mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-01 12:22:09 +00:00
d62a4707f9
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2222 lines
82 KiB
C
2222 lines
82 KiB
C
/*
|
|
* Copyright (c) 2012 Andrew D'Addesio
|
|
* Copyright (c) 2013-2014 Mozilla Corporation
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Opus CELT decoder
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "libavutil/float_dsp.h"
|
|
|
|
#include "opus.h"
|
|
#include "opus_imdct.h"
|
|
|
|
enum CeltSpread {
|
|
CELT_SPREAD_NONE,
|
|
CELT_SPREAD_LIGHT,
|
|
CELT_SPREAD_NORMAL,
|
|
CELT_SPREAD_AGGRESSIVE
|
|
};
|
|
|
|
typedef struct CeltFrame {
|
|
float energy[CELT_MAX_BANDS];
|
|
float prev_energy[2][CELT_MAX_BANDS];
|
|
|
|
uint8_t collapse_masks[CELT_MAX_BANDS];
|
|
|
|
/* buffer for mdct output + postfilter */
|
|
DECLARE_ALIGNED(32, float, buf)[2048];
|
|
|
|
/* postfilter parameters */
|
|
int pf_period_new;
|
|
float pf_gains_new[3];
|
|
int pf_period;
|
|
float pf_gains[3];
|
|
int pf_period_old;
|
|
float pf_gains_old[3];
|
|
|
|
float deemph_coeff;
|
|
} CeltFrame;
|
|
|
|
struct CeltContext {
|
|
// constant values that do not change during context lifetime
|
|
AVCodecContext *avctx;
|
|
CeltIMDCTContext *imdct[4];
|
|
AVFloatDSPContext dsp;
|
|
int output_channels;
|
|
|
|
// values that have inter-frame effect and must be reset on flush
|
|
CeltFrame frame[2];
|
|
uint32_t seed;
|
|
int flushed;
|
|
|
|
// values that only affect a single frame
|
|
int coded_channels;
|
|
int framebits;
|
|
int duration;
|
|
|
|
/* number of iMDCT blocks in the frame */
|
|
int blocks;
|
|
/* size of each block */
|
|
int blocksize;
|
|
|
|
int startband;
|
|
int endband;
|
|
int codedbands;
|
|
|
|
int anticollapse_bit;
|
|
|
|
int intensitystereo;
|
|
int dualstereo;
|
|
enum CeltSpread spread;
|
|
|
|
int remaining;
|
|
int remaining2;
|
|
int fine_bits [CELT_MAX_BANDS];
|
|
int fine_priority[CELT_MAX_BANDS];
|
|
int pulses [CELT_MAX_BANDS];
|
|
int tf_change [CELT_MAX_BANDS];
|
|
|
|
DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
|
|
DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
|
|
};
|
|
|
|
static const uint16_t celt_model_tapset[] = { 4, 2, 3, 4 };
|
|
|
|
static const uint16_t celt_model_spread[] = { 32, 7, 9, 30, 32 };
|
|
|
|
static const uint16_t celt_model_alloc_trim[] = {
|
|
128, 2, 4, 9, 19, 41, 87, 109, 119, 124, 126, 128
|
|
};
|
|
|
|
static const uint16_t celt_model_energy_small[] = { 4, 2, 3, 4 };
|
|
|
|
static const uint8_t celt_freq_bands[] = { /* in steps of 200Hz */
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
|
|
};
|
|
|
|
static const uint8_t celt_freq_range[] = {
|
|
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 6, 6, 8, 12, 18, 22
|
|
};
|
|
|
|
static const uint8_t celt_log_freq_range[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 16, 16, 16, 21, 21, 24, 29, 34, 36
|
|
};
|
|
|
|
static const int8_t celt_tf_select[4][2][2][2] = {
|
|
{ { { 0, -1 }, { 0, -1 } }, { { 0, -1 }, { 0, -1 } } },
|
|
{ { { 0, -1 }, { 0, -2 } }, { { 1, 0 }, { 1, -1 } } },
|
|
{ { { 0, -2 }, { 0, -3 } }, { { 2, 0 }, { 1, -1 } } },
|
|
{ { { 0, -2 }, { 0, -3 } }, { { 3, 0 }, { 1, -1 } } }
|
|
};
|
|
|
|
static const float celt_mean_energy[] = {
|
|
6.437500f, 6.250000f, 5.750000f, 5.312500f, 5.062500f,
|
|
4.812500f, 4.500000f, 4.375000f, 4.875000f, 4.687500f,
|
|
4.562500f, 4.437500f, 4.875000f, 4.625000f, 4.312500f,
|
|
4.500000f, 4.375000f, 4.625000f, 4.750000f, 4.437500f,
|
|
3.750000f, 3.750000f, 3.750000f, 3.750000f, 3.750000f
|
|
};
|
|
|
|
static const float celt_alpha_coef[] = {
|
|
29440.0f/32768.0f, 26112.0f/32768.0f, 21248.0f/32768.0f, 16384.0f/32768.0f
|
|
};
|
|
|
|
static const float celt_beta_coef[] = { /* TODO: precompute 1 minus this if the code ends up neater */
|
|
30147.0f/32768.0f, 22282.0f/32768.0f, 12124.0f/32768.0f, 6554.0f/32768.0f
|
|
};
|
|
|
|
static const uint8_t celt_coarse_energy_dist[4][2][42] = {
|
|
{
|
|
{ // 120-sample inter
|
|
72, 127, 65, 129, 66, 128, 65, 128, 64, 128, 62, 128, 64, 128,
|
|
64, 128, 92, 78, 92, 79, 92, 78, 90, 79, 116, 41, 115, 40,
|
|
114, 40, 132, 26, 132, 26, 145, 17, 161, 12, 176, 10, 177, 11
|
|
}, { // 120-sample intra
|
|
24, 179, 48, 138, 54, 135, 54, 132, 53, 134, 56, 133, 55, 132,
|
|
55, 132, 61, 114, 70, 96, 74, 88, 75, 88, 87, 74, 89, 66,
|
|
91, 67, 100, 59, 108, 50, 120, 40, 122, 37, 97, 43, 78, 50
|
|
}
|
|
}, {
|
|
{ // 240-sample inter
|
|
83, 78, 84, 81, 88, 75, 86, 74, 87, 71, 90, 73, 93, 74,
|
|
93, 74, 109, 40, 114, 36, 117, 34, 117, 34, 143, 17, 145, 18,
|
|
146, 19, 162, 12, 165, 10, 178, 7, 189, 6, 190, 8, 177, 9
|
|
}, { // 240-sample intra
|
|
23, 178, 54, 115, 63, 102, 66, 98, 69, 99, 74, 89, 71, 91,
|
|
73, 91, 78, 89, 86, 80, 92, 66, 93, 64, 102, 59, 103, 60,
|
|
104, 60, 117, 52, 123, 44, 138, 35, 133, 31, 97, 38, 77, 45
|
|
}
|
|
}, {
|
|
{ // 480-sample inter
|
|
61, 90, 93, 60, 105, 42, 107, 41, 110, 45, 116, 38, 113, 38,
|
|
112, 38, 124, 26, 132, 27, 136, 19, 140, 20, 155, 14, 159, 16,
|
|
158, 18, 170, 13, 177, 10, 187, 8, 192, 6, 175, 9, 159, 10
|
|
}, { // 480-sample intra
|
|
21, 178, 59, 110, 71, 86, 75, 85, 84, 83, 91, 66, 88, 73,
|
|
87, 72, 92, 75, 98, 72, 105, 58, 107, 54, 115, 52, 114, 55,
|
|
112, 56, 129, 51, 132, 40, 150, 33, 140, 29, 98, 35, 77, 42
|
|
}
|
|
}, {
|
|
{ // 960-sample inter
|
|
42, 121, 96, 66, 108, 43, 111, 40, 117, 44, 123, 32, 120, 36,
|
|
119, 33, 127, 33, 134, 34, 139, 21, 147, 23, 152, 20, 158, 25,
|
|
154, 26, 166, 21, 173, 16, 184, 13, 184, 10, 150, 13, 139, 15
|
|
}, { // 960-sample intra
|
|
22, 178, 63, 114, 74, 82, 84, 83, 92, 82, 103, 62, 96, 72,
|
|
96, 67, 101, 73, 107, 72, 113, 55, 118, 52, 125, 52, 118, 52,
|
|
117, 55, 135, 49, 137, 39, 157, 32, 145, 29, 97, 33, 77, 40
|
|
}
|
|
}
|
|
};
|
|
|
|
static const uint8_t celt_static_alloc[11][21] = { /* 1/32 bit/sample */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 90, 80, 75, 69, 63, 56, 49, 40, 34, 29, 20, 18, 10, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 110, 100, 90, 84, 78, 71, 65, 58, 51, 45, 39, 32, 26, 20, 12, 0, 0, 0, 0, 0, 0 },
|
|
{ 118, 110, 103, 93, 86, 80, 75, 70, 65, 59, 53, 47, 40, 31, 23, 15, 4, 0, 0, 0, 0 },
|
|
{ 126, 119, 112, 104, 95, 89, 83, 78, 72, 66, 60, 54, 47, 39, 32, 25, 17, 12, 1, 0, 0 },
|
|
{ 134, 127, 120, 114, 103, 97, 91, 85, 78, 72, 66, 60, 54, 47, 41, 35, 29, 23, 16, 10, 1 },
|
|
{ 144, 137, 130, 124, 113, 107, 101, 95, 88, 82, 76, 70, 64, 57, 51, 45, 39, 33, 26, 15, 1 },
|
|
{ 152, 145, 138, 132, 123, 117, 111, 105, 98, 92, 86, 80, 74, 67, 61, 55, 49, 43, 36, 20, 1 },
|
|
{ 162, 155, 148, 142, 133, 127, 121, 115, 108, 102, 96, 90, 84, 77, 71, 65, 59, 53, 46, 30, 1 },
|
|
{ 172, 165, 158, 152, 143, 137, 131, 125, 118, 112, 106, 100, 94, 87, 81, 75, 69, 63, 56, 45, 20 },
|
|
{ 200, 200, 200, 200, 200, 200, 200, 200, 198, 193, 188, 183, 178, 173, 168, 163, 158, 153, 148, 129, 104 }
|
|
};
|
|
|
|
static const uint8_t celt_static_caps[4][2][21] = {
|
|
{ // 120-sample
|
|
{224, 224, 224, 224, 224, 224, 224, 224, 160, 160,
|
|
160, 160, 185, 185, 185, 178, 178, 168, 134, 61, 37},
|
|
{224, 224, 224, 224, 224, 224, 224, 224, 240, 240,
|
|
240, 240, 207, 207, 207, 198, 198, 183, 144, 66, 40},
|
|
}, { // 240-sample
|
|
{160, 160, 160, 160, 160, 160, 160, 160, 185, 185,
|
|
185, 185, 193, 193, 193, 183, 183, 172, 138, 64, 38},
|
|
{240, 240, 240, 240, 240, 240, 240, 240, 207, 207,
|
|
207, 207, 204, 204, 204, 193, 193, 180, 143, 66, 40},
|
|
}, { // 480-sample
|
|
{185, 185, 185, 185, 185, 185, 185, 185, 193, 193,
|
|
193, 193, 193, 193, 193, 183, 183, 172, 138, 65, 39},
|
|
{207, 207, 207, 207, 207, 207, 207, 207, 204, 204,
|
|
204, 204, 201, 201, 201, 188, 188, 176, 141, 66, 40},
|
|
}, { // 960-sample
|
|
{193, 193, 193, 193, 193, 193, 193, 193, 193, 193,
|
|
193, 193, 194, 194, 194, 184, 184, 173, 139, 65, 39},
|
|
{204, 204, 204, 204, 204, 204, 204, 204, 201, 201,
|
|
201, 201, 198, 198, 198, 187, 187, 175, 140, 66, 40}
|
|
}
|
|
};
|
|
|
|
static const uint8_t celt_cache_bits[392] = {
|
|
40, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 40, 15, 23, 28,
|
|
31, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 47, 49, 50,
|
|
51, 52, 53, 54, 55, 55, 57, 58, 59, 60, 61, 62, 63, 63, 65,
|
|
66, 67, 68, 69, 70, 71, 71, 40, 20, 33, 41, 48, 53, 57, 61,
|
|
64, 66, 69, 71, 73, 75, 76, 78, 80, 82, 85, 87, 89, 91, 92,
|
|
94, 96, 98, 101, 103, 105, 107, 108, 110, 112, 114, 117, 119, 121, 123,
|
|
124, 126, 128, 40, 23, 39, 51, 60, 67, 73, 79, 83, 87, 91, 94,
|
|
97, 100, 102, 105, 107, 111, 115, 118, 121, 124, 126, 129, 131, 135, 139,
|
|
