mirror of https://git.ffmpeg.org/ffmpeg.git
1533 lines
55 KiB
C
1533 lines
55 KiB
C
/*
|
|
* Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#define _SVID_SOURCE //needed for MAP_ANONYMOUS
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include "config.h"
|
|
#include <assert.h>
|
|
#if HAVE_SYS_MMAN_H
|
|
#include <sys/mman.h>
|
|
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
#endif
|
|
#if HAVE_VIRTUALALLOC
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#include <windows.h>
|
|
#endif
|
|
#include "swscale.h"
|
|
#include "swscale_internal.h"
|
|
#include "rgb2rgb.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "libavutil/x86_cpu.h"
|
|
#include "libavutil/avutil.h"
|
|
#include "libavutil/bswap.h"
|
|
#include "libavutil/pixdesc.h"
|
|
|
|
unsigned swscale_version(void)
|
|
{
|
|
return LIBSWSCALE_VERSION_INT;
|
|
}
|
|
|
|
const char *swscale_configuration(void)
|
|
{
|
|
return FFMPEG_CONFIGURATION;
|
|
}
|
|
|
|
const char *swscale_license(void)
|
|
{
|
|
#define LICENSE_PREFIX "libswscale license: "
|
|
return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
|
|
}
|
|
|
|
#define RET 0xC3 //near return opcode for x86
|
|
|
|
#define isSupportedIn(x) ( \
|
|
(x)==PIX_FMT_YUV420P \
|
|
|| (x)==PIX_FMT_YUVA420P \
|
|
|| (x)==PIX_FMT_YUYV422 \
|
|
|| (x)==PIX_FMT_UYVY422 \
|
|
|| (x)==PIX_FMT_RGB48BE \
|
|
|| (x)==PIX_FMT_RGB48LE \
|
|
|| (x)==PIX_FMT_RGB32 \
|
|
|| (x)==PIX_FMT_RGB32_1 \
|
|
|| (x)==PIX_FMT_BGR24 \
|
|
|| (x)==PIX_FMT_BGR565 \
|
|
|| (x)==PIX_FMT_BGR555 \
|
|
|| (x)==PIX_FMT_BGR32 \
|
|
|| (x)==PIX_FMT_BGR32_1 \
|
|
|| (x)==PIX_FMT_RGB24 \
|
|
|| (x)==PIX_FMT_RGB565 \
|
|
|| (x)==PIX_FMT_RGB555 \
|
|
|| (x)==PIX_FMT_GRAY8 \
|
|
|| (x)==PIX_FMT_YUV410P \
|
|
|| (x)==PIX_FMT_YUV440P \
|
|
|| (x)==PIX_FMT_NV12 \
|
|
|| (x)==PIX_FMT_NV21 \
|
|
|| (x)==PIX_FMT_GRAY16BE \
|
|
|| (x)==PIX_FMT_GRAY16LE \
|
|
|| (x)==PIX_FMT_YUV444P \
|
|
|| (x)==PIX_FMT_YUV422P \
|
|
|| (x)==PIX_FMT_YUV411P \
|
|
|| (x)==PIX_FMT_YUVJ420P \
|
|
|| (x)==PIX_FMT_YUVJ422P \
|
|
|| (x)==PIX_FMT_YUVJ440P \
|
|
|| (x)==PIX_FMT_YUVJ444P \
|
|
|| (x)==PIX_FMT_PAL8 \
|
|
|| (x)==PIX_FMT_BGR8 \
|
|
|| (x)==PIX_FMT_RGB8 \
|
|
|| (x)==PIX_FMT_BGR4_BYTE \
|
|
|| (x)==PIX_FMT_RGB4_BYTE \
|
|
|| (x)==PIX_FMT_YUV440P \
|
|
|| (x)==PIX_FMT_MONOWHITE \
|
|
|| (x)==PIX_FMT_MONOBLACK \
|
|
|| (x)==PIX_FMT_YUV420P16LE \
|
|
|| (x)==PIX_FMT_YUV422P16LE \
|
|
|| (x)==PIX_FMT_YUV444P16LE \
|
|
|| (x)==PIX_FMT_YUV420P16BE \
|
|
|| (x)==PIX_FMT_YUV422P16BE \
|
|
|| (x)==PIX_FMT_YUV444P16BE \
|
|
)
|
|
|
|
int sws_isSupportedInput(enum PixelFormat pix_fmt)
|
|
{
|
|
return isSupportedIn(pix_fmt);
|
|
}
|
|
|
|
#define isSupportedOut(x) ( \
|
|
(x)==PIX_FMT_YUV420P \
|
|
|| (x)==PIX_FMT_YUVA420P \
|
|
|| (x)==PIX_FMT_YUYV422 \
|
|
|| (x)==PIX_FMT_UYVY422 \
|
|
|| (x)==PIX_FMT_YUV444P \
|
|
|| (x)==PIX_FMT_YUV422P \
|
|
|| (x)==PIX_FMT_YUV411P \
|
|
|| (x)==PIX_FMT_YUVJ420P \
|
|
|| (x)==PIX_FMT_YUVJ422P \
|
|
|| (x)==PIX_FMT_YUVJ440P \
|
|
|| (x)==PIX_FMT_YUVJ444P \
|
|
|| isAnyRGB(x) \
|
|
|| (x)==PIX_FMT_NV12 \
|
|
|| (x)==PIX_FMT_NV21 \
|
|
|| (x)==PIX_FMT_GRAY16BE \
|
|
|| (x)==PIX_FMT_GRAY16LE \
|
|
|| (x)==PIX_FMT_GRAY8 \
|
|
|| (x)==PIX_FMT_YUV410P \
|
|
|| (x)==PIX_FMT_YUV440P \
|
|
|| (x)==PIX_FMT_YUV420P16LE \
|
|
|| (x)==PIX_FMT_YUV422P16LE \
|
|
|| (x)==PIX_FMT_YUV444P16LE \
|
|
|| (x)==PIX_FMT_YUV420P16BE \
|
|
|| (x)==PIX_FMT_YUV422P16BE \
|
|
|| (x)==PIX_FMT_YUV444P16BE \
|
|
)
|
|
|
|
int sws_isSupportedOutput(enum PixelFormat pix_fmt)
|
|
{
|
|
return isSupportedOut(pix_fmt);
|
|
}
|
|
|
|
extern const int32_t ff_yuv2rgb_coeffs[8][4];
|
|
|
|
const char *sws_format_name(enum PixelFormat format)
|
|
{
|
|
if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
|
|
return av_pix_fmt_descriptors[format].name;
|
|
else
|
|
return "Unknown format";
|
|
}
|
|
|
|
static double getSplineCoeff(double a, double b, double c, double d, double dist)
|
|
{
|
|
// printf("%f %f %f %f %f\n", a,b,c,d,dist);
|
|
if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
|
|
else return getSplineCoeff( 0.0,
|
|
b+ 2.0*c + 3.0*d,
|
|
c + 3.0*d,
|
|
-b- 3.0*c - 6.0*d,
|
|
dist-1.0);
|
|
}
|
|
|
|
static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
|
|
int srcW, int dstW, int filterAlign, int one, int flags,
|
|
SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
|
|
{
|
|
int i;
|
|
int filterSize;
|
|
int filter2Size;
|
|
int minFilterSize;
|
|
int64_t *filter=NULL;
|
|
int64_t *filter2=NULL;
|
|
const int64_t fone= 1LL<<54;
|
|
int ret= -1;
|
|
#if ARCH_X86
|
|
if (flags & SWS_CPU_CAPS_MMX)
|
|
__asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
|
|
#endif
|
|
|
|
// NOTE: the +1 is for the MMX scaler which reads over the end
|
|
FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
|
|
|
|
if (FFABS(xInc - 0x10000) <10) { // unscaled
|
|
int i;
|
|
filterSize= 1;
|
|
FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
|
|
|
|
for (i=0; i<dstW; i++) {
|
|
