ffmpeg/tests/checkasm/vvc_alf.c

200 lines
9.3 KiB
C

/*
* Copyright (c) 2023-2024 Nuo Mi <nuomi2021@gmail.com>
* Copyright (c) 2023-2024 Wu Jianhua <toqsxw@outlook.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "checkasm.h"
#include "libavcodec/vvc/ctu.h"
#include "libavcodec/vvc/data.h"
#include "libavcodec/vvc/dsp.h"
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem_internal.h"
static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff };
#define SIZEOF_PIXEL ((bit_depth + 7) / 8)
#define SRC_PIXEL_STRIDE (MAX_CTU_SIZE + 2 * ALF_PADDING_SIZE)
#define DST_PIXEL_STRIDE (SRC_PIXEL_STRIDE + 4)
#define SRC_BUF_SIZE (SRC_PIXEL_STRIDE * (MAX_CTU_SIZE + 3 * 2) * 2) //+3 * 2 for top and bottom row, *2 for high bit depth
#define DST_BUF_SIZE (DST_PIXEL_STRIDE * (MAX_CTU_SIZE + 3 * 2) * 2)
#define LUMA_PARAMS_SIZE (MAX_CTU_SIZE * MAX_CTU_SIZE / ALF_BLOCK_SIZE / ALF_BLOCK_SIZE * ALF_NUM_COEFF_LUMA)
#define randomize_buffers(buf0, buf1, size) \
do { \
uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \
int k; \
for (k = 0; k < size; k += 4) { \
uint32_t r = rnd() & mask; \
AV_WN32A(buf0 + k, r); \
AV_WN32A(buf1 + k, r); \
} \
} while (0)
#define randomize_buffers2(buf, size, filter) \
do { \
int k; \
if (filter) { \
for (k = 0; k < size; k++) { \
int8_t r = rnd(); \
buf[k] = r; \
} \
} else { \
for (k = 0; k < size; k++) { \
int r = rnd() % FF_ARRAY_ELEMS(clip_set); \
buf[k] = clip_set[r]; \
} \
} \
} while (0)
static int get_alf_vb_pos(const int h, const int vb_pos_above)
{
if (h == MAX_CTU_SIZE)
return MAX_CTU_SIZE - vb_pos_above;
// If h < MAX_CTU_SIZE and picture virtual boundaries are involved, ALF virtual boundaries can either be within or outside this ALF block.
return ((rnd() & 1) ? h : MAX_CTU_SIZE) - vb_pos_above;
}
static void check_alf_filter(VVCDSPContext *c, const int bit_depth)
{
LOCAL_ALIGNED_32(uint8_t, dst0, [DST_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, dst1, [DST_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]);
int16_t filter[LUMA_PARAMS_SIZE];
int16_t clip[LUMA_PARAMS_SIZE];
const int16_t clip_set[] = {
1 << bit_depth, 1 << (bit_depth - 3), 1 << (bit_depth - 5), 1 << (bit_depth - 7)
};
ptrdiff_t src_stride = SRC_PIXEL_STRIDE * SIZEOF_PIXEL;
ptrdiff_t dst_stride = DST_PIXEL_STRIDE * SIZEOF_PIXEL;
int offset = (3 * SRC_PIXEL_STRIDE + 3) * SIZEOF_PIXEL;
declare_func(void, uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *src, ptrdiff_t src_stride,
int width, int height, const int16_t *filter, const int16_t *clip, const int vb_pos);
randomize_buffers(src0, src1, SRC_BUF_SIZE);
randomize_buffers2(filter, LUMA_PARAMS_SIZE, 1);
randomize_buffers2(clip, LUMA_PARAMS_SIZE, 0);
for (int h = 4; h <= MAX_CTU_SIZE; h += 4) {
for (int w = 4; w <= MAX_CTU_SIZE; w += 4) {
//Both picture size and virtual boundaries are 8-aligned. For luma, we only need to check 8-aligned sizes.
if (!(w % 8) && !(h % 8)) {
if (check_func(c->alf.filter[LUMA], "vvc_alf_filter_luma_%dx%d_%d", w, h, bit_depth)) {
const int vb_pos = get_alf_vb_pos(h, ALF_VB_POS_ABOVE_LUMA);
memset(dst0, 0, DST_BUF_SIZE);
memset(dst1, 0, DST_BUF_SIZE);
call_ref(dst0, dst_stride, src0 + offset, src_stride, w, h, filter, clip, vb_pos);
call_new(dst1, dst_stride, src1 + offset, src_stride, w, h, filter, clip, vb_pos);
for (int i = 0; i < (h + 1); i++) {
if (memcmp(dst0 + i * dst_stride, dst1 + i * dst_stride, (w + 1) * SIZEOF_PIXEL))
fail();
}
// Bench only square sizes, and ones with dimensions being a power of two.