142, 145, 148, 150, 153, 155, 159, 163, 166, 169, 172, 174, 177, 179, 35,
|
|
28, 49, 65, 78, 89, 99, 107, 114, 120, 126, 132, 136, 141, 145, 149,
|
|
153, 159, 165, 171, 176, 180, 185, 189, 192, 199, 205, 211, 216, 220, 225,
|
|
229, 232, 239, 245, 251, 21, 33, 58, 79, 97, 112, 125, 137, 148, 157,
|
|
166, 174, 182, 189, 195, 201, 207, 217, 227, 235, 243, 251, 17, 35, 63,
|
|
86, 106, 123, 139, 152, 165, 177, 187, 197, 206, 214, 222, 230, 237, 250,
|
|
25, 31, 55, 75, 91, 105, 117, 128, 138, 146, 154, 161, 168, 174, 180,
|
|
185, 190, 200, 208, 215, 222, 229, 235, 240, 245, 255, 16, 36, 65, 89,
|
|
110, 128, 144, 159, 173, 185, 196, 207, 217, 226, 234, 242, 250, 11, 41,
|
|
74, 103, 128, 151, 172, 191, 209, 225, 241, 255, 9, 43, 79, 110, 138,
|
|
163, 186, 207, 227, 246, 12, 39, 71, 99, 123, 144, 164, 182, 198, 214,
|
|
228, 241, 253, 9, 44, 81, 113, 142, 168, 192, 214, 235, 255, 7, 49,
|
|
90, 127, 160, 191, 220, 247, 6, 51, 95, 134, 170, 203, 234, 7, 47,
|
|
87, 123, 155, 184, 212, 237, 6, 52, 97, 137, 174, 208, 240, 5, 57,
|
|
106, 151, 192, 231, 5, 59, 111, 158, 202, 243, 5, 55, 103, 147, 187,
|
|
224, 5, 60, 113, 161, 206, 248, 4, 65, 122, 175, 224, 4, 67, 127,
|
|
182, 234
|
|
};
|
|
|
|
static const int16_t celt_cache_index[105] = {
|
|
-1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 41, 41, 41,
|
|
82, 82, 123, 164, 200, 222, 0, 0, 0, 0, 0, 0, 0, 0, 41,
|
|
41, 41, 41, 123, 123, 123, 164, 164, 240, 266, 283, 295, 41, 41, 41,
|
|
41, 41, 41, 41, 41, 123, 123, 123, 123, 240, 240, 240, 266, 266, 305,
|
|
318, 328, 336, 123, 123, 123, 123, 123, 123, 123, 123, 240, 240, 240, 240,
|
|
305, 305, 305, 318, 318, 343, 351, 358, 364, 240, 240, 240, 240, 240, 240,
|
|
240, 240, 305, 305, 305, 305, 343, 343, 343, 351, 351, 370, 376, 382, 387,
|
|
};
|
|
|
|
static const uint8_t celt_log2_frac[] = {
|
|
0, 8, 13, 16, 19, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 37
|
|
};
|
|
|
|
static const uint8_t celt_bit_interleave[] = {
|
|
0, 1, 1, 1, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3
|
|
};
|
|
|
|
static const uint8_t celt_bit_deinterleave[] = {
|
|
0x00, 0x03, 0x0C, 0x0F, 0x30, 0x33, 0x3C, 0x3F,
|
|
0xC0, 0xC3, 0xCC, 0xCF, 0xF0, 0xF3, 0xFC, 0xFF
|
|
};
|
|
|
|
static const uint8_t celt_hadamard_ordery[] = {
|
|
1, 0,
|
|
3, 0, 2, 1,
|
|
7, 0, 4, 3, 6, 1, 5, 2,
|
|
15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5
|
|
};
|
|
|
|
static const uint16_t celt_qn_exp2[] = {
|
|
16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048
|
|
};
|
|
|
|
static const uint32_t celt_pvq_u[1272] = {
|
|
/* N = 0, K = 0...176 */
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* N = 1, K = 1...176 */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
/* N = 2, K = 2...176 */
|
|
3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
|
|
43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
|
|
81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
|
|
115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
|
|
145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
|
|
175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
|
|
205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
|
|
235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
|
|
265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
|
|
295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
|
|
325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
|
|
/* N = 3, K = 3...176 */
|
|
13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
|
|
685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
|
|
1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
|
|
3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
|
|
6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
|
|
9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
|
|
13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
|
|
17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
|
|
21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
|
|
26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
|
|
31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
|
|
37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
|
|
43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
|
|
50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
|
|
57461, 58141, 58825, 59513, 60205, 60901, 61601,
|
|
/* N = 4, K = 4...176 */
|
|
63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
|
|
7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
|
|
30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
|
|
82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
|
|
161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
|
|
267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
|
|
410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
|
|
597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
|
|
833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
|
|
1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
|
|
1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
|
|
1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
|
|
2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
|
|
2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
|
|
3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
|
|
3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
|
|
4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
|
|
5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
|
|
6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
|
|
7085049, 7207551,
|
|
/* N = 5, K = 5...176 */
|
|
321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
|
|
50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
|
|
330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
|
|
1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
|
|
2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
|
|
4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
|
|
8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
|
|
13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
|
|
20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
|
|
29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
|
|
40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
|
|
55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
|
|
73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
|
|
95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
|
|
122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
|
|
155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
|
|
193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
|
|
238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
|
|
290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
|
|
351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
|
|
420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
|
|
500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
|
|
590359041, 604167209, 618216201, 632508801,
|
|
/* N = 6, K = 6...96 (technically V(109,5) fits in 32 bits, but that can't be
|
|
achieved by splitting an Opus band) */
|
|
1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
|
|
335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
|
|
2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
|
|
11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
|
|
29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
|
|
64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
|
|
128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
|
|
235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
|
|
402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
|
|
655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
|
|
1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
|
|
1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
|
|
2011371957, 2120032959,
|
|
/* N = 7, K = 7...54 (technically V(60,6) fits in 32 bits, but that can't be
|
|
achieved by splitting an Opus band) */
|
|
8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
|
|
1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
|
|
19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
|
|
88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
|
|
292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
|
|
793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
|
|
1667010073, 1870535785, 2094367717,
|
|
/* N = 8, K = 8...37 (technically V(40,7) fits in 32 bits, but that can't be
|
|
achieved by splitting an Opus band) */
|
|
48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
|
|
9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
|
|
104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
|
|