filter[i*filterSize]= fone;
|
|
(*filterPos)[i]=i;
|
|
}
|
|
|
|
} else if (flags&SWS_POINT) { // lame looking point sampling mode
|
|
int i;
|
|
int xDstInSrc;
|
|
filterSize= 1;
|
|
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
|
|
|
|
xDstInSrc= xInc/2 - 0x8000;
|
|
for (i=0; i<dstW; i++) {
|
|
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
|
|
|
|
(*filterPos)[i]= xx;
|
|
filter[i]= fone;
|
|
xDstInSrc+= xInc;
|
|
}
|
|
} else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
|
|
int i;
|
|
int xDstInSrc;
|
|
filterSize= 2;
|
|
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
|
|
|
|
xDstInSrc= xInc/2 - 0x8000;
|
|
for (i=0; i<dstW; i++) {
|
|
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
|
|
int j;
|
|
|
|
(*filterPos)[i]= xx;
|
|
//bilinear upscale / linear interpolate / area averaging
|
|
for (j=0; j<filterSize; j++) {
|
|
int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
|
|
if (coeff<0) coeff=0;
|
|
filter[i*filterSize + j]= coeff;
|
|
xx++;
|
|
}
|
|
xDstInSrc+= xInc;
|
|
}
|
|
} else {
|
|
int xDstInSrc;
|
|
int sizeFactor;
|
|
|
|
if (flags&SWS_BICUBIC) sizeFactor= 4;
|
|
else if (flags&SWS_X) sizeFactor= 8;
|
|
else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
|
|
else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
|
|
else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
|
|
else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
|
|
else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
|
|
else if (flags&SWS_BILINEAR) sizeFactor= 2;
|
|
else {
|
|
sizeFactor= 0; //GCC warning killer
|
|
assert(0);
|
|
}
|
|
|
|
if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
|
|
else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
|
|
|
|
if (filterSize > srcW-2) filterSize=srcW-2;
|
|
|
|
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
|
|
|
|
xDstInSrc= xInc - 0x10000;
|
|
for (i=0; i<dstW; i++) {
|
|
int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
|
|
int j;
|
|
(*filterPos)[i]= xx;
|
|
for (j=0; j<filterSize; j++) {
|
|
int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
|
|
double floatd;
|
|
int64_t coeff;
|
|
|
|
if (xInc > 1<<16)
|
|
d= d*dstW/srcW;
|
|
floatd= d * (1.0/(1<<30));
|
|
|
|
if (flags & SWS_BICUBIC) {
|
|
int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
|
|
int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
|
|
int64_t dd = ( d*d)>>30;
|
|
int64_t ddd= (dd*d)>>30;
|
|
|
|
if (d < 1LL<<30)
|
|
coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
|
|
else if (d < 1LL<<31)
|
|
coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
|
|
else
|
|
coeff=0.0;
|
|
coeff *= fone>>(30+24);
|
|
}
|
|
/* else if (flags & SWS_X) {
|
|
double p= param ? param*0.01 : 0.3;
|
|
coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
|
|
coeff*= pow(2.0, - p*d*d);
|
|
}*/
|
|
else if (flags & SWS_X) {
|
|
double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
|
|
double c;
|
|
|
|
if (floatd<1.0)
|
|
c = cos(floatd*M_PI);
|
|
else
|
|
c=-1.0;
|
|
if (c<0.0) c= -pow(-c, A);
|
|
else c= pow( c, A);
|
|
coeff= (c*0.5 + 0.5)*fone;
|
|
} else if (flags & SWS_AREA) {
|
|
int64_t d2= d - (1<<29);
|
|
if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
|
|
else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
|
|
else coeff=0.0;
|
|
coeff *= fone>>(30+16);
|
|
} else if (flags & SWS_GAUSS) {
|
|
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
|
|
coeff = (pow(2.0, - p*floatd*floatd))*fone;
|
|
} else if (flags & SWS_SINC) {
|
|
coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
|
|
} else if (flags & SWS_LANCZOS) {
|
|
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
|
|
coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
|
|
if (floatd>p) coeff=0;
|
|
} else if (flags & SWS_BILINEAR) {
|
|
coeff= (1<<30) - d;
|
|
if (coeff<0) coeff=0;
|
|
coeff *= fone >> 30;
|
|
} else if (flags & SWS_SPLINE) {
|
|
double p=-2.196152422706632;
|
|
coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
|
|
} else {
|
|
coeff= 0.0; //GCC warning killer
|
|
assert(0);
|
|
}
|
|
|
|
filter[i*filterSize + j]= coeff;
|
|
xx++;
|
|
}
|
|
xDstInSrc+= 2*xInc;
|
|
}
|
|
}
|
|
|
|
/* apply src & dst Filter to filter -> filter2
|
|
av_free(filter);
|
|
*/
|
|
assert(filterSize>0);
|
|
filter2Size= filterSize;
|
|
if (srcFilter) filter2Size+= srcFilter->length - 1;
|
|
if (dstFilter) filter2Size+= dstFilter->length - 1;
|
|
assert(filter2Size>0);
|
|
FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
|
|
|
|
for (i=0; i<dstW; i++) {
|
|
int j, k;
|
|
|
|
if(srcFilter) {
|
|
for (k=0; k<srcFilter->length; k++) {
|
|
for (j=0; j<filterSize; j++)
|
|
filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
|
|
}
|
|
} else {
|
|
for (j=0; j<filterSize; j++)
|
|
filter2[i*filter2Size + j]= filter[i*filterSize + j];
|
|
}
|
|
//FIXME dstFilter
|
|
|
|
(*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
|
|
}
|
|
av_freep(&filter);
|
|
|
|