if (w == h && (w & (w - 1)) == 0)
bench_new(dst1, dst_stride, src1 + offset, src_stride, w, h, filter, clip, vb_pos);
}
}
//For chroma, once it exceeds 64, it's not a 4:2:0 format, so we only need to check 8-aligned sizes as well.
if ((w <= 64 || !(w % 8)) && (h <= 64 || !(h % 8))) {
if (check_func(c->alf.filter[CHROMA], "vvc_alf_filter_chroma_%dx%d_%d", w, h, bit_depth)) {
const int vb_pos = get_alf_vb_pos(h, ALF_VB_POS_ABOVE_CHROMA);
memset(dst0, 0, DST_BUF_SIZE);
memset(dst1, 0, DST_BUF_SIZE);
call_ref(dst0, dst_stride, src0 + offset, src_stride, w, h, filter, clip, vb_pos);
call_new(dst1, dst_stride, src1 + offset, src_stride, w, h, filter, clip, vb_pos);
for (int i = 0; i < (h + 1); i++) {
if (memcmp(dst0 + i * dst_stride, dst1 + i * dst_stride, (w + 1) * SIZEOF_PIXEL))
fail();
}
if (w == h && (w & (w - 1)) == 0)
bench_new(dst1, dst_stride, src1 + offset, src_stride, w, h, filter, clip, vb_pos);
}
}
}
}
}
static void check_alf_classify(VVCDSPContext *c, const int bit_depth)
{
LOCAL_ALIGNED_32(int, class_idx0, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(int, transpose_idx0, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(int, class_idx1, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(int, transpose_idx1, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(int32_t, alf_gradient_tmp, [ALF_GRADIENT_SIZE * ALF_GRADIENT_SIZE * ALF_NUM_DIR]);
ptrdiff_t stride = SRC_PIXEL_STRIDE * SIZEOF_PIXEL;
int offset = (3 * SRC_PIXEL_STRIDE + 3) * SIZEOF_PIXEL;
declare_func(void, int *class_idx, int *transpose_idx,
const uint8_t *src, ptrdiff_t src_stride, int width, int height, int vb_pos, int *gradient_tmp);
randomize_buffers(src0, src1, SRC_BUF_SIZE);
//Both picture size and virtual boundaries are 8-aligned. Classify is luma only, we only need to check 8-aligned sizes.
for (int h = 8; h <= MAX_CTU_SIZE; h += 8) {
for (int w = 8; w <= MAX_CTU_SIZE; w += 8) {
const int id_size = w * h / ALF_BLOCK_SIZE / ALF_BLOCK_SIZE * sizeof(int);
const int vb_pos = get_alf_vb_pos(h, ALF_VB_POS_ABOVE_LUMA);
if (check_func(c->alf.classify, "vvc_alf_classify_%dx%d_%d", w, h, bit_depth)) {
memset(class_idx0, 0, id_size);
memset(class_idx1, 0, id_size);
memset(transpose_idx0, 0, id_size);
memset(transpose_idx1, 0, id_size);
call_ref(class_idx0, transpose_idx0, src0 + offset, stride, w, h, vb_pos, alf_gradient_tmp);
call_new(class_idx1, transpose_idx1, src1 + offset, stride, w, h, vb_pos, alf_gradient_tmp);
if (memcmp(class_idx0, class_idx1, id_size))
fail();
if (memcmp(transpose_idx0, transpose_idx1, id_size))
fail();
// Bench only square sizes, and ones with dimensions being a power of two.
if (w == h && (w & (w - 1)) == 0)
bench_new(class_idx1, transpose_idx1, src1 + offset, stride, w, h, vb_pos, alf_gradient_tmp);
}
}
}
}
void checkasm_check_vvc_alf(void)
{
int bit_depth;
VVCDSPContext h;
for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
ff_vvc_dsp_init(&h, bit_depth);
check_alf_filter(&h, bit_depth);
}
report("alf_filter");
for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
ff_vvc_dsp_init(&h, bit_depth);
check_alf_classify(&h, bit_depth);
}
report("alf_classify");
}