638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
|
|
2229491905,
|
|
/* N = 9, K = 9...28 (technically V(29,8) fits in 32 bits, but that can't be
|
|
achieved by splitting an Opus band) */
|
|
265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
|
|
39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
|
|
628496897, 872893441, 1196924561, 1621925137, 2173806145,
|
|
/* N = 10, K = 10...24 */
|
|
1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
|
|
254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629,
|
|
3375210671,
|
|
/* N = 11, K = 11...19 (technically V(20,10) fits in 32 bits, but that can't be
|
|
achieved by splitting an Opus band) */
|
|
8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
|
|
948062325, 1616336765,
|
|
/* N = 12, K = 12...18 */
|
|
45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
|
|
3248227095,
|
|
/* N = 13, K = 13...16 */
|
|
251595969, 579168825, 1267854873, 2653649025,
|
|
/* N = 14, K = 14 */
|
|
1409933619
|
|
};
|
|
|
|
DECLARE_ALIGNED(32, static const float, celt_window)[120] = {
|
|
6.7286966e-05f, 0.00060551348f, 0.0016815970f, 0.0032947962f, 0.0054439943f,
|
|
0.0081276923f, 0.011344001f, 0.015090633f, 0.019364886f, 0.024163635f,
|
|
0.029483315f, 0.035319905f, 0.041668911f, 0.048525347f, 0.055883718f,
|
|
0.063737999f, 0.072081616f, 0.080907428f, 0.090207705f, 0.099974111f,
|
|
0.11019769f, 0.12086883f, 0.13197729f, 0.14351214f, 0.15546177f,
|
|
0.16781389f, 0.18055550f, 0.19367290f, 0.20715171f, 0.22097682f,
|
|
0.23513243f, 0.24960208f, 0.26436860f, 0.27941419f, 0.29472040f,
|
|
0.31026818f, 0.32603788f, 0.34200931f, 0.35816177f, 0.37447407f,
|
|
0.39092462f, 0.40749142f, 0.42415215f, 0.44088423f, 0.45766484f,
|
|
0.47447104f, 0.49127978f, 0.50806798f, 0.52481261f, 0.54149077f,
|
|
0.55807973f, 0.57455701f, 0.59090049f, 0.60708841f, 0.62309951f,
|
|
0.63891306f, 0.65450896f, 0.66986776f, 0.68497077f, 0.69980010f,
|
|
0.71433873f, 0.72857055f, 0.74248043f, 0.75605424f, 0.76927895f,
|
|
0.78214257f, 0.79463430f, 0.80674445f, 0.81846456f, 0.82978733f,
|
|
0.84070669f, 0.85121779f, 0.86131698f, 0.87100183f, 0.88027111f,
|
|
0.88912479f, 0.89756398f, 0.90559094f, 0.91320904f, 0.92042270f,
|
|
0.92723738f, 0.93365955f, 0.93969656f, 0.94535671f, 0.95064907f,
|
|
0.95558353f, 0.96017067f, 0.96442171f, 0.96834849f, 0.97196334f,
|
|
0.97527906f, 0.97830883f, 0.98106616f, 0.98356480f, 0.98581869f,
|
|
0.98784191f, 0.98964856f, 0.99125274f, 0.99266849f, 0.99390969f,
|
|
0.99499004f, 0.99592297f, 0.99672162f, 0.99739874f, 0.99796667f,
|
|
0.99843728f, 0.99882195f, 0.99913147f, 0.99937606f, 0.99956527f,
|
|
0.99970802f, 0.99981248f, 0.99988613f, 0.99993565f, 0.99996697f,
|
|
0.99998518f, 0.99999457f, 0.99999859f, 0.99999982f, 1.0000000f,
|
|
};
|
|
|
|
/* square of the window, used for the postfilter */
|
|
const float ff_celt_window2[120] = {
|
|
4.5275357e-09f, 3.66647e-07f, 2.82777e-06f, 1.08557e-05f, 2.96371e-05f, 6.60594e-05f,
|
|
0.000128686f, 0.000227727f, 0.000374999f, 0.000583881f, 0.000869266f, 0.0012475f,
|
|
0.0017363f, 0.00235471f, 0.00312299f, 0.00406253f, 0.00519576f, 0.00654601f,
|
|
0.00813743f, 0.00999482f, 0.0121435f, 0.0146093f, 0.017418f, 0.0205957f, 0.0241684f,
|
|
0.0281615f, 0.0326003f, 0.0375092f, 0.0429118f, 0.0488308f, 0.0552873f, 0.0623012f,
|
|
0.0698908f, 0.0780723f, 0.0868601f, 0.0962664f, 0.106301f, 0.11697f, 0.12828f,
|
|
0.140231f, 0.152822f, 0.166049f, 0.179905f, 0.194379f, 0.209457f, 0.225123f, 0.241356f,
|
|
0.258133f, 0.275428f, 0.293212f, 0.311453f, 0.330116f, 0.349163f, 0.368556f, 0.388253f,
|
|
0.40821f, 0.428382f, 0.448723f, 0.469185f, 0.48972f, 0.51028f, 0.530815f, 0.551277f,
|
|
0.571618f, 0.59179f, 0.611747f, 0.631444f, 0.650837f, 0.669884f, 0.688547f, 0.706788f,
|
|
0.724572f, 0.741867f, 0.758644f, 0.774877f, 0.790543f, 0.805621f, 0.820095f, 0.833951f,
|
|
0.847178f, 0.859769f, 0.87172f, 0.88303f, 0.893699f, 0.903734f, 0.91314f, 0.921928f,
|
|
0.930109f, 0.937699f, 0.944713f, 0.951169f, 0.957088f, 0.962491f, 0.9674f, 0.971838f,
|
|
0.975832f, 0.979404f, 0.982582f, 0.985391f, 0.987857f, 0.990005f, 0.991863f, 0.993454f,
|
|
0.994804f, 0.995937f, 0.996877f, 0.997645f, 0.998264f, 0.998753f, 0.999131f, 0.999416f,
|
|
0.999625f, 0.999772f, 0.999871f, 0.999934f, 0.99997f, 0.999989f, 0.999997f, 0.99999964f, 1.0f,
|
|
};
|
|
|
|
static const uint32_t * const celt_pvq_u_row[15] = {
|
|
celt_pvq_u + 0, celt_pvq_u + 176, celt_pvq_u + 351,
|
|
celt_pvq_u + 525, celt_pvq_u + 698, celt_pvq_u + 870,
|
|
celt_pvq_u + 1041, celt_pvq_u + 1131, celt_pvq_u + 1178,
|
|
celt_pvq_u + 1207, celt_pvq_u + 1226, celt_pvq_u + 1240,
|
|
celt_pvq_u + 1248, celt_pvq_u + 1254, celt_pvq_u + 1257
|
|
};
|
|
|
|
static inline int16_t celt_cos(int16_t x)
|
|
{
|
|
x = (MUL16(x, x) + 4096) >> 13;
|
|
x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
|
|
return 1+x;
|
|
}
|
|
|
|
static inline int celt_log2tan(int isin, int icos)
|
|
{
|
|
int lc, ls;
|
|
lc = opus_ilog(icos);
|
|
ls = opus_ilog(isin);
|
|
icos <<= 15 - lc;
|
|
isin <<= 15 - ls;
|
|
return (ls << 11) - (lc << 11) +
|
|
ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
|
|
ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
|
|
}
|
|
|
|
static inline uint32_t celt_rng(CeltContext *s)
|
|
{
|
|
s->seed = 1664525 * s->seed + 1013904223;
|
|
return s->seed;
|
|
}
|
|
|
|
static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc)
|
|
{
|
|
int i, j;
|
|
float prev[2] = {0};
|
|
float alpha, beta;
|
|
const uint8_t *model;
|
|
|
|
/* use the 2D z-transform to apply prediction in both */
|
|
/* the time domain (alpha) and the frequency domain (beta) */
|
|
|
|
if (opus_rc_tell(rc)+3 <= s->framebits && opus_rc_p2model(rc, 3)) {
|
|
/* intra frame */
|
|
alpha = 0;
|
|
beta = 1.0f - 4915.0f/32768.0f;
|
|
model = celt_coarse_energy_dist[s->duration][1];
|
|
} else {
|
|
alpha = celt_alpha_coef[s->duration];
|
|
beta = 1.0f - celt_beta_coef[s->duration];
|
|
model = celt_coarse_energy_dist[s->duration][0];
|
|
}
|
|
|
|
for (i = 0; i < CELT_MAX_BANDS; i++) {
|
|
for (j = 0; j < s->coded_channels; j++) {
|
|
CeltFrame *frame = &s->frame[j];
|
|
float value;
|
|
int available;
|
|
|
|
if (i < s->startband || i >= s->endband) {
|
|
frame->energy[i] = 0.0;
|
|
continue;
|
|
}
|
|
|
|
available = s->framebits - opus_rc_tell(rc);
|
|
if (available >= 15) {
|
|
/* decode using a Laplace distribution */
|
|
int k = FFMIN(i, 20) << 1;
|
|
value = opus_rc_laplace(rc, model[k] << 7, model[k+1] << 6);
|
|
} else if (available >= 2) {
|
|
int x = opus_rc_getsymbol(rc, celt_model_energy_small);
|
|
value = (x>>1) ^ -(x&1);
|
|
} else if (available >= 1) {
|
|
value = -(float)opus_rc_p2model(rc, 1);
|
|
} else value = -1;
|
|
|
|
frame->energy[i] = FFMAX(-9.0f, frame->energy[i]) * alpha + prev[j] + value;
|
|
prev[j] += beta * value;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void celt_decode_fine_energy(CeltContext *s, OpusRangeCoder *rc)
|
|
{
|
|
int i;
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int j;
|
|
if (!s->fine_bits[i])
|
|
continue;
|
|
|
|
for (j = 0; j < s->coded_channels; j++) {
|
|
CeltFrame *frame = &s->frame[j];
|
|
int q2;
|
|
float offset;
|
|
q2 = opus_getrawbits(rc, s->fine_bits[i]);
|
|
offset = (q2 + 0.5f) * (1 << (14 - s->fine_bits[i])) / 16384.0f - 0.5f;
|
|
frame->energy[i] += offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void celt_decode_final_energy(CeltContext *s, OpusRangeCoder *rc,
|
|
int bits_left)
|
|
{
|
|
int priority, i, j;
|
|
|
|
for (priority = 0; priority < 2; priority++) {
|
|
for (i = s->startband; i < s->endband && bits_left >= s->coded_channels; i++) {
|
|
if (s->fine_priority[i] != priority || s->fine_bits[i] >= CELT_MAX_FINE_BITS)
|
|
continue;
|
|
|
|
for (j = 0; j < s->coded_channels; j++) {
|
|
int q2;
|
|
float offset;
|
|
q2 = opus_getrawbits(rc, 1);
|
|
offset = (q2 - 0.5f) * (1 << (14 - s->fine_bits[i] - 1)) / 16384.0f;
|
|
s->frame[j].energy[i] += offset;
|
|
bits_left--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void celt_decode_tf_changes(CeltContext *s, OpusRangeCoder *rc,
|
|
int transient)
|
|
{
|
|
int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
|
|
int consumed, bits = transient ? 2 : 4;
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
tf_select_bit = (s->duration != 0 && consumed+bits+1 <= s->framebits);
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
if (consumed+bits+tf_select_bit <= s->framebits) {
|
|
diff ^= opus_rc_p2model(rc, bits);
|
|
consumed = opus_rc_tell(rc);
|
|
tf_changed |= diff;
|
|
}
|
|
s->tf_change[i] = diff;
|
|
bits = transient ? 4 : 5;
|
|
}
|
|
|
|
