mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-10 00:59:38 +00:00
96d616052b
* commit 'd12b5b2f135aade4099f4b26b0fe678656158c13': build: Split test programs off into separate files Some conversions done by: James Almer <jamrial@gmail.com> Merged-by: Derek Buitenhuis <derek.buitenhuis@gmail.com>
254 lines
7.4 KiB
C
254 lines
7.4 KiB
C
/*
|
|
* A 32-bit implementation of the XTEA algorithm
|
|
* Copyright (c) 2012 Samuel Pitoiset
|
|
*
|
|
* loosely based on the implementation of David Wheeler and Roger Needham
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief XTEA 32-bit implementation
|
|
* @author Samuel Pitoiset
|
|
* @ingroup lavu_xtea
|
|
*/
|
|
|
|
#include "avutil.h"
|
|
#include "common.h"
|
|
#include "intreadwrite.h"
|
|
#include "mem.h"
|
|
#include "xtea.h"
|
|
|
|
AVXTEA *av_xtea_alloc(void)
|
|
{
|
|
return av_mallocz(sizeof(struct AVXTEA));
|
|
}
|
|
|
|
void av_xtea_init(AVXTEA *ctx, const uint8_t key[16])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
ctx->key[i] = AV_RB32(key + (i << 2));
|
|
}
|
|
|
|
void av_xtea_le_init(AVXTEA *ctx, const uint8_t key[16])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
ctx->key[i] = AV_RL32(key + (i << 2));
|
|
}
|
|
|
|
static void xtea_crypt_ecb(AVXTEA *ctx, uint8_t *dst, const uint8_t *src,
|
|
int decrypt, uint8_t *iv)
|
|
{
|
|
uint32_t v0, v1;
|
|
#if !CONFIG_SMALL
|
|
uint32_t k0 = ctx->key[0];
|
|
uint32_t k1 = ctx->key[1];
|
|
uint32_t k2 = ctx->key[2];
|
|
uint32_t k3 = ctx->key[3];
|
|
#endif
|
|
|
|
v0 = AV_RB32(src);
|
|
v1 = AV_RB32(src + 4);
|
|
|
|
if (decrypt) {
|
|
#if CONFIG_SMALL
|
|
int i;
|
|
uint32_t delta = 0x9E3779B9U, sum = delta * 32;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]);
|
|
sum -= delta;
|
|
v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]);
|
|
}
|
|
#else
|
|
#define DSTEP(SUM, K0, K1) \
|
|
v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + K0); \
|
|
v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM - 0x9E3779B9U + K1)
|
|
|
|
DSTEP(0xC6EF3720U, k2, k3);
|
|
DSTEP(0x28B7BD67U, k3, k2);
|
|
DSTEP(0x8A8043AEU, k0, k1);
|
|
DSTEP(0xEC48C9F5U, k1, k0);
|
|
DSTEP(0x4E11503CU, k2, k3);
|
|
DSTEP(0xAFD9D683U, k2, k2);
|
|
DSTEP(0x11A25CCAU, k3, k1);
|
|
DSTEP(0x736AE311U, k0, k0);
|
|
DSTEP(0xD5336958U, k1, k3);
|
|
DSTEP(0x36FBEF9FU, k1, k2);
|
|
DSTEP(0x98C475E6U, k2, k1);
|
|
DSTEP(0xFA8CFC2DU, k3, k0);
|
|
DSTEP(0x5C558274U, k0, k3);
|
|
DSTEP(0xBE1E08BBU, k1, k2);
|
|
DSTEP(0x1FE68F02U, k1, k1);
|
|
DSTEP(0x81AF1549U, k2, k0);
|
|
DSTEP(0xE3779B90U, k3, k3);
|
|
DSTEP(0x454021D7U, k0, k2);
|
|
DSTEP(0xA708A81EU, k1, k1);
|
|
DSTEP(0x08D12E65U, k1, k0);
|
|
DSTEP(0x6A99B4ACU, k2, k3);
|
|
DSTEP(0xCC623AF3U, k3, k2);
|
|
DSTEP(0x2E2AC13AU, k0, k1);
|
|
DSTEP(0x8FF34781U, k0, k0);
|
|
DSTEP(0xF1BBCDC8U, k1, k3);
|
|
DSTEP(0x5384540FU, k2, k2);
|
|
DSTEP(0xB54CDA56U, k3, k1);
|
|
DSTEP(0x1715609DU, k0, k0);
|
|
DSTEP(0x78DDE6E4U, k0, k3);
|
|
DSTEP(0xDAA66D2BU, k1, k2);
|
|
DSTEP(0x3C6EF372U, k2, k1);
|
|
DSTEP(0x9E3779B9U, k3, k0);
|
|
#endif
|
|
if (iv) {
|
|
v0 ^= AV_RB32(iv);
|
|
v1 ^= AV_RB32(iv + 4);
|
|
memcpy(iv, src, 8);
|
|
}
|
|
} else {
|
|
#if CONFIG_SMALL
|
|
int i;
|
|
uint32_t sum = 0, delta = 0x9E3779B9U;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]);
