayed_frame->reference ^= DELAYED_PIC_REF;
|
|
if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
|
|
return ret;
|
|
*got_frame = 1;
|
|
}
|
|
} else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
|
|
/* The right frame at the right time :-) */
|
|
if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
|
|
return ret;
|
|
*got_frame = 1;
|
|
}
|
|
|
|
if (*got_frame)
|
|
s->frame_number = picture->display_picture_number + 1;
|
|
|
|
return buf_idx;
|
|
}
|
|
|
|
AVCodec ff_dirac_decoder = {
|
|
.name = "dirac",
|
|
.long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = AV_CODEC_ID_DIRAC,
|
|
.priv_data_size = sizeof(DiracContext),
|
|
.init = dirac_decode_init,
|
|
.close = dirac_decode_end,
|
|
.decode = dirac_decode_frame,
|
|
.capabilities = AV_CODEC_CAP_DELAY,
|
|
.flush = dirac_decode_flush,
|
|
};
|