if (tf_select_bit && celt_tf_select[s->duration][transient][0][tf_changed] !=
|
|
celt_tf_select[s->duration][transient][1][tf_changed])
|
|
tf_select = opus_rc_p2model(rc, 1);
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
s->tf_change[i] = celt_tf_select[s->duration][transient][tf_select][s->tf_change[i]];
|
|
}
|
|
}
|
|
|
|
static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc)
|
|
{
|
|
// approx. maximum bit allocation for each band before boost/trim
|
|
int cap[CELT_MAX_BANDS];
|
|
int boost[CELT_MAX_BANDS];
|
|
int threshold[CELT_MAX_BANDS];
|
|
int bits1[CELT_MAX_BANDS];
|
|
int bits2[CELT_MAX_BANDS];
|
|
int trim_offset[CELT_MAX_BANDS];
|
|
|
|
int skip_startband = s->startband;
|
|
int dynalloc = 6;
|
|
int alloctrim = 5;
|
|
int extrabits = 0;
|
|
|
|
int skip_bit = 0;
|
|
int intensitystereo_bit = 0;
|
|
int dualstereo_bit = 0;
|
|
|
|
int remaining, bandbits;
|
|
int low, high, total, done;
|
|
int totalbits;
|
|
int consumed;
|
|
int i, j;
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
|
|
/* obtain spread flag */
|
|
s->spread = CELT_SPREAD_NORMAL;
|
|
if (consumed + 4 <= s->framebits)
|
|
s->spread = opus_rc_getsymbol(rc, celt_model_spread);
|
|
|
|
/* generate static allocation caps */
|
|
for (i = 0; i < CELT_MAX_BANDS; i++) {
|
|
cap[i] = (celt_static_caps[s->duration][s->coded_channels - 1][i] + 64)
|
|
* celt_freq_range[i] << (s->coded_channels - 1) << s->duration >> 2;
|
|
}
|
|
|
|
/* obtain band boost */
|
|
totalbits = s->framebits << 3; // convert to 1/8 bits
|
|
consumed = opus_rc_tell_frac(rc);
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int quanta, band_dynalloc;
|
|
|
|
boost[i] = 0;
|
|
|
|
quanta = celt_freq_range[i] << (s->coded_channels - 1) << s->duration;
|
|
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
|
|
band_dynalloc = dynalloc;
|
|
while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
|
|
int add = opus_rc_p2model(rc, band_dynalloc);
|
|
consumed = opus_rc_tell_frac(rc);
|
|
if (!add)
|
|
break;
|
|
|
|
boost[i] += quanta;
|
|
totalbits -= quanta;
|
|
band_dynalloc = 1;
|
|
}
|
|
/* dynalloc is more likely to occur if it's already been used for earlier bands */
|
|
if (boost[i])
|
|
dynalloc = FFMAX(2, dynalloc - 1);
|
|
}
|
|
|
|
/* obtain allocation trim */
|
|
if (consumed + (6 << 3) <= totalbits)
|
|
alloctrim = opus_rc_getsymbol(rc, celt_model_alloc_trim);
|
|
|
|
/* anti-collapse bit reservation */
|
|
totalbits = (s->framebits << 3) - opus_rc_tell_frac(rc) - 1;
|
|
s->anticollapse_bit = 0;
|
|
if (s->blocks > 1 && s->duration >= 2 &&
|
|
totalbits >= ((s->duration + 2) << 3))
|
|
s->anticollapse_bit = 1 << 3;
|
|
totalbits -= s->anticollapse_bit;
|
|
|
|
/* band skip bit reservation */
|
|
if (totalbits >= 1 << 3)
|
|
skip_bit = 1 << 3;
|
|
totalbits -= skip_bit;
|
|
|
|
/* intensity/dual stereo bit reservation */
|
|
if (s->coded_channels == 2) {
|
|
intensitystereo_bit = celt_log2_frac[s->endband - s->startband];
|
|
if (intensitystereo_bit <= totalbits) {
|
|
totalbits -= intensitystereo_bit;
|
|
if (totalbits >= 1 << 3) {
|
|
dualstereo_bit = 1 << 3;
|
|
totalbits -= 1 << 3;
|
|
}
|
|
} else
|
|
intensitystereo_bit = 0;
|
|
}
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int trim = alloctrim - 5 - s->duration;
|
|
int band = celt_freq_range[i] * (s->endband - i - 1);
|
|
int duration = s->duration + 3;
|
|
int scale = duration + s->coded_channels - 1;
|
|
|
|
/* PVQ minimum allocation threshold, below this value the band is
|
|
* skipped */
|
|
threshold[i] = FFMAX(3 * celt_freq_range[i] << duration >> 4,
|
|
s->coded_channels << 3);
|
|
|
|
trim_offset[i] = trim * (band << scale) >> 6;
|
|
|
|
if (celt_freq_range[i] << s->duration == 1)
|
|
trim_offset[i] -= s->coded_channels << 3;
|
|
}
|
|
|
|
/* bisection */
|
|
low = 1;
|
|
high = CELT_VECTORS - 1;
|
|
while (low <= high) {
|
|
int center = (low + high) >> 1;
|
|
done = total = 0;
|
|
|
|
for (i = s->endband - 1; i >= s->startband; i--) {
|
|
bandbits = celt_freq_range[i] * celt_static_alloc[center][i]
|
|
<< (s->coded_channels - 1) << s->duration >> 2;
|
|
|
|
if (bandbits)
|
|
bandbits = FFMAX(0, bandbits + trim_offset[i]);
|
|
bandbits += boost[i];
|
|
|
|
if (bandbits >= threshold[i] || done) {
|
|
done = 1;
|
|
total += FFMIN(bandbits, cap[i]);
|
|
} else if (bandbits >= s->coded_channels << 3)
|
|
total += s->coded_channels << 3;
|
|
}
|
|
|
|
if (total > totalbits)
|
|
high = center - 1;
|
|
else
|
|
low = center + 1;
|
|
}
|
|
high = low--;
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
bits1[i] = celt_freq_range[i] * celt_static_alloc[low][i]
|
|
<< (s->coded_channels - 1) << s->duration >> 2;
|
|
bits2[i] = high >= CELT_VECTORS ? cap[i] :
|
|
celt_freq_range[i] * celt_static_alloc[high][i]
|
|
<< (s->coded_channels - 1) << s->duration >> 2;
|
|
|
|
if (bits1[i])
|
|
bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
|
|
if (bits2[i])
|
|
bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
|
|
if (low)
|
|
bits1[i] += boost[i];
|
|
bits2[i] += boost[i];
|
|
|
|
if (boost[i])
|
|
skip_startband = i;
|
|
bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
|
|
}
|
|
|
|
/* bisection */
|
|
low = 0;
|
|
high = 1 << CELT_ALLOC_STEPS;
|
|
for (i = 0; i < CELT_ALLOC_STEPS; i++) {
|
|
int center = (low + high) >> 1;
|
|
done = total = 0;
|
|
|
|
for (j = s->endband - 1; j >= s->startband; j--) {
|
|
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
|
|
|
|
if (bandbits >= threshold[j] || done) {
|
|
done = 1;
|
|
total += FFMIN(bandbits, cap[j]);
|
|
} else if (bandbits >= s->coded_channels << 3)
|
|
total += s->coded_channels << 3;
|
|
}
|
|
if (total > totalbits)
|
|
high = center;
|
|
else
|
|
low = center;
|
|
}
|
|
|
|
done = total = 0;
|
|
for (i = s->endband - 1; i >= s->startband; i--) {
|
|
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
|
|
|
|
if (bandbits >= threshold[i] || done)
|
|
done = 1;
|
|
else
|
|
bandbits = (bandbits >= s->coded_channels << 3) ?
|
|
s->coded_channels << 3 : 0;
|
|
|
|
bandbits = FFMIN(bandbits, cap[i]);
|
|
s->pulses[i] = bandbits;
|
|
total += bandbits;
|
|
}
|
|
|
|
/* band skipping */
|
|
for (s->codedbands = s->endband; ; s->codedbands--) {
|
|
int allocation;
|
|
j = s->codedbands - 1;
|
|
|
|
if (j == skip_startband) {
|
|
/* all remaining bands are not skipped */
|
|
totalbits += skip_bit;
|
|
break;
|
|
}
|
|
|
|
/* determine the number of bits available for coding "do not skip" markers */
|
|
remaining = totalbits - total;
|
|
bandbits = remaining / (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
|
|
remaining -= bandbits * (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
|
|
allocation = s->pulses[j] + bandbits * celt_freq_range[j]
|
|
+ FFMAX(0, remaining - (celt_freq_bands[j] - celt_freq_bands[s->startband]));
|
|
|
|
/* a "do not skip" marker is only coded if the allocation is
|
|
above the chosen threshold */
|
|
if (allocation >= FFMAX(threshold[j], (s->coded_channels + 1) <<3 )) {
|
|
if (opus_rc_p2model(rc, 1))
|
|
break;
|
|
|
|
total += 1 << 3;
|
|
allocation -= 1 << 3;
|
|
}
|
|
|
|
/* the band is skipped, so reclaim its bits */
|
|
total -= s->pulses[j];
|
|
if (intensitystereo_bit) {
|
|
total -= intensitystereo_bit;
|
|
intensitystereo_bit = celt_log2_frac[j - s->startband];
|
|
total += intensitystereo_bit;
|
|
}
|
|
|
|
total += s->pulses[j] = (allocation >= s->coded_channels << 3) ?
|
|
s->coded_channels << 3 : 0;
|
|
}
|
|
|
|
/* obtain stereo flags */
|
|
s->intensitystereo = 0;
|
|
s->dualstereo = 0;
|
|
if (intensitystereo_bit)
|
|
s->intensitystereo = s->startband +
|
|
opus_rc_unimodel(rc, s->codedbands + 1 - s->startband);
|
|
if (s->intensitystereo <= s->startband)
|
|
totalbits += dualstereo_bit; /* no intensity stereo means no dual stereo */
|
|
else if (dualstereo_bit)
|
|
s->dualstereo = opus_rc_p2model(rc, 1);
|
|
|
|
/* supply the remaining bits in this frame to lower bands */
|
|
remaining = totalbits - total;
|
|
bandbits = remaining / (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
|
|
remaining -= bandbits * (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
|
|
for (i = s->startband; i < s->codedbands; i++) {
|
|
int bits = FFMIN(remaining, celt_freq_range[i]);
|
|
|
|
s->pulses[i] += bits + bandbits * celt_freq_range[i];
|
|
remaining -= bits;
|
|
}
|
|
|
|
for (i = s->startband; i < s->codedbands; i++) {
|
|
int N = celt_freq_range[i] << s->duration;
|
|
int prev_extra = extrabits;
|
|
s->pulses[i] += extrabits;
|
|
|
|
if (N > 1) {
|
|
int dof; // degrees of freedom
|
|
int temp; // dof * channels * log(dof)
|
|
int offset; // fine energy quantization offset, i.e.