/* try to reduce the filter-size (step1 find size and shift left) */
|
|
// Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
|
|
minFilterSize= 0;
|
|
for (i=dstW-1; i>=0; i--) {
|
|
int min= filter2Size;
|
|
int j;
|
|
int64_t cutOff=0.0;
|
|
|
|
/* get rid of near zero elements on the left by shifting left */
|
|
for (j=0; j<filter2Size; j++) {
|
|
int k;
|
|
cutOff += FFABS(filter2[i*filter2Size]);
|
|
|
|
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
|
|
|
|
/* preserve monotonicity because the core can't handle the filter otherwise */
|
|
if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
|
|
|
|
// move filter coefficients left
|
|
for (k=1; k<filter2Size; k++)
|
|
filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
|
|
filter2[i*filter2Size + k - 1]= 0;
|
|
(*filterPos)[i]++;
|
|
}
|
|
|
|
cutOff=0;
|
|
/* count near zeros on the right */
|
|
for (j=filter2Size-1; j>0; j--) {
|
|
cutOff += FFABS(filter2[i*filter2Size + j]);
|
|
|
|
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
|
|
min--;
|
|
}
|
|
|
|
if (min>minFilterSize) minFilterSize= min;
|
|
}
|
|
|
|
if (flags & SWS_CPU_CAPS_ALTIVEC) {
|
|
// we can handle the special case 4,
|
|
// so we don't want to go to the full 8
|
|
if (minFilterSize < 5)
|
|
filterAlign = 4;
|
|
|
|
// We really don't want to waste our time
|
|
// doing useless computation, so fall back on
|
|
// the scalar C code for very small filters.
|
|
// Vectorizing is worth it only if you have a
|
|
// decent-sized vector.
|
|
if (minFilterSize < 3)
|
|
filterAlign = 1;
|
|
}
|
|
|
|
if (flags & SWS_CPU_CAPS_MMX) {
|
|
// special case for unscaled vertical filtering
|
|
if (minFilterSize == 1 && filterAlign == 2)
|
|
filterAlign= 1;
|
|
}
|
|
|
|
assert(minFilterSize > 0);
|
|
filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
|
|
assert(filterSize > 0);
|
|
filter= av_malloc(filterSize*dstW*sizeof(*filter));
|
|
if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
|
|
goto fail;
|
|
*outFilterSize= filterSize;
|
|
|
|
if (flags&SWS_PRINT_INFO)
|
|
av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
|
|
/* try to reduce the filter-size (step2 reduce it) */
|
|
for (i=0; i<dstW; i++) {
|
|
int j;
|
|
|
|
for (j=0; j<filterSize; j++) {
|
|
if (j>=filter2Size) filter[i*filterSize + j]= 0;
|
|
else filter[i*filterSize + j]= filter2[i*filter2Size + j];
|
|
if((flags & SWS_BITEXACT) && j>=minFilterSize)
|
|
filter[i*filterSize + j]= 0;
|
|
}
|
|
}
|
|
|
|
//FIXME try to align filterPos if possible
|
|
|
|
//fix borders
|
|
for (i=0; i<dstW; i++) {
|
|
int j;
|
|
if ((*filterPos)[i] < 0) {
|
|
// move filter coefficients left to compensate for filterPos
|
|
for (j=1; j<filterSize; j++) {
|
|
int left= FFMAX(j + (*filterPos)[i], 0);
|
|
filter[i*filterSize + left] += filter[i*filterSize + j];
|
|
filter[i*filterSize + j]=0;
|
|
}
|
|
(*filterPos)[i]= 0;
|
|
}
|
|
|
|
if ((*filterPos)[i] + filterSize > srcW) {
|
|
int shift= (*filterPos)[i] + filterSize - srcW;
|
|
// move filter coefficients right to compensate for filterPos
|
|
for (j=filterSize-2; j>=0; j--) {
|
|
int right= FFMIN(j + shift, filterSize-1);
|
|
filter[i*filterSize +right] += filter[i*filterSize +j];
|
|
filter[i*filterSize +j]=0;
|
|
}
|
|
(*filterPos)[i]= srcW - filterSize;
|
|
}
|
|
}
|
|
|
|
// Note the +1 is for the MMX scaler which reads over the end
|
|
/* align at 16 for AltiVec (needed by hScale_altivec_real) */
|
|
FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
|
|
|
|
/* normalize & store in outFilter */
|
|
for (i=0; i<dstW; i++) {
|
|
int j;
|
|
int64_t error=0;
|
|
int64_t sum=0;
|
|
|
|
for (j=0; j<filterSize; j++) {
|
|
sum+= filter[i*filterSize + j];
|
|
}
|
|
sum= (sum + one/2)/ one;
|
|
for (j=0; j<*outFilterSize; j++) {
|
|
int64_t v= filter[i*filterSize + j] + error;
|
|
int intV= ROUNDED_DIV(v, sum);
|
|
(*outFilter)[i*(*outFilterSize) + j]= intV;
|
|
error= v - intV*sum;
|
|
}
|
|
}
|
|
|
|
(*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
|
|
for (i=0; i<*outFilterSize; i++) {
|
|
int j= dstW*(*outFilterSize);
|
|
(*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
|
|
}
|
|
|
|
ret=0;
|
|
fail:
|
|
av_free(filter);
|
|
av_free(filter2);
|
|
return ret;
|
|
}
|
|
|
|
#if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
|
|
static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
|
|
{
|
|
uint8_t *fragmentA;
|
|
x86_reg imm8OfPShufW1A;
|
|
x86_reg imm8OfPShufW2A;
|
|
x86_reg fragmentLengthA;
|
|
uint8_t *fragmentB;
|
|
x86_reg imm8OfPShufW1B;
|
|
x86_reg imm8OfPShufW2B;
|
|
x86_reg fragmentLengthB;
|
|
int fragmentPos;
|
|
|
|
int xpos, i;
|
|
|
|
// create an optimized horizontal scaling routine
|
|
/* This scaler is made of runtime-generated MMX2 code using specially
|
|
* tuned pshufw instructions. For every four output pixels, if four
|
|
* input pixels are enough for the fast bilinear scaling, then a chunk
|
|
* of fragmentB is used. If five input pixels are needed, then a chunk
|
|
* of fragmentA is used.