|
|
sum += delta;
|
|
v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]);
|
|
}
|
|
#else
|
|
#define ESTEP(SUM, K0, K1) \
|
|
v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM + K0);\
|
|
v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + 0x9E3779B9U + K1)
|
|
ESTEP(0x00000000U, k0, k3);
|
|
ESTEP(0x9E3779B9U, k1, k2);
|
|
ESTEP(0x3C6EF372U, k2, k1);
|
|
ESTEP(0xDAA66D2BU, k3, k0);
|
|
ESTEP(0x78DDE6E4U, k0, k0);
|
|
ESTEP(0x1715609DU, k1, k3);
|
|
ESTEP(0xB54CDA56U, k2, k2);
|
|
ESTEP(0x5384540FU, k3, k1);
|
|
ESTEP(0xF1BBCDC8U, k0, k0);
|
|
ESTEP(0x8FF34781U, k1, k0);
|
|
ESTEP(0x2E2AC13AU, k2, k3);
|
|
ESTEP(0xCC623AF3U, k3, k2);
|
|
ESTEP(0x6A99B4ACU, k0, k1);
|
|
ESTEP(0x08D12E65U, k1, k1);
|
|
ESTEP(0xA708A81EU, k2, k0);
|
|
ESTEP(0x454021D7U, k3, k3);
|
|
ESTEP(0xE3779B90U, k0, k2);
|
|
ESTEP(0x81AF1549U, k1, k1);
|
|
ESTEP(0x1FE68F02U, k2, k1);
|
|
ESTEP(0xBE1E08BBU, k3, k0);
|
|
ESTEP(0x5C558274U, k0, k3);
|
|
ESTEP(0xFA8CFC2DU, k1, k2);
|
|
ESTEP(0x98C475E6U, k2, k1);
|
|
ESTEP(0x36FBEF9FU, k3, k1);
|
|
ESTEP(0xD5336958U, k0, k0);
|
|
ESTEP(0x736AE311U, k1, k3);
|
|
ESTEP(0x11A25CCAU, k2, k2);
|
|
ESTEP(0xAFD9D683U, k3, k2);
|
|
ESTEP(0x4E11503CU, k0, k1);
|
|
ESTEP(0xEC48C9F5U, k1, k0);
|
|
ESTEP(0x8A8043AEU, k2, k3);
|
|
ESTEP(0x28B7BD67U, k3, k2);
|
|
#endif
|
|
}
|
|
|
|
AV_WB32(dst, v0);
|
|
AV_WB32(dst + 4, v1);
|
|
}
|
|
|
|
static void xtea_le_crypt_ecb(AVXTEA *ctx, uint8_t *dst, const uint8_t *src,
|
|
int decrypt, uint8_t *iv)
|
|
{
|
|
uint32_t v0, v1;
|
|
int i;
|
|
|
|
v0 = AV_RL32(src);
|
|
v1 = AV_RL32(src + 4);
|
|
|
|
if (decrypt) {
|
|
uint32_t delta = 0x9E3779B9, sum = delta * 32;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]);
|
|
sum -= delta;
|
|
v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]);
|
|
}
|
|
if (iv) {
|
|
v0 ^= AV_RL32(iv);
|
|
v1 ^= AV_RL32(iv + 4);
|
|
memcpy(iv, src, 8);
|
|
}
|
|
} else {
|
|
uint32_t sum = 0, delta = 0x9E3779B9;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]);
|
|
sum += delta;
|
|
v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]);
|
|
}
|
|
}
|
|
|
|
AV_WL32(dst, v0);
|
|
AV_WL32(dst + 4, v1);
|
|
}
|
|
|
|
static void xtea_crypt(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int count,
|
|
uint8_t *iv, int decrypt,
|
|
void (*crypt)(AVXTEA *, uint8_t *, const uint8_t *, int, uint8_t *))
|
|
{
|
|
int i;
|
|
|
|
if (decrypt) {
|
|
while (count--) {
|
|
crypt(ctx, dst, src, decrypt, iv);
|
|
|
|
src += 8;
|
|
dst += 8;
|
|
}
|
|
} else {
|
|
while (count--) {
|
|
if (iv) {
|
|
for (i = 0; i < 8; i++)
|
|
dst[i] = src[i] ^ iv[i];
|
|
crypt(ctx, dst, dst, decrypt, NULL);
|
|
memcpy(iv, dst, 8);
|
|
} else {
|
|
crypt(ctx, dst, src, decrypt, NULL);
|
|
}
|
|
src += 8;
|
|
dst += 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
void av_xtea_crypt(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int count,
|
|
uint8_t *iv, int decrypt)
|
|
{
|
|
xtea_crypt(ctx, dst, src, count, iv, decrypt, xtea_crypt_ecb);
|
|
}
|
|
|
|
void av_xtea_le_crypt(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int count,
|
|
uint8_t *iv, int decrypt)
|
|
{
|
|
xtea_crypt(ctx, dst, src, count, iv, decrypt, xtea_le_crypt_ecb);
|
|
}
|