|
|
// extra bits assigned over the standard
|
|
// totalbits/dof
|
|
int fine_bits, max_bits;
|
|
|
|
extrabits = FFMAX(0, s->pulses[i] - cap[i]);
|
|
s->pulses[i] -= extrabits;
|
|
|
|
/* intensity stereo makes use of an extra degree of freedom */
|
|
dof = N * s->coded_channels
|
|
+ (s->coded_channels == 2 && N > 2 && !s->dualstereo && i < s->intensitystereo);
|
|
temp = dof * (celt_log_freq_range[i] + (s->duration<<3));
|
|
offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
|
|
if (N == 2) /* dof=2 is the only case that doesn't fit the model */
|
|
offset += dof<<1;
|
|
|
|
/* grant an additional bias for the first and second pulses */
|
|
if (s->pulses[i] + offset < 2 * (dof << 3))
|
|
offset += temp >> 2;
|
|
else if (s->pulses[i] + offset < 3 * (dof << 3))
|
|
offset += temp >> 3;
|
|
|
|
fine_bits = (s->pulses[i] + offset + (dof << 2)) / (dof << 3);
|
|
max_bits = FFMIN((s->pulses[i]>>3) >> (s->coded_channels - 1),
|
|
CELT_MAX_FINE_BITS);
|
|
|
|
max_bits = FFMAX(max_bits, 0);
|
|
|
|
s->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
|
|
|
|
/* if fine_bits was rounded down or capped,
|
|
give priority for the final fine energy pass */
|
|
s->fine_priority[i] = (s->fine_bits[i] * (dof<<3) >= s->pulses[i] + offset);
|
|
|
|
/* the remaining bits are assigned to PVQ */
|
|
s->pulses[i] -= s->fine_bits[i] << (s->coded_channels - 1) << 3;
|
|
} else {
|
|
/* all bits go to fine energy except for the sign bit */
|
|
extrabits = FFMAX(0, s->pulses[i] - (s->coded_channels << 3));
|
|
s->pulses[i] -= extrabits;
|
|
s->fine_bits[i] = 0;
|
|
s->fine_priority[i] = 1;
|
|
}
|
|
|
|
/* hand back a limited number of extra fine energy bits to this band */
|
|
if (extrabits > 0) {
|
|
int fineextra = FFMIN(extrabits >> (s->coded_channels + 2),
|
|
CELT_MAX_FINE_BITS - s->fine_bits[i]);
|
|
s->fine_bits[i] += fineextra;
|
|
|
|
fineextra <<= s->coded_channels + 2;
|
|
s->fine_priority[i] = (fineextra >= extrabits - prev_extra);
|
|
extrabits -= fineextra;
|
|
}
|
|
}
|
|
s->remaining = extrabits;
|
|
|
|
/* skipped bands dedicate all of their bits for fine energy */
|
|
for (; i < s->endband; i++) {
|
|
s->fine_bits[i] = s->pulses[i] >> (s->coded_channels - 1) >> 3;
|
|
s->pulses[i] = 0;
|
|
s->fine_priority[i] = s->fine_bits[i] < 1;
|
|
}
|
|
}
|
|
|
|
static inline int celt_bits2pulses(const uint8_t *cache, int bits)
|
|
{
|
|
// TODO: Find the size of cache and make it into an array in the parameters list
|
|
int i, low = 0, high;
|
|
|
|
high = cache[0];
|
|
bits--;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
int center = (low + high + 1) >> 1;
|
|
if (cache[center] >= bits)
|
|
high = center;
|
|
else
|
|
low = center;
|
|
}
|
|
|
|
return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
|
|
}
|
|
|
|
static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
|
|
{
|
|
// TODO: Find the size of cache and make it into an array in the parameters list
|
|
return (pulses == 0) ? 0 : cache[pulses] + 1;
|
|
}
|
|
|
|
static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
|
|
int N, float g)
|
|
{
|
|
int i;
|
|
for (i = 0; i < N; i++)
|
|
X[i] = g * iy[i];
|
|
}
|
|
|
|
static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride,
|
|
float c, float s)
|
|
{
|
|
float *Xptr;
|
|
int i;
|
|
|
|
Xptr = X;
|
|
for (i = 0; i < len - stride; i++) {
|
|
float x1, x2;
|
|
x1 = Xptr[0];
|
|
x2 = Xptr[stride];
|
|
Xptr[stride] = c * x2 + s * x1;
|
|
*Xptr++ = c * x1 - s * x2;
|
|
}
|
|
|
|
Xptr = &X[len - 2 * stride - 1];
|
|
for (i = len - 2 * stride - 1; i >= 0; i--) {
|
|
float x1, x2;
|
|
x1 = Xptr[0];
|
|
x2 = Xptr[stride];
|
|
Xptr[stride] = c * x2 + s * x1;
|
|
*Xptr-- = c * x1 - s * x2;
|
|
}
|
|
}
|
|
|
|
static inline void celt_exp_rotation(float *X, unsigned int len,
|
|
unsigned int stride, unsigned int K,
|
|
enum CeltSpread spread)
|
|
{
|
|
unsigned int stride2 = 0;
|
|
float c, s;
|
|
float gain, theta;
|
|
int i;
|
|
|
|
if (2*K >= len || spread == CELT_SPREAD_NONE)
|
|
return;
|
|
|
|
gain = (float)len / (len + (20 - 5*spread) * K);
|
|
theta = M_PI * gain * gain / 4;
|
|
|
|
c = cos(theta);
|
|
s = sin(theta);
|
|
|
|
if (len >= stride << 3) {
|
|
stride2 = 1;
|
|
/* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
|
|
It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
|
|
while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
|
|
stride2++;
|
|
}
|
|
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
|
extract_collapse_mask().*/
|
|
len /= stride;
|
|
for (i = 0; i < stride; i++) {
|
|
if (stride2)
|
|
celt_exp_rotation1(X + i * len, len, stride2, s, c);
|
|
celt_exp_rotation1(X + i * len, len, 1, c, s);
|
|
}
|
|
}
|
|
|
|
static inline unsigned int celt_extract_collapse_mask(const int *iy,
|
|
unsigned int N,
|
|
unsigned int B)
|
|
{
|
|
unsigned int collapse_mask;
|
|
int N0;
|
|
int i, j;
|
|
|
|
if (B <= 1)
|
|
return 1;
|
|
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
|
exp_rotation().*/
|
|
N0 = N/B;
|
|
collapse_mask = 0;
|
|
for (i = 0; i < B; i++)
|
|
for (j = 0; j < N0; j++)
|
|
collapse_mask |= (iy[i*N0+j]!=0)<<i;
|
|
return collapse_mask;
|
|
}
|
|
|
|
static inline void celt_renormalize_vector(float *X, int N, float gain)
|
|
{
|
|
int i;
|
|
float g = 1e-15f;
|
|
for (i = 0; i < N; i++)
|
|
g += X[i] * X[i];
|
|
g = gain / sqrtf(g);
|
|
|
|
for (i = 0; i < N; i++)
|
|
X[i] *= g;
|
|
}
|
|
|
|
static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
|
|
{
|
|
int i;
|
|
float xp = 0, side = 0;
|
|
float E[2];
|
|
float mid2;
|
|
float t, gain[2];
|
|
|
|
/* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
|
|
for (i = 0; i < N; i++) {
|
|
xp += X[i] * Y[i];
|
|
side += Y[i] * Y[i];
|
|
}
|
|
|
|
/* Compensating for the mid normalization */
|
|
xp *= mid;
|
|
mid2 = mid;
|
|
E[0] = mid2 * mid2 + side - 2 * xp;
|
|
E[1] = mid2 * mid2 + side + 2 * xp;
|
|
if (E[0] < 6e-4f || E[1] < 6e-4f) {
|
|
for (i = 0; i < N; i++)
|
|
Y[i] = X[i];
|
|
return;
|
|
}
|
|
|
|
t = E[0];
|
|
gain[0] = 1.0f / sqrtf(t);
|
|
t = E[1];
|
|
gain[1] = 1.0f / sqrtf(t);
|
|
|
|
for (i = 0; i < N; i++) {
|
|
float value[2];
|
|
/* Apply mid scaling (side is already scaled) */
|
|
value[0] = mid * X[i];
|
|
value[1] = Y[i];
|
|
X[i] = gain[0] * (value[0] - value[1]);
|
|
Y[i] = gain[1] * (value[0] + value[1]);
|
|
}
|
|
}
|
|
|
|
static void celt_interleave_hadamard(float *tmp, float *X, int N0,
|
|
int stride, int hadamard)
|
|
{
|
|
int i, j;
|
|
int N = N0*stride;
|
|
|
|
if (hadamard) {
|
|
const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
|
|
for (i = 0; i < stride; i++)
|
|
for (j = 0; j < N0; j++)
|
|
tmp[j*stride+i] = X[ordery[i]*N0+j];
|
|
} else {
|
|
for (i = 0; i < stride; i++)
|
|
for (j = 0; j < N0; j++)
|
|
tmp[j*stride+i] = X[i*N0+j];
|
|
}
|
|
|
|
for (i = 0; i < N; i++)
|
|
X[i] = tmp[i];
|
|
}
|
|
|
|
static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
|
|
int stride, int hadamard)
|
|
{
|
|
int i, j;
|
|
int N = N0*stride;
|
|
|
|
if (hadamard) {
|
|
const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
|
|
for (i = 0; i < stride; i++)
|
|
for (j = 0; j < N0; j++)
|
|
tmp[ordery[i]*N0+j] = X[j*stride+i];
|
|
} else {
|
|
for (i = 0; i < stride; i++)
|
|
for (j = 0; j < N0; j++)
|
|
tmp[i*N0+j] = X[j*stride+i];
|
|
}
|
|
|
|
for (i = 0; i < N; i++)
|
|
X[i] = tmp[i];
|
|
}
|
|
|
|
static void celt_haar1(float *X, int N0, int stride)
|
|
{
|
|
int i, j;
|
|
N0 >>= 1;
|
|
for (i = 0; i < stride; i++) {
|
|
for (j = 0; j < N0; j++) {
|
|
float x0 = X[stride * (2 * j + 0) + i];
|
|
float x1 = X[stride * (2 * j + 1) + i];
|
|
X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
|
|
X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
|
|
int dualstereo)
|
|
{
|
|
int qn, qb;
|
|
int N2 = 2 * N - 1;
|
|
if (dualstereo && N == 2)
|
|
N2--;
|
|
|
|
/* The upper limit ensures that in a stereo split with itheta==16384, we'll
|
|
* always have enough bits left over to code at least one pulse in the
|
|
* side; otherwise it would collapse, since it doesn't get folded. */
|
|
qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
|
|
qn = (qb < (1 << 3 >> 1)) ? 1 : ((celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
|
|
return qn;
|
|
}
|
|
|
|
// this code was adapted from libopus
|
|
static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y)
|
|
{
|
|
uint64_t norm = 0;
|
|
uint32_t p;
|
|
int s, val;
|
|
int k0;
|
|
|
|
while (N > 2) {
|
|
uint32_t q;
|
|
|
|
/*Lots of pulses case:*/
|
|
if (K >= N) {
|
|
const uint32_t *row = celt_pvq_u_row[N];
|
|
|
|
/* Are the pulses in this dimension negative? */