|
|
*/
|
|
|
|
//code fragment
|
|
|
|
__asm__ volatile(
|
|
"jmp 9f \n\t"
|
|
// Begin
|
|
"0: \n\t"
|
|
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
|
|
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
|
|
"movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
|
|
"punpcklbw %%mm7, %%mm1 \n\t"
|
|
"punpcklbw %%mm7, %%mm0 \n\t"
|
|
"pshufw $0xFF, %%mm1, %%mm1 \n\t"
|
|
"1: \n\t"
|
|
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
|
|
"2: \n\t"
|
|
"psubw %%mm1, %%mm0 \n\t"
|
|
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
|
|
"pmullw %%mm3, %%mm0 \n\t"
|
|
"psllw $7, %%mm1 \n\t"
|
|
"paddw %%mm1, %%mm0 \n\t"
|
|
|
|
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
|
|
|
|
"add $8, %%"REG_a" \n\t"
|
|
// End
|
|
"9: \n\t"
|
|
// "int $3 \n\t"
|
|
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
|
|
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
|
|
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
|
|
"dec %1 \n\t"
|
|
"dec %2 \n\t"
|
|
"sub %0, %1 \n\t"
|
|
"sub %0, %2 \n\t"
|
|
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
|
|
"sub %0, %3 \n\t"
|
|
|
|
|
|
:"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
|
|
"=r" (fragmentLengthA)
|
|
);
|
|
|
|
__asm__ volatile(
|
|
"jmp 9f \n\t"
|
|
// Begin
|
|
"0: \n\t"
|
|
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
|
|
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
|
|
"punpcklbw %%mm7, %%mm0 \n\t"
|
|
"pshufw $0xFF, %%mm0, %%mm1 \n\t"
|
|
"1: \n\t"
|
|
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
|
|
"2: \n\t"
|
|
"psubw %%mm1, %%mm0 \n\t"
|
|
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
|
|
"pmullw %%mm3, %%mm0 \n\t"
|
|
"psllw $7, %%mm1 \n\t"
|
|
"paddw %%mm1, %%mm0 \n\t"
|
|
|
|
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
|
|
|
|
"add $8, %%"REG_a" \n\t"
|
|
// End
|
|
"9: \n\t"
|
|
// "int $3 \n\t"
|
|
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
|
|
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
|
|
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
|
|
"dec %1 \n\t"
|
|
"dec %2 \n\t"
|
|
"sub %0, %1 \n\t"
|
|
"sub %0, %2 \n\t"
|
|
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
|
|
"sub %0, %3 \n\t"
|
|
|
|
|
|
:"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
|
|
"=r" (fragmentLengthB)
|
|
);
|
|
|
|
xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
|
|
fragmentPos=0;
|
|
|
|
for (i=0; i<dstW/numSplits; i++) {
|
|
int xx=xpos>>16;
|
|
|
|
if ((i&3) == 0) {
|
|
int a=0;
|
|
int b=((xpos+xInc)>>16) - xx;
|
|
int c=((xpos+xInc*2)>>16) - xx;
|
|
int d=((xpos+xInc*3)>>16) - xx;
|
|
int inc = (d+1<4);
|
|
uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
|
|
x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
|
|
x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
|
|
x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
|
|
int maxShift= 3-(d+inc);
|
|
int shift=0;
|
|
|
|
if (filterCode) {
|
|
filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
|
|
filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
|
|
filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
|
|
filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
|
|
filterPos[i/2]= xx;
|
|
|
|
memcpy(filterCode + fragmentPos, fragment, fragmentLength);
|
|
|
|
filterCode[fragmentPos + imm8OfPShufW1]=
|
|
(a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
|
|
filterCode[fragmentPos + imm8OfPShufW2]=
|
|
a | (b<<2) | (c<<4) | (d<<6);
|
|
|
|
if (i+4-inc>=dstW) shift=maxShift; //avoid overread
|
|
else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
|
|
|
|
if (shift && i>=shift) {
|
|
filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
|
|
filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
|
|
filterPos[i/2]-=shift;
|
|
}
|
|
}
|
|
|
|
fragmentPos+= fragmentLength;
|
|
|
|
if (filterCode)
|
|
filterCode[fragmentPos]= RET;
|
|
}
|
|
xpos+=xInc;
|
|
}
|
|
if (filterCode)
|
|
filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
|
|
|
|
return fragmentPos + 1;
|
|
}
|
|
#endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
|
|
|
|
static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
|
|
{
|
|
*h = av_pix_fmt_descriptors[format].log2_chroma_w;
|
|
*v = av_pix_fmt_descriptors[format].log2_chroma_h;
|
|
}
|
|
|
|
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
|
|
{
|
|
memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
|
|
memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
|
|
|
|
c->brightness= brightness;
|
|
c->contrast = contrast;
|
|
c->saturation= saturation;
|
|
c->srcRange = srcRange;
|
|
c->dstRange = dstRange;
|
|
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
|
|
|
|
ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
|
|
//FIXME factorize
|
|
|
|
#if HAVE_ALTIVEC
|
|
if (c->flags & SWS_CPU_CAPS_ALTIVEC)
|
|
ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
|
|
{
|
|
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
|
|
|
|
*inv_table = c->srcColorspaceTable;
|
|
*table = c->dstColorspaceTable;
|
|
*srcRange = c->srcRange;
|
|
*dstRange = c->dstRange;
|
|
*brightness= c->brightness;
|
|
*contrast = c->contrast;
|
|
*saturation= c->saturation;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_jpeg(enum PixelFormat *format)
|
|
{
|
|
switch (*format) {
|
|
case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
|
|
case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
|
|
case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
|
|
case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
|
|
int dstW, int dstH, enum PixelFormat dstFormat, int flags,
|
|
SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
|
|
{
|
|
SwsContext *c;
|
|
int i;
|
|
int usesVFilter, usesHFilter;
|
|
int unscaled;
|
|
int srcRange, dstRange;
|
|
SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
|
|
#if ARCH_X86
|
|
if (flags & SWS_CPU_CAPS_MMX)
|
|
__asm__ volatile("emms\n\t"::: "memory");
|
|
#endif
|
|
|
|
#if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
|
|
flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
|
|
flags |= ff_hardcodedcpuflags();
|
|
#endif /* CONFIG_RUNTIME_CPUDETECT */
|
|
if (!rgb15to16) sws_rgb2rgb_init(flags);
|
|
|
|
unscaled = (srcW == dstW && srcH == dstH);
|
|
|
|
srcRange = handle_jpeg(&srcFormat);
|
|
dstRange = handle_jpeg(&dstFormat);
|
|
|
|
if (!isSupportedIn(srcFormat)) {
|
|
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
|
|
return NULL;
|
|
}
|
|
if (!isSupportedOut(dstFormat)) {
|
|
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
|
|
return NULL;
|
|
}
|
|
|
|
i= flags & ( SWS_POINT
|
|
|SWS_AREA
|
|
|SWS_BILINEAR
|
|
|SWS_FAST_BILINEAR
|
|
|SWS_BICUBIC
|
|
|SWS_X
|
|
|SWS_GAUSS
|
|
|SWS_LANCZOS
|
|
|SWS_SINC
|
|
|SWS_SPLINE
|
|
|SWS_BICUBLIN);
|
|
if(!i || (i & (i-1))) {
|
|
av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* sanity check */
|
|
if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
|
|
av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
|
|
srcW, srcH, dstW, dstH);
|
|
return NULL;
|
|
}
|
|
if(srcW > VOFW || dstW > VOFW) {
|
|
av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!dstFilter) dstFilter= &dummyFilter;
|
|
if (!srcFilter) srcFilter= &dummyFilter;
|
|
|
|
FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail);
|
|
|
|
c->av_class = &sws_context_class;
|
|
c->srcW= srcW;
|
|
c->srcH= srcH;
|
|
c->dstW= dstW;
|
|
c->dstH= dstH;
|
|
c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
|
|
c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
|
|
c->flags= flags;
|
|
c->dstFormat= dstFormat;
|
|
c->srcFormat= srcFormat;
|
|
c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
|
|
c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
|
|
c->vRounder= 4* 0x0001000100010001ULL;
|
|
|
|
usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
|
|
(srcFilter->chrV && srcFilter->chrV->length>1) ||
|
|
(dstFilter->lumV && dstFilter->lumV->length>1) ||
|
|
(dstFilter->chrV && dstFilter->chrV->length>1);
|
|
usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
|
|
(srcFilter->chrH && srcFilter->chrH->length>1) ||
|
|
(dstFilter->lumH && dstFilter->lumH->length>1) ||
|
|
(dstFilter->chrH && dstFilter->chrH->length>1);
|
|
|
|
getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
|
|
getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
|
|
|
|
// reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
|
|
if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
|
|
|
|
// drop some chroma lines if the user wants it
|
|
c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
|
|
c->chrSrcVSubSample+= c->vChrDrop;
|
|
|
|
// drop every other pixel for chroma calculation unless user wants full chroma
|
|
if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
|
|
&& srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
|
|
&& srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
|
|
&& srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
|
|
&& ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
|
|
c->chrSrcHSubSample=1;
|
|
|
|
if (param) {
|
|
c->param[0] = param[0];
|
|
c->param[1] = param[1];
|
|
} else {
|
|
c->param[0] =
|
|
c->param[1] = SWS_PARAM_DEFAULT;
|
|
}
|
|
|
|
// Note the -((-x)>>y) is so that we always round toward +inf.
|
|
c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
|
|
c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
|
|
c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
|
|
c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
|
|
|
|
sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
|
|
|
|
/* unscaled special cases */
|
|
if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isAnyRGB(dstFormat))) {
|
|
ff_get_unscaled_swscale(c);
|
|
|
|
if (c->swScale) {
|
|
if (flags&SWS_PRINT_INFO)
|
|
av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
|
|
sws_format_name(srcFormat), sws_format_name(dstFormat));
|
|
return c;
|
|
}
|
|
}
|
|
|
|
if (flags & SWS_CPU_CAPS_MMX2) {
|
|
c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
|
|
if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
|
|
if (flags&SWS_PRINT_INFO)
|
|
av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
|
|
}
|
|
if (usesHFilter) c->canMMX2BeUsed=0;
|
|
}
|
|
else
|
|
c->canMMX2BeUsed=0;
|
|
|
|
c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
|
|
c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
|
|
|
|
// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
|
|
// but only for the FAST_BILINEAR mode otherwise do correct scaling
|
|
// n-2 is the last chrominance sample available
|
|
// this is not perfect, but no one should notice the difference, the more correct variant
|
|
// would be like the vertical one, but that would require some special code for the
|
|
// first and last pixel
|
|
if (flags&SWS_FAST_BILINEAR) {
|
|
if (c->canMMX2BeUsed) {
|
|
c->lumXInc+= 20;
|
|
c->chrXInc+= 20;
|
|
}
|
|
//we don't use the x86 asm scaler if MMX is available
|
|
else if (flags & SWS_CPU_CAPS_MMX) {
|
|
c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
|
|
c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
|
|
}
|
|
}
|
|
|
|
/* precalculate horizontal scaler filter coefficients */
|
|
{
|
|
#if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
|
|
// can't downscale !!!
