ffmpeg/libavutil/tx.c
Lynne 119a3f7e8d
lavu/x86: add FFT assembly
This commit adds a pure x86 assembly SIMD version of the FFT in libavutil/tx.
The design of this pure assembly FFT is pretty unconventional.

On the lowest level, instead of splitting the complex numbers into
real and imaginary parts, we keep complex numbers together but split
them in terms of parity. This saves a number of shuffles in each transform,
but more importantly, it splits each transform into two independent
paths, which we process using separate registers in parallel.
This allows us to keep all units saturated and lets us use all available
registers to avoid dependencies.
Moreover, it allows us to double the granularity of our per-load permutation,
skipping many expensive lookups and allowing us to use just 4 loads per register,
rather than 8, or in case FMA3 (and by extension, AVX2), use the vgatherdpd
instruction, which is at least as fast as 4 separate loads on old hardware,
and quite a bit faster on modern CPUs).

Higher up, we go for a bottom-up construction of large transforms, foregoing
the traditional per-transform call-return recursion chains. Instead, we always
start at the bottom-most basis transform (in this case, a 32-point transform),
and continue constructing larger and larger transforms until we return to the
top-most transform.
This way, we only touch the stack 3 times per a complete target transform:
once for the 1/2 length transform and two times for the 1/4 length transform.

The combination algorithm we use is a standard Split-Radix algorithm,
as used in our C code. Although a version with less operations exists
(Steven G. Johnson and Matteo Frigo's "A modified split-radix FFT with fewer
arithmetic operations", IEEE Trans. Signal Process. 55 (1), 111–119 (2007),
which is the one FFTW uses), it only has 2% less operations and requires