|
|
p = row[K + 1];
|
|
s = -(i >= p);
|
|
i -= p & s;
|
|
|
|
/*Count how many pulses were placed in this dimension.*/
|
|
k0 = K;
|
|
q = row[N];
|
|
if (q > i) {
|
|
K = N;
|
|
do {
|
|
p = celt_pvq_u_row[--K][N];
|
|
} while (p > i);
|
|
} else
|
|
for (p = row[K]; p > i; p = row[K])
|
|
K--;
|
|
|
|
i -= p;
|
|
val = (k0 - K + s) ^ s;
|
|
norm += val * val;
|
|
*y++ = val;
|
|
} else { /*Lots of dimensions case:*/
|
|
/*Are there any pulses in this dimension at all?*/
|
|
p = celt_pvq_u_row[K ][N];
|
|
q = celt_pvq_u_row[K + 1][N];
|
|
|
|
if (p <= i && i < q) {
|
|
i -= p;
|
|
*y++ = 0;
|
|
} else {
|
|
/*Are the pulses in this dimension negative?*/
|
|
s = -(i >= q);
|
|
i -= q & s;
|
|
|
|
/*Count how many pulses were placed in this dimension.*/
|
|
k0 = K;
|
|
do p = celt_pvq_u_row[--K][N];
|
|
while (p > i);
|
|
|
|
i -= p;
|
|
val = (k0 - K + s) ^ s;
|
|
norm += val * val;
|
|
*y++ = val;
|
|
}
|
|
}
|
|
N--;
|
|
}
|
|
|
|
/* N == 2 */
|
|
p = 2 * K + 1;
|
|
s = -(i >= p);
|
|
i -= p & s;
|
|
k0 = K;
|
|
K = (i + 1) / 2;
|
|
|
|
if (K)
|
|
i -= 2 * K - 1;
|
|
|
|
val = (k0 - K + s) ^ s;
|
|
norm += val * val;
|
|
*y++ = val;
|
|
|
|
/* N==1 */
|
|
s = -i;
|
|
val = (K + s) ^ s;
|
|
norm += val * val;
|
|
*y = val;
|
|
|
|
return norm;
|
|
}
|
|
|
|
static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K)
|
|
{
|
|
unsigned int idx;
|
|
#define CELT_PVQ_U(n, k) (celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
|
|
#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
|
|
idx = opus_rc_unimodel(rc, CELT_PVQ_V(N, K));
|
|
return celt_cwrsi(N, K, idx, y);
|
|
}
|
|
|
|
/** Decode pulse vector and combine the result with the pitch vector to produce
|
|
the final normalised signal in the current band. */
|
|
static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X,
|
|
unsigned int N, unsigned int K,
|
|
enum CeltSpread spread,
|
|
unsigned int blocks, float gain)
|
|
{
|
|
int y[176];
|
|
|
|
gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
|
|
celt_normalize_residual(y, X, N, gain);
|
|
celt_exp_rotation(X, N, blocks, K, spread);
|
|
return celt_extract_collapse_mask(y, N, blocks);
|
|
}
|
|
|
|
static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc,
|
|
const int band, float *X, float *Y,
|
|
int N, int b, unsigned int blocks,
|
|
float *lowband, int duration,
|
|
float *lowband_out, int level,
|
|
float gain, float *lowband_scratch,
|
|
int fill)
|
|
{
|
|
const uint8_t *cache;
|
|
int dualstereo, split;
|
|
int imid = 0, iside = 0;
|
|
unsigned int N0 = N;
|
|
int N_B;
|
|
int N_B0;
|
|
int B0 = blocks;
|
|
int time_divide = 0;
|
|
int recombine = 0;
|
|
int inv = 0;
|
|
float mid = 0, side = 0;
|
|
int longblocks = (B0 == 1);
|
|
unsigned int cm = 0;
|
|
|
|
N_B0 = N_B = N / blocks;
|
|
split = dualstereo = (Y != NULL);
|
|
|
|
if (N == 1) {
|
|
/* special case for one sample */
|
|
int i;
|
|
float *x = X;
|
|
for (i = 0; i <= dualstereo; i++) {
|
|
int sign = 0;
|
|
if (s->remaining2 >= 1<<3) {
|
|
sign = opus_getrawbits(rc, 1);
|
|
s->remaining2 -= 1 << 3;
|
|
b -= 1 << 3;
|
|
}
|
|
x[0] = sign ? -1.0f : 1.0f;
|
|
x = Y;
|
|
}
|
|
if (lowband_out)
|
|
lowband_out[0] = X[0];
|
|
return 1;
|
|
}
|
|
|
|
if (!dualstereo && level == 0) {
|
|
int tf_change = s->tf_change[band];
|
|
int k;
|
|
if (tf_change > 0)
|
|
recombine = tf_change;
|
|
/* Band recombining to increase frequency resolution */
|
|
|
|
if (lowband &&
|
|
(recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
|
|
int j;
|
|
for (j = 0; j < N; j++)
|
|
lowband_scratch[j] = lowband[j];
|
|
lowband = lowband_scratch;
|
|
}
|
|
|
|
for (k = 0; k < recombine; k++) {
|
|
if (lowband)
|
|
celt_haar1(lowband, N >> k, 1 << k);
|
|
fill = celt_bit_interleave[fill & 0xF] | celt_bit_interleave[fill >> 4] << 2;
|
|
}
|
|
blocks >>= recombine;
|
|
N_B <<= recombine;
|
|
|
|
/* Increasing the time resolution */
|
|
while ((N_B & 1) == 0 && tf_change < 0) {
|
|
if (lowband)
|
|
celt_haar1(lowband, N_B, blocks);
|
|
fill |= fill << blocks;
|
|
blocks <<= 1;
|
|
N_B >>= 1;
|
|
time_divide++;
|
|
tf_change++;
|
|
}
|
|
B0 = blocks;
|
|
N_B0 = N_B;
|
|
|
|
/* Reorganize the samples in time order instead of frequency order */
|
|
if (B0 > 1 && lowband)
|
|
celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
|
|
B0 << recombine, longblocks);
|
|
}
|
|
|
|
/* If we need 1.5 more bit than we can produce, split the band in two. */
|
|
cache = celt_cache_bits +
|
|
celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
|
|
if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
|
|
N >>= 1;
|
|
Y = X + N;
|
|
split = 1;
|
|
duration -= 1;
|
|
if (blocks == 1)
|
|
fill = (fill & 1) | (fill << 1);
|
|
blocks = (blocks + 1) >> 1;
|
|
}
|
|
|
|
if (split) {
|
|
int qn;
|
|
int itheta = 0;
|
|
int mbits, sbits, delta;
|
|
int qalloc;
|
|
int pulse_cap;
|
|
int offset;
|
|
int orig_fill;
|
|
int tell;
|
|
|
|
/* Decide on the resolution to give to the split parameter theta */
|
|
pulse_cap = celt_log_freq_range[band] + duration * 8;
|
|
offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
|
|
CELT_QTHETA_OFFSET);
|
|
qn = (dualstereo && band >= s->intensitystereo) ? 1 :
|
|
celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
|
|
tell = opus_rc_tell_frac(rc);
|
|
if (qn != 1) {
|
|
/* Entropy coding of the angle. We use a uniform pdf for the
|
|
time split, a step for stereo, and a triangular one for the rest. */
|
|
if (dualstereo && N > 2)
|
|
itheta = opus_rc_stepmodel(rc, qn/2);
|
|
else if (dualstereo || B0 > 1)
|
|
itheta = opus_rc_unimodel(rc, qn+1);
|
|
else
|
|
itheta = opus_rc_trimodel(rc, qn);
|
|
itheta = itheta * 16384 / qn;
|
|
/* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
|
|
Let's do that at higher complexity */
|
|
} else if (dualstereo) {
|
|
inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? opus_rc_p2model(rc, 2) : 0;
|
|
itheta = 0;
|
|
}
|
|
qalloc = opus_rc_tell_frac(rc) - tell;
|
|
b -= qalloc;
|
|
|
|
orig_fill = fill;
|
|
if (itheta == 0) {
|
|
imid = 32767;
|
|
iside = 0;
|
|
fill &= (1 << blocks) - 1;
|
|
delta = -16384;
|
|
} else if (itheta == 16384) {
|
|
imid = 0;
|
|
iside = 32767;
|
|
fill &= ((1 << blocks) - 1) << blocks;
|
|
delta = 16384;
|
|
} else {
|
|
imid = celt_cos(itheta);
|
|
iside = celt_cos(16384-itheta);
|
|
/* This is the mid vs side allocation that minimizes squared error
|
|
in that band. */
|
|
delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
|
|
}
|
|
|
|
mid = imid / 32768.0f;
|
|
side = iside / 32768.0f;
|
|
|
|
/* This is a special case for N=2 that only works for stereo and takes
|
|
advantage of the fact that mid and side are orthogonal to encode
|
|
the side with just one bit. */
|
|
if (N == 2 && dualstereo) {
|
|
int c;
|
|
int sign = 0;
|
|
float tmp;
|
|
float *x2, *y2;
|
|
mbits = b;
|
|
/* Only need one bit for the side */
|
|
sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
|
|
mbits -= sbits;
|
|
c = (itheta > 8192);
|
|
s->remaining2 -= qalloc+sbits;
|
|
|
|
x2 = c ? Y : X;
|
|
y2 = c ? X : Y;
|
|
if (sbits)
|
|
sign = opus_getrawbits(rc, 1);
|
|
sign = 1 - 2 * sign;
|
|
/* We use orig_fill here because we want to fold the side, but if
|
|
itheta==16384, we'll have cleared the low bits of fill. */
|
|
cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
|
|
lowband, duration, lowband_out, level, gain,
|
|
lowband_scratch, orig_fill);
|
|
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
|
|
and there's no need to worry about mixing with the other channel. */
|
|
y2[0] = -sign * x2[1];
|
|
y2[1] = sign * x2[0];
|
|
X[0] *= mid;
|
|
X[1] *= mid;
|
|
Y[0] *= side;
|
|
Y[1] *= side;
|
|
tmp = X[0];
|
|
X[0] = tmp - Y[0];
|
|
Y[0] = tmp + Y[0];
|
|
tmp = X[1];
|
|
X[1] = tmp - Y[1];
|
|
Y[1] = tmp + Y[1];
|
|
} else {
|
|
/* "Normal" split code */
|
|
float *next_lowband2 = NULL;
|
|
float *next_lowband_out1 = NULL;
|
|
int next_level = 0;
|
|
int rebalance;
|
|
|
|
/* Give more bits to low-energy MDCTs than they would
|
|
* otherwise deserve */
|
|
if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
|
|
if (itheta > 8192)
|
|
/* Rough approximation for pre-echo masking */
|
|
delta -= delta >> (4 - duration);
|
|
else
|
|
/* Corresponds to a forward-masking slope of
|
|
* 1.5 dB per 10 ms */
|
|
delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
|
|
}
|
|
mbits = av_clip((b - delta) / 2, 0, b);
|
|
sbits = b - mbits;
|
|
s->remaining2 -= qalloc;
|
|
|
|
if (lowband && !dualstereo)
|
|
next_lowband2 = lowband + N; /* >32-bit split case */
|
|
|
|
/* Only stereo needs to pass on lowband_out.