|
|
if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
|
|
c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
|
|
c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
|
|
|
|
#ifdef MAP_ANONYMOUS
|
|
c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
|
|
c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
|
|
#elif HAVE_VIRTUALALLOC
|
|
c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
|
|
c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
|
|
#else
|
|
c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
|
|
c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
|
|
#endif
|
|
|
|
if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
|
|
goto fail;
|
|
FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
|
|
FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
|
|
FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
|
|
FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
|
|
|
|
initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
|
|
initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
|
|
|
|
#ifdef MAP_ANONYMOUS
|
|
mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
|
|
mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
|
|
#endif
|
|
} else
|
|
#endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
|
|
{
|
|
const int filterAlign=
|
|
(flags & SWS_CPU_CAPS_MMX) ? 4 :
|
|
(flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
|
|
1;
|
|
|
|
if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
|
|
srcW , dstW, filterAlign, 1<<14,
|
|
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
|
|
srcFilter->lumH, dstFilter->lumH, c->param) < 0)
|
|
goto fail;
|
|
if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
|
|
c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
|
|
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
|
|
srcFilter->chrH, dstFilter->chrH, c->param) < 0)
|
|
goto fail;
|
|
}
|
|
} // initialize horizontal stuff
|
|
|
|
/* precalculate vertical scaler filter coefficients */
|
|
{
|
|
const int filterAlign=
|
|
(flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
|
|
(flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
|
|
1;
|
|
|
|
if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
|
|
srcH , dstH, filterAlign, (1<<12),
|
|
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
|
|
srcFilter->lumV, dstFilter->lumV, c->param) < 0)
|
|
goto fail;
|
|
if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
|
|
c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
|
|
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
|
|
srcFilter->chrV, dstFilter->chrV, c->param) < 0)
|
|
goto fail;
|
|
|
|
#if HAVE_ALTIVEC
|
|
FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
|
|
FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
|
|
|
|
for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
|
|
int j;
|
|
short *p = (short *)&c->vYCoeffsBank[i];
|
|
for (j=0;j<8;j++)
|
|
p[j] = c->vLumFilter[i];
|
|
}
|
|
|
|
for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
|
|
int j;
|
|
short *p = (short *)&c->vCCoeffsBank[i];
|
|
for (j=0;j<8;j++)
|
|
p[j] = c->vChrFilter[i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// calculate buffer sizes so that they won't run out while handling these damn slices
|
|
c->vLumBufSize= c->vLumFilterSize;
|
|
c->vChrBufSize= c->vChrFilterSize;
|
|
for (i=0; i<dstH; i++) {
|
|
int chrI= i*c->chrDstH / dstH;
|
|
int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
|
|
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
|
|
|
|
nextSlice>>= c->chrSrcVSubSample;
|
|
nextSlice<<= c->chrSrcVSubSample;
|
|
if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
|
|
c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
|
|
if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
|
|
c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
|
|
}
|
|
|
|
// allocate pixbufs (we use dynamic allocation because otherwise we would need to
|
|
// allocate several megabytes to handle all possible cases)
|
|
FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
|
|
FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
|
|
if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
|
|
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
|
|
//Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
|
|
/* align at 16 bytes for AltiVec */
|
|
for (i=0; i<c->vLumBufSize; i++) {
|
|
FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
|
|
c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
|
|
}
|
|
for (i=0; i<c->vChrBufSize; i++) {
|
|
FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
|
|
c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
|
|
}
|
|
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
|
|
for (i=0; i<c->vLumBufSize; i++) {
|
|
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
|
|
c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
|
|
}
|
|
|
|
//try to avoid drawing green stuff between the right end and the stride end
|
|
for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
|
|
|
|
assert(2*VOFW == VOF);
|
|
|
|
assert(c->chrDstH <= dstH);
|
|
|
|
if (flags&SWS_PRINT_INFO) {
|
|
if (flags&SWS_FAST_BILINEAR)
|
|
av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
|
|
else if (flags&SWS_BILINEAR)
|
|
av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
|
|
else if (flags&SWS_BICUBIC)
|
|
av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
|
|
else if (flags&SWS_X)
|
|
av_log(c, AV_LOG_INFO, "Experimental scaler, ");
|
|
else if (flags&SWS_POINT)
|
|
av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
|
|
else if (flags&SWS_AREA)
|
|
av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
|
|
else if (flags&SWS_BICUBLIN)
|
|
av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
|
|
else if (flags&SWS_GAUSS)
|
|
av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
|
|
else if (flags&SWS_SINC)
|
|
av_log(c, AV_LOG_INFO, "Sinc scaler, ");
|
|
else if (flags&SWS_LANCZOS)
|
|
av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
|
|
else if (flags&SWS_SPLINE)
|
|
av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
|
|
else
|
|
av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
|
|
|
|
av_log(c, AV_LOG_INFO, "from %s to %s%s ",
|
|
sws_format_name(srcFormat),
|
|
#ifdef DITHER1XBPP
|
|
dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
|
|
dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
|
|
dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
|
|
#else
|
|
"",
|
|
#endif
|
|
sws_format_name(dstFormat));
|
|
|
|
if (flags & SWS_CPU_CAPS_MMX2)
|
|
av_log(c, AV_LOG_INFO, "using MMX2\n");
|
|
else if (flags & SWS_CPU_CAPS_3DNOW)
|
|
av_log(c, AV_LOG_INFO, "using 3DNOW\n");
|
|
else if (flags & SWS_CPU_CAPS_MMX)
|
|
av_log(c, AV_LOG_INFO, "using MMX\n");
|
|
else if (flags & SWS_CPU_CAPS_ALTIVEC)
|
|
av_log(c, AV_LOG_INFO, "using AltiVec\n");
|
|
else
|
|
av_log(c, AV_LOG_INFO, "using C\n");
|
|
|
|
if (flags & SWS_CPU_CAPS_MMX) {
|
|
if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
|
|
av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
|
|
else {
|
|
if (c->hLumFilterSize==4)
|
|
av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
|
|
else if (c->hLumFilterSize==8)
|
|
av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
|
|
else
|
|
av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
|
|
|
|
if (c->hChrFilterSize==4)
|
|
av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
|
|
else if (c->hChrFilterSize==8)
|
|
av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
|
|
else
|
|
av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
|
|
}
|
|
} else {
|
|
#if ARCH_X86
|
|
av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
|
|
#else
|
|
if (flags & SWS_FAST_BILINEAR)
|
|
av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
|
|
else
|
|
av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
|
|
#endif
|
|
}
|
|
if (isPlanarYUV(dstFormat)) {
|
|
if (c->vLumFilterSize==1)
|
|
av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
|
|
else
|
|
av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
|
|
} else {
|
|
if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
|
|
av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
|
|
" 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
|
|
else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
|
|
av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
|
|
else
|
|
av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
|
|
}
|
|
|
|
if (dstFormat==PIX_FMT_BGR24)
|
|
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
|
|
(flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
|
|
else if (dstFormat==PIX_FMT_RGB32)
|
|
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
|
|
else if (dstFormat==PIX_FMT_BGR565)
|
|
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
|
|
else if (dstFormat==PIX_FMT_BGR555)
|
|
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
|
|
else if (dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
|
|
dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE)
|
|
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR12 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
|
|
|
|
av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
|
|
av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
|
|
c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
|
|
av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
|
|
c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
|
|
}
|
|
|
|
c->swScale= ff_getSwsFunc(c);
|
|
return c;
|
|
|
|
fail:
|
|
sws_freeContext(c);
|
|
return NULL;
|
|
}
|
|
|
|
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
|
|
float lumaSharpen, float chromaSharpen,
|
|
float chromaHShift, float chromaVShift,
|
|
int verbose)
|
|
{
|
|
SwsFilter *filter= av_malloc(sizeof(SwsFilter));
|
|
if (!filter)
|
|
return NULL;
|
|
|
|
if (lumaGBlur!=0.0) {
|
|
filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
|
|
filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
|
|
} else {
|
|
filter->lumH= sws_getIdentityVec();
|
|
filter->lumV= sws_getIdentityVec();
|
|
}
|
|
|
|
if (chromaGBlur!=0.0) {
|
|
filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
|
|
filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
|
|
} else {
|
|
filter->chrH= sws_getIdentityVec();
|
|
filter->chrV= sws_getIdentityVec();
|
|
}
|
|
|
|
if (chromaSharpen!=0.0) {
|
|
SwsVector *id= sws_getIdentityVec();
|
|
sws_scaleVec(filter->chrH, -chromaSharpen);
|
|
sws_scaleVec(filter->chrV, -chromaSharpen);
|
|
sws_addVec(filter->chrH, id);
|
|
sws_addVec(filter->chrV, id);
|
|
sws_freeVec(id);
|
|
}
|
|
|
|
if (lumaSharpen!=0.0) {
|
|
SwsVector *id= sws_getIdentityVec();
|
|
sws_scaleVec(filter->lumH, -lumaSharpen);
|
|
sws_scaleVec(filter->lumV, -lumaSharpen);
|
|
sws_addVec(filter->lumH, id);
|
|
sws_addVec(filter->lumV, id);
|
|
sws_freeVec(id);
|
|
}
|
|
|
|
if (chromaHShift != 0.0)
|
|
sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
|
|
|
|
if (chromaVShift != 0.0)
|
|
sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
|
|
|
|
sws_normalizeVec(filter->chrH, 1.0);
|
|
sws_normalizeVec(filter->chrV, 1.0);
|
|
sws_normalizeVec(filter->lumH, 1.0);
|
|
sws_normalizeVec(filter->lumV, 1.0);
|
|
|
|
if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
|
|
if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
|
|
|
|
return filter;
|
|
}
|
|
|
|
SwsVector *sws_allocVec(int length)
|
|
{
|
|
SwsVector *vec = av_malloc(sizeof(SwsVector));
|
|
if (!vec)
|
|
return NULL;
|
|
vec->length = length;
|
|
vec->coeff = av_malloc(sizeof(double) * length);
|
|
if (!vec->coeff)
|
|
av_freep(&vec);
|
|
return vec;
|
|
}
|
|
|
|
SwsVector *sws_getGaussianVec(double variance, double quality)
|
|
{
|
|
const int length= (int)(variance*quality + 0.5) | 1;
|
|
int i;
|
|
double middle= (length-1)*0.5;
|
|
SwsVector *vec= sws_allocVec(length);
|
|
|
|
if (!vec)
|
|
return NULL;
|
|
|
|
for (i=0; i<length; i++) {
|
|
double dist= i-middle;
|
|
vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
|
|
}
|
|
|
|
sws_normalizeVec(vec, 1.0);
|
|
|
|
return vec;
|
|
}
|
|
|
|
SwsVector *sws_getConstVec(double c, int length)
|
|
{
|
|
int i;
|
|
SwsVector *vec= sws_allocVec(length);
|
|
|
|
if (!vec)
|
|
return NULL;
|
|
|
|
for (i=0; i<length; i++)
|
|
vec->coeff[i]= c;
|
|
|
|
return vec;
|
|
}
|
|
|
|
SwsVector *sws_getIdentityVec(void)
|
|
{
|
|
return sws_getConstVec(1.0, 1);
|
|
}
|
|
|
|
static double sws_dcVec(SwsVector *a)
|
|
{
|
|
int i;
|
|
double sum=0;
|
|
|
|
for (i=0; i<a->length; i++)
|
|
sum+= a->coeff[i];
|
|
|
|
return sum;
|
|
}
|
|
|
|