|
|
* Otherwise, it's handled at the end */
|
|
if (dualstereo)
|
|
next_lowband_out1 = lowband_out;
|
|
else
|
|
next_level = level + 1;
|
|
|
|
rebalance = s->remaining2;
|
|
if (mbits >= sbits) {
|
|
/* In stereo mode, we do not apply a scaling to the mid
|
|
* because we need the normalized mid for folding later */
|
|
cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
|
|
lowband, duration, next_lowband_out1,
|
|
next_level, dualstereo ? 1.0f : (gain * mid),
|
|
lowband_scratch, fill);
|
|
|
|
rebalance = mbits - (rebalance - s->remaining2);
|
|
if (rebalance > 3 << 3 && itheta != 0)
|
|
sbits += rebalance - (3 << 3);
|
|
|
|
/* For a stereo split, the high bits of fill are always zero,
|
|
* so no folding will be done to the side. */
|
|
cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
|
|
next_lowband2, duration, NULL,
|
|
next_level, gain * side, NULL,
|
|
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
|
|
} else {
|
|
/* For a stereo split, the high bits of fill are always zero,
|
|
* so no folding will be done to the side. */
|
|
cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
|
|
next_lowband2, duration, NULL,
|
|
next_level, gain * side, NULL,
|
|
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
|
|
|
|
rebalance = sbits - (rebalance - s->remaining2);
|
|
if (rebalance > 3 << 3 && itheta != 16384)
|
|
mbits += rebalance - (3 << 3);
|
|
|
|
/* In stereo mode, we do not apply a scaling to the mid because
|
|
* we need the normalized mid for folding later */
|
|
cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
|
|
lowband, duration, next_lowband_out1,
|
|
next_level, dualstereo ? 1.0f : (gain * mid),
|
|
lowband_scratch, fill);
|
|
}
|
|
}
|
|
} else {
|
|
/* This is the basic no-split case */
|
|
unsigned int q = celt_bits2pulses(cache, b);
|
|
unsigned int curr_bits = celt_pulses2bits(cache, q);
|
|
s->remaining2 -= curr_bits;
|
|
|
|
/* Ensures we can never bust the budget */
|
|
while (s->remaining2 < 0 && q > 0) {
|
|
s->remaining2 += curr_bits;
|
|
curr_bits = celt_pulses2bits(cache, --q);
|
|
s->remaining2 -= curr_bits;
|
|
}
|
|
|
|
if (q != 0) {
|
|
/* Finally do the actual quantization */
|
|
cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
|
|
s->spread, blocks, gain);
|
|
} else {
|
|
/* If there's no pulse, fill the band anyway */
|
|
int j;
|
|
unsigned int cm_mask = (1 << blocks) - 1;
|
|
fill &= cm_mask;
|
|
if (!fill) {
|
|
for (j = 0; j < N; j++)
|
|
X[j] = 0.0f;
|
|
} else {
|
|
if (lowband == NULL) {
|
|
/* Noise */
|
|
for (j = 0; j < N; j++)
|
|
X[j] = (((int32_t)celt_rng(s)) >> 20);
|
|
cm = cm_mask;
|
|
} else {
|
|
/* Folded spectrum */
|
|
for (j = 0; j < N; j++) {
|
|
/* About 48 dB below the "normal" folding level */
|
|
X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
|
|
}
|
|
cm = fill;
|
|
}
|
|
celt_renormalize_vector(X, N, gain);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This code is used by the decoder and by the resynthesis-enabled encoder */
|
|
if (dualstereo) {
|
|
int j;
|
|
if (N != 2)
|
|
celt_stereo_merge(X, Y, mid, N);
|
|
if (inv) {
|
|
for (j = 0; j < N; j++)
|
|
Y[j] *= -1;
|
|
}
|
|
} else if (level == 0) {
|
|
int k;
|
|
|
|
/* Undo the sample reorganization going from time order to frequency order */
|
|
if (B0 > 1)
|
|
celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
|
|
B0<<recombine, longblocks);
|
|
|
|
/* Undo time-freq changes that we did earlier */
|
|
N_B = N_B0;
|
|
blocks = B0;
|
|
for (k = 0; k < time_divide; k++) {
|
|
blocks >>= 1;
|
|
N_B <<= 1;
|
|
cm |= cm >> blocks;
|
|
celt_haar1(X, N_B, blocks);
|
|
}
|
|
|
|
for (k = 0; k < recombine; k++) {
|
|
cm = celt_bit_deinterleave[cm];
|
|
celt_haar1(X, N0>>k, 1<<k);
|
|
}
|
|
blocks <<= recombine;
|
|
|
|
/* Scale output for later folding */
|
|
if (lowband_out) {
|
|
int j;
|
|
float n = sqrtf(N0);
|
|
for (j = 0; j < N0; j++)
|
|
lowband_out[j] = n * X[j];
|
|
}
|
|
cm &= (1 << blocks) - 1;
|
|
}
|
|
return cm;
|
|
}
|
|
|
|
static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
float *dst = data + (celt_freq_bands[i] << s->duration);
|
|
float norm = pow(2, frame->energy[i] + celt_mean_energy[i]);
|
|
|
|
for (j = 0; j < celt_freq_range[i] << s->duration; j++)
|
|
dst[j] *= norm;
|
|
}
|
|
}
|
|
|
|
static void celt_postfilter_apply_transition(CeltFrame *frame, float *data)
|
|
{
|
|
const int T0 = frame->pf_period_old;
|
|
const int T1 = frame->pf_period;
|
|
|
|
float g00, g01, g02;
|
|
float g10, g11, g12;
|
|
|
|
float x0, x1, x2, x3, x4;
|
|
|
|
int i;
|
|
|
|
if (frame->pf_gains[0] == 0.0 &&
|
|
frame->pf_gains_old[0] == 0.0)
|
|
return;
|
|
|
|
g00 = frame->pf_gains_old[0];
|
|
g01 = frame->pf_gains_old[1];
|
|
g02 = frame->pf_gains_old[2];
|
|
g10 = frame->pf_gains[0];
|
|
g11 = frame->pf_gains[1];
|
|
g12 = frame->pf_gains[2];
|
|
|
|
x1 = data[-T1 + 1];
|
|
x2 = data[-T1];
|
|
x3 = data[-T1 - 1];
|
|
x4 = data[-T1 - 2];
|
|
|
|
for (i = 0; i < CELT_OVERLAP; i++) {
|
|
float w = ff_celt_window2[i];
|
|
x0 = data[i - T1 + 2];
|
|
|
|
data[i] += (1.0 - w) * g00 * data[i - T0] +
|
|
(1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
|
|
(1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
|
|
w * g10 * x2 +
|
|
w * g11 * (x1 + x3) +
|
|
w * g12 * (x0 + x4);
|
|
x4 = x3;
|
|
x3 = x2;
|
|
x2 = x1;
|
|
x1 = x0;
|
|
}
|
|
}
|
|
|
|
static void celt_postfilter_apply(CeltFrame *frame,
|
|
float *data, int len)
|
|
{
|
|
const int T = frame->pf_period;
|
|
float g0, g1, g2;
|
|
float x0, x1, x2, x3, x4;
|
|
int i;
|
|
|
|
if (frame->pf_gains[0] == 0.0 || len <= 0)
|
|
return;
|
|
|
|
g0 = frame->pf_gains[0];
|
|
g1 = frame->pf_gains[1];
|
|
g2 = frame->pf_gains[2];
|
|
|
|
x4 = data[-T - 2];
|
|
x3 = data[-T - 1];
|
|
x2 = data[-T];
|
|
x1 = data[-T + 1];
|
|
|
|
for (i = 0; i < len; i++) {
|
|
x0 = data[i - T + 2];
|
|
data[i] += g0 * x2 +
|
|
g1 * (x1 + x3) +
|
|
g2 * (x0 + x4);
|
|
x4 = x3;
|
|
x3 = x2;
|
|
x2 = x1;
|
|
x1 = x0;
|
|
}
|
|
}
|
|
|
|
static void celt_postfilter(CeltContext *s, CeltFrame *frame)
|
|
{
|
|
int len = s->blocksize * s->blocks;
|
|
|
|
celt_postfilter_apply_transition(frame, frame->buf + 1024);
|
|
|
|
frame->pf_period_old = frame->pf_period;
|
|
memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
|
|
|
|
frame->pf_period = frame->pf_period_new;
|
|
memcpy(frame->pf_gains, frame->pf_gains_new, sizeof(frame->pf_gains));
|
|
|
|
if (len > CELT_OVERLAP) {
|
|
celt_postfilter_apply_transition(frame, frame->buf + 1024 + CELT_OVERLAP);
|
|
celt_postfilter_apply(frame, frame->buf + 1024 + 2 * CELT_OVERLAP,
|
|
len - 2 * CELT_OVERLAP);
|
|
|
|
frame->pf_period_old = frame->pf_period;
|
|
memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
|
|
}
|
|
|
|
memmove(frame->buf, frame->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
|
|
}
|
|
|
|
static int parse_postfilter(CeltContext *s, OpusRangeCoder *rc, int consumed)
|
|
{
|
|
static const float postfilter_taps[3][3] = {
|
|
{ 0.3066406250f, 0.2170410156f, 0.1296386719f },
|
|
{ 0.4638671875f, 0.2680664062f, 0.0 },
|
|
{ 0.7998046875f, 0.1000976562f, 0.0 }
|
|
};
|
|
int i;
|
|
|
|
memset(s->frame[0].pf_gains_new, 0, sizeof(s->frame[0].pf_gains_new));
|
|
memset(s->frame[1].pf_gains_new, 0, sizeof(s->frame[1].pf_gains_new));
|
|
|
|
if (s->startband == 0 && consumed + 16 <= s->framebits) {
|
|
int has_postfilter = opus_rc_p2model(rc, 1);
|
|
if (has_postfilter) {
|
|
float gain;
|
|
int tapset, octave, period;
|
|
|
|
octave = opus_rc_unimodel(rc, 6);
|
|
period = (16 << octave) + opus_getrawbits(rc, 4 + octave) - 1;
|
|
gain = 0.09375f * (opus_getrawbits(rc, 3) + 1);
|
|
tapset = (opus_rc_tell(rc) + 2 <= s->framebits) ?
|
|
opus_rc_getsymbol(rc, celt_model_tapset) : 0;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
frame->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
|
|
frame->pf_gains_new[0] = gain * postfilter_taps[tapset][0];
|
|
frame->pf_gains_new[1] = gain * postfilter_taps[tapset][1];
|
|
frame->pf_gains_new[2] = gain * postfilter_taps[tapset][2];
|
|
}
|
|
}
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
}
|
|
|
|
return consumed;
|
|
}
|
|
|
|
static void process_anticollapse(CeltContext *s, CeltFrame *frame, float *X)
|
|
{
|
|
int i, j, k;
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int renormalize = 0;
|
|
float *xptr;
|
|
float prev[2];
|
|
float Ediff, r;
|
|
float thresh, sqrt_1;
|
|
int depth;
|
|
|
|
/* depth in 1/8 bits */
|
|
depth = (1 + s->pulses[i]) / (celt_freq_range[i] << s->duration);
|
|
thresh = pow(2, -1.0 - 0.125f * depth);
|
|
sqrt_1 = 1.0f / sqrtf(celt_freq_range[i] << s->duration);
|
|
|
|
xptr = X + (celt_freq_bands[i] << s->duration);
|
|
|
|
prev[0] = frame->prev_energy[0][i];
|
|
prev[1] = frame->prev_energy[1][i];
|
|
if (s->coded_channels == 1) {
|
|
CeltFrame *frame1 = &s->frame[1];
|
|
|
|
prev[0] = FFMAX(prev[0], frame1->prev_energy[0][i]);
|
|
prev[1] = FFMAX(prev[1], frame1->prev_energy[1][i]);
|
|
}
|
|
Ediff = frame->energy[i] - FFMIN(prev[0], prev[1]);
|
|
Ediff = FFMAX(0, Ediff);
|
|
|
|
/* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
|
|
short blocks don't have the same energy as long */
|
|
r = pow(2, 1 - Ediff);
|
|
if (s->duration == 3)
|
|
r *= M_SQRT2;
|
|
r = FFMIN(thresh, r) * sqrt_1;
|
|
for (k = 0; k < 1 << s->duration; k++) {
|
|
/* Detect collapse */
|
|
if (!(frame->collapse_masks[i] & 1 << k)) {
|
|
/* Fill with noise */
|
|
for (j = 0; j < celt_freq_range[i]; j++)
|
|
xptr[(j << s->duration) + k] = (celt_rng(s) & 0x8000) ? r : -r;
|
|
renormalize = 1;
|
|
}
|
|
}
|
|
|
|
/* We just added some energy, so we need to renormalize */
|
|
if (renormalize)
|
|
celt_renormalize_vector(xptr, celt_freq_range[i] << s->duration, 1.0f);
|
|
}
|
|
}
|
|
|
|
static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc)
|
|
{
|
|
float lowband_scratch[8 * 22];
|
|
float norm[2 * 8 * 100];
|
|
|
|
int totalbits = (s->framebits << 3) - s->anticollapse_bit;
|
|
|
|
int update_lowband = 1;
|
|
int lowband_offset = 0;
|
|
|
|
int i, j;
|
|
|
|
memset(s->coeffs, 0, sizeof(s->coeffs));
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int band_offset = celt_freq_bands[i] << s->duration;
|
|
int band_size = celt_freq_range[i] << s->duration;
|
|
float *X = s->coeffs[0] + band_offset;
|
|
float *Y = (s->coded_channels == 2) ? s->coeffs[1] + band_offset : NULL;
|
|
|
|
int consumed = opus_rc_tell_frac(rc);
|
|
float *norm2 = norm + 8 * 100;
|
|
int effective_lowband = -1;
|
|
unsigned int cm[2];
|
|
int b;
|
|
|
|
/* Compute how many bits we want to allocate to this band */
|
|
if (i != s->startband)
|
|
s->remaining -= consumed;
|
|
s->remaining2 = totalbits - consumed - 1;
|
|
if (i <= s->codedbands - 1) {
|
|
int curr_balance = s->remaining / FFMIN(3, s->codedbands-i);
|
|
b = av_clip(FFMIN(s->remaining2 + 1, s->pulses[i] + curr_balance), 0, 16383);
|
|
} else
|
|
b = 0;
|
|
|
|
if (celt_freq_bands[i] - celt_freq_range[i] >= celt_freq_bands[s->startband] &&
|
|
(update_lowband || lowband_offset == 0))
|
|
lowband_offset = i;
|
|
|
|
/* Get a conservative estimate of the collapse_mask's for the bands we're
|
|
going to be folding from. */
|
|
if (lowband_offset != 0 && (s->spread != CELT_SPREAD_AGGRESSIVE ||
|
|
s->blocks > 1 || s->tf_change[i] < 0)) {
|
|
int foldstart, foldend;
|
|
|
|
/* This ensures we never repeat spectral content within one band */
|
|
effective_lowband = FFMAX(celt_freq_bands[s->startband],
|
|
celt_freq_bands[lowband_offset] - celt_freq_range[i]);
|
|
foldstart = lowband_offset;
|
|
while (celt_freq_bands[--foldstart] > effective_lowband);
|
|
foldend = lowband_offset - 1;
|
|
while (celt_freq_bands[++foldend] < effective_lowband + celt_freq_range[i]);
|
|
|
|
cm[0] = cm[1] = 0;
|
|
for (j = foldstart; j < foldend; j++) {
|
|
cm[0] |= s->frame[0].collapse_masks[j];
|
|
cm[1] |= s->frame[s->coded_channels - 1].collapse_masks[j];
|
|
}
|
|
} else
|
|
/* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
|
|
always) be non-zero.*/
|
|
cm[0] = cm[1] = (1 << s->blocks) - 1;
|
|
|
|
if (s->dualstereo && i == s->intensitystereo) {
|
|
/* Switch off dual stereo to do intensity */
|
|
s->dualstereo = 0;
|
|
for (j = celt_freq_bands[s->startband] << s->duration; j < band_offset; j++)
|
|
norm[j] = (norm[j] + norm2[j]) / 2;
|
|
}
|
|
|
|
if (s->dualstereo) {
|
|
cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
|
|
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
|
|
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
|
|
|
|
cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
|
|
effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
|
|
norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
|
|
} else {
|
|
cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
|
|
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
|
|
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
|
|
|
|
cm[1] = cm[0];
|
|
}
|
|
|
|
s->frame[0].collapse_masks[i] = (uint8_t)cm[0];
|
|
s->frame[s->coded_channels - 1].collapse_masks[i] = (uint8_t)cm[1];
|
|
s->remaining += s->pulses[i] + consumed;
|
|
|
|
/* Update the folding position only as long as we have 1 bit/sample depth */
|
|
update_lowband = (b > band_size << 3);
|
|
}
|
|
}
|
|
|
|
int ff_celt_decode_frame(CeltContext *s, OpusRangeCoder *rc,
|
|
float **output, int coded_channels, int frame_size,
|
|
int startband, int endband)
|
|
{
|
|
int i, j;
|
|
|
|
int consumed; // bits of entropy consumed thus far for this frame
|
|
int silence = 0;
|
|
int transient = 0;
|
|
int anticollapse = 0;
|
|
CeltIMDCTContext *imdct;
|
|
float imdct_scale = 1.0;
|
|
|
|
if (coded_channels != 1 && coded_channels != 2) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
|
|
coded_channels);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (startband < 0 || startband > endband || endband > CELT_MAX_BANDS) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
|
|
startband, endband);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
s->flushed = 0;
|
|
s->coded_channels = coded_channels;
|
|
s->startband = startband;
|
|
s->endband = endband;
|
|
s->framebits = rc->rb.bytes * 8;
|
|
|
|
s->duration = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
|
|
if (s->duration > CELT_MAX_LOG_BLOCKS ||
|
|
frame_size != CELT_SHORT_BLOCKSIZE * (1 << s->duration)) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
|
|
frame_size);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (!s->output_channels)
|
|
s->output_channels = coded_channels;
|
|
|
|
memset(s->frame[0].collapse_masks, 0, sizeof(s->frame[0].collapse_masks));
|
|
memset(s->frame[1].collapse_masks, 0, sizeof(s->frame[1].collapse_masks));
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
|
|
/* obtain silence flag */
|
|
if (consumed >= s->framebits)
|
|
silence = 1;
|
|
else if (consumed == 1)
|
|
silence = opus_rc_p2model(rc, 15);
|
|
|
|
|
|
if (silence) {
|
|
consumed = s->framebits;
|
|
rc->total_read_bits += s->framebits - opus_rc_tell(rc);
|
|
}
|
|
|
|
/* obtain post-filter options */
|
|
consumed = parse_postfilter(s, rc, consumed);
|
|
|
|
/* obtain transient flag */
|
|
if (s->duration != 0 && consumed+3 <= s->framebits)
|
|
transient = opus_rc_p2model(rc, 3);
|
|
|
|
s->blocks = transient ? 1 << s->duration : 1;
|
|
s->blocksize = frame_size / s->blocks;
|
|
|
|
imdct = s->imdct[transient ? 0 : s->duration];
|
|
|
|
if (coded_channels == 1) {
|
|
for (i = 0; i < CELT_MAX_BANDS; i++)
|
|
s->frame[0].energy[i] = FFMAX(s->frame[0].energy[i], s->frame[1].energy[i]);
|
|
}
|
|
|
|
celt_decode_coarse_energy(s, rc);
|
|
celt_decode_tf_changes (s, rc, transient);
|
|
celt_decode_allocation (s, rc);
|
|
celt_decode_fine_energy (s, rc);
|
|
celt_decode_bands (s, rc);
|
|
|
|
if (s->anticollapse_bit)
|
|
anticollapse = opus_getrawbits(rc, 1);
|
|
|
|
celt_decode_final_energy(s, rc, s->framebits - opus_rc_tell(rc));
|
|
|
|
/* apply anti-collapse processing and denormalization to
|
|
* each coded channel */
|
|
for (i = 0; i < s->coded_channels; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
if (anticollapse)
|
|
process_anticollapse(s, frame, s->coeffs[i]);
|
|
|
|
celt_denormalize(s, frame, s->coeffs[i]);
|
|
}
|
|
|
|
/* stereo -> mono downmix */
|
|
if (s->output_channels < s->coded_channels) {
|
|
s->dsp.vector_fmac_scalar(s->coeffs[0], s->coeffs[1], 1.0, FFALIGN(frame_size, 16));
|
|
imdct_scale = 0.5;
|
|
} else if (s->output_channels > s->coded_channels)
|
|
memcpy(s->coeffs[1], s->coeffs[0], frame_size * sizeof(float));
|
|
|
|
if (silence) {
|
|
for (i = 0; i < 2; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
for (j = 0; j < FF_ARRAY_ELEMS(frame->energy); j++)
|
|
frame->energy[j] = CELT_ENERGY_SILENCE;
|
|
}
|
|
memset(s->coeffs, 0, sizeof(s->coeffs));
|
|
}
|
|
|
|
/* transform and output for each output channel */
|
|
for (i = 0; i < s->output_channels; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
float m = frame->deemph_coeff;
|
|
|
|
/* iMDCT and overlap-add */
|
|
for (j = 0; j < s->blocks; j++) {
|
|
float *dst = frame->buf + 1024 + j * s->blocksize;
|
|
|
|
imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, s->coeffs[i] + j,
|
|
s->blocks, imdct_scale);
|
|
s->dsp.vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
|
|
celt_window, CELT_OVERLAP / 2);
|
|
}
|
|
|
|
/* postfilter */
|
|
celt_postfilter(s, frame);
|
|
|
|
/* deemphasis and output scaling */
|
|
for (j = 0; j < frame_size; j++) {
|
|
float tmp = frame->buf[1024 - frame_size + j] + m;
|
|
m = tmp * CELT_DEEMPH_COEFF;
|
|
output[i][j] = tmp / 32768.;
|
|
}
|
|
frame->deemph_coeff = m;
|
|
}
|
|
|
|
if (coded_channels == 1)
|
|
memcpy(s->frame[1].energy, s->frame[0].energy, sizeof(s->frame[0].energy));
|
|
|
|
for (i = 0; i < 2; i++ ) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
if (!transient) {
|
|
memcpy(frame->prev_energy[1], frame->prev_energy[0], sizeof(frame->prev_energy[0]));
|
|
memcpy(frame->prev_energy[0], frame->energy, sizeof(frame->prev_energy[0]));
|
|
} else {
|
|
for (j = 0; j < CELT_MAX_BANDS; j++)
|
|
frame->prev_energy[0][j] = FFMIN(frame->prev_energy[0][j], frame->energy[j]);
|
|
}
|
|
|
|
for (j = 0; j < s->startband; j++) {
|
|
frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
|
|
frame->energy[j] = 0.0;
|
|
}
|
|
for (j = s->endband; j < CELT_MAX_BANDS; j++) {
|
|
frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
|
|
frame->energy[j] = 0.0;
|
|
}
|
|
}
|
|
|
|
s->seed = rc->range;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ff_celt_flush(CeltContext *s)
|
|
{
|
|
int i, j;
|
|
|
|
if (s->flushed)
|
|
return;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
for (j = 0; j < CELT_MAX_BANDS; j++)
|
|
frame->prev_energy[0][j] = frame->prev_energy[1][j] = CELT_ENERGY_SILENCE;
|
|
|
|
memset(frame->energy, 0, sizeof(frame->energy));
|
|
memset(frame->buf, 0, sizeof(frame->buf));
|
|
|
|
memset(frame->pf_gains, 0, sizeof(frame->pf_gains));
|
|
memset(frame->pf_gains_old, 0, sizeof(frame->pf_gains_old));
|
|
memset(frame->pf_gains_new, 0, sizeof(frame->pf_gains_new));
|
|
|
|
frame->deemph_coeff = 0.0;
|
|
}
|
|
s->seed = 0;
|
|
|
|
s->flushed = 1;
|
|
}
|
|
|
|
void ff_celt_free(CeltContext **ps)
|
|
{
|
|
CeltContext *s = *ps;
|
|
int i;
|
|
|
|
if (!s)
|
|
return;
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++)
|
|
ff_celt_imdct_uninit(&s->imdct[i]);
|
|
|
|
av_freep(ps);
|
|
}
|
|
|
|
int ff_celt_init(AVCodecContext *avctx, CeltContext **ps, int output_channels)
|
|
{
|
|
CeltContext *s;
|
|
int i, ret;
|
|
|
|
if (output_channels != 1 && output_channels != 2) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
|
|
output_channels);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
s = av_mallocz(sizeof(*s));
|
|
if (!s)
|
|
return AVERROR(ENOMEM);
|
|
|
|
s->avctx = avctx;
|
|
s->output_channels = output_channels;
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++) {
|
|
ret = ff_celt_imdct_init(&s->imdct[i], i + 3);
|
|
if (ret < 0)
|
|
goto fail;
|
|
}
|
|
|
|
avpriv_float_dsp_init(&s->dsp, avctx->flags & CODEC_FLAG_BITEXACT);
|
|
|
|
ff_celt_flush(s);
|
|
|
|
*ps = s;
|
|
|
|
return 0;
|
|
fail:
|
|
ff_celt_free(&s);
|
|
return ret;
|
|
}
|