void sws_scaleVec(SwsVector *a, double scalar)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<a->length; i++)
|
|
a->coeff[i]*= scalar;
|
|
}
|
|
|
|
void sws_normalizeVec(SwsVector *a, double height)
|
|
{
|
|
sws_scaleVec(a, height/sws_dcVec(a));
|
|
}
|
|
|
|
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
|
|
{
|
|
int length= a->length + b->length - 1;
|
|
int i, j;
|
|
SwsVector *vec= sws_getConstVec(0.0, length);
|
|
|
|
if (!vec)
|
|
return NULL;
|
|
|
|
for (i=0; i<a->length; i++) {
|
|
for (j=0; j<b->length; j++) {
|
|
vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
|
|
}
|
|
}
|
|
|
|
return vec;
|
|
}
|
|
|
|
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
|
|
{
|
|
int length= FFMAX(a->length, b->length);
|
|
int i;
|
|
SwsVector *vec= sws_getConstVec(0.0, length);
|
|
|
|
if (!vec)
|
|
return NULL;
|
|
|
|
for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
|
|
for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
|
|
|
|
return vec;
|
|
}
|
|
|
|
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
|
|
{
|
|
int length= FFMAX(a->length, b->length);
|
|
int i;
|
|
SwsVector *vec= sws_getConstVec(0.0, length);
|
|
|
|
if (!vec)
|
|
return NULL;
|
|
|
|
for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
|
|
for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
|
|
|
|
return vec;
|
|
}
|
|
|
|
/* shift left / or right if "shift" is negative */
|
|
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
|
|
{
|
|
int length= a->length + FFABS(shift)*2;
|
|
int i;
|
|
SwsVector *vec= sws_getConstVec(0.0, length);
|
|
|
|
if (!vec)
|
|
return NULL;
|
|
|
|
for (i=0; i<a->length; i++) {
|
|
vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
|
|
}
|
|
|
|
return vec;
|
|
}
|
|
|
|
void sws_shiftVec(SwsVector *a, int shift)
|
|
{
|
|
SwsVector *shifted= sws_getShiftedVec(a, shift);
|
|
av_free(a->coeff);
|
|
a->coeff= shifted->coeff;
|
|
a->length= shifted->length;
|
|
av_free(shifted);
|
|
}
|
|
|
|
void sws_addVec(SwsVector *a, SwsVector *b)
|
|
{
|
|
SwsVector *sum= sws_sumVec(a, b);
|
|
av_free(a->coeff);
|
|
a->coeff= sum->coeff;
|
|
a->length= sum->length;
|
|
av_free(sum);
|
|
}
|
|
|
|
void sws_subVec(SwsVector *a, SwsVector *b)
|
|
{
|
|
SwsVector *diff= sws_diffVec(a, b);
|
|
av_free(a->coeff);
|
|
a->coeff= diff->coeff;
|
|
a->length= diff->length;
|
|
av_free(diff);
|
|
}
|
|
|
|
void sws_convVec(SwsVector *a, SwsVector *b)
|
|
{
|
|
SwsVector *conv= sws_getConvVec(a, b);
|
|
av_free(a->coeff);
|
|
a->coeff= conv->coeff;
|
|
a->length= conv->length;
|
|
av_free(conv);
|
|
}
|
|
|
|
SwsVector *sws_cloneVec(SwsVector *a)
|
|
{
|
|
int i;
|
|
SwsVector *vec= sws_allocVec(a->length);
|
|
|
|
if (!vec)
|
|
return NULL;
|
|
|
|
for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
|
|
|
|
return vec;
|
|
}
|
|
|
|
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
|
|
{
|
|
int i;
|
|
double max=0;
|
|
double min=0;
|
|
double range;
|
|
|
|
for (i=0; i<a->length; i++)
|
|
if (a->coeff[i]>max) max= a->coeff[i];
|
|
|
|
for (i=0; i<a->length; i++)
|
|
if (a->coeff[i]<min) min= a->coeff[i];
|
|
|
|
range= max - min;
|
|
|
|
for (i=0; i<a->length; i++) {
|
|
int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
|
|
av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
|
|
for (;x>0; x--) av_log(log_ctx, log_level, " ");
|
|
av_log(log_ctx, log_level, "|\n");
|
|
}
|
|
}
|
|
|
|
#if LIBSWSCALE_VERSION_MAJOR < 1
|
|
void sws_printVec(SwsVector *a)
|
|
{
|
|
sws_printVec2(a, NULL, AV_LOG_DEBUG);
|
|
}
|
|
#endif
|
|
|
|
void sws_freeVec(SwsVector *a)
|
|
{
|
|
if (!a) return;
|
|
av_freep(&a->coeff);
|
|
a->length=0;
|
|
av_free(a);
|
|
}
|
|
|
|
void sws_freeFilter(SwsFilter *filter)
|
|
{
|
|
if (!filter) return;
|
|
|
|
if (filter->lumH) sws_freeVec(filter->lumH);
|
|
if (filter->lumV) sws_freeVec(filter->lumV);
|
|
if (filter->chrH) sws_freeVec(filter->chrH);
|
|
if (filter->chrV) sws_freeVec(filter->chrV);
|
|
av_free(filter);
|
|
}
|
|
|
|
void sws_freeContext(SwsContext *c)
|
|
{
|
|
int i;
|
|
if (!c) return;
|
|
|
|
if (c->lumPixBuf) {
|
|
for (i=0; i<c->vLumBufSize; i++)
|
|
av_freep(&c->lumPixBuf[i]);
|
|
av_freep(&c->lumPixBuf);
|
|
}
|
|
|
|
if (c->chrPixBuf) {
|
|
for (i=0; i<c->vChrBufSize; i++)
|
|
av_freep(&c->chrPixBuf[i]);
|
|
av_freep(&c->chrPixBuf);
|
|
}
|
|
|
|
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
|
|
for (i=0; i<c->vLumBufSize; i++)
|
|
av_freep(&c->alpPixBuf[i]);
|
|
av_freep(&c->alpPixBuf);
|
|
}
|
|
|
|
av_freep(&c->vLumFilter);
|
|
av_freep(&c->vChrFilter);
|
|
av_freep(&c->hLumFilter);
|
|
av_freep(&c->hChrFilter);
|
|
#if HAVE_ALTIVEC
|
|
av_freep(&c->vYCoeffsBank);
|
|
av_freep(&c->vCCoeffsBank);
|
|
#endif
|
|
|
|
av_freep(&c->vLumFilterPos);
|
|
av_freep(&c->vChrFilterPos);
|
|
av_freep(&c->hLumFilterPos);
|
|
av_freep(&c->hChrFilterPos);
|
|
|
|
#if ARCH_X86
|
|
#ifdef MAP_ANONYMOUS
|
|
if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
|
|
if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
|
|
#elif HAVE_VIRTUALALLOC
|
|
if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
|
|
if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
|
|
#else
|
|
av_free(c->lumMmx2FilterCode);
|
|
av_free(c->chrMmx2FilterCode);
|
|
#endif
|
|
c->lumMmx2FilterCode=NULL;
|
|
c->chrMmx2FilterCode=NULL;
|
|
#endif /* ARCH_X86 */
|
|
|
|
av_freep(&c->yuvTable);
|
|
|
|
av_free(c);
|
|
}
|
|
|
|
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
|
|
int srcW, int srcH, enum PixelFormat srcFormat,
|
|
int dstW, int dstH, enum PixelFormat dstFormat, int flags,
|
|
SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
|
|
{
|
|
static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
|
|
|
|
if (!param)
|
|
param = default_param;
|
|
|
|
if (context &&
|
|
(context->srcW != srcW ||
|
|
context->srcH != srcH ||
|
|
context->srcFormat != srcFormat ||
|
|
context->dstW != dstW ||
|
|
context->dstH != dstH ||
|
|
context->dstFormat != dstFormat ||
|
|
context->flags != flags ||
|
|
context->param[0] != param[0] ||
|
|
context->param[1] != param[1])) {
|
|
sws_freeContext(context);
|
|
context = NULL;
|
|
}
|
|
|
|
if (!context) {
|
|
return sws_getContext(srcW, srcH, srcFormat,
|
|
dstW, dstH, dstFormat, flags,
|
|
srcFilter, dstFilter, param);
|
|
}
|
|
return context;
|
|
}
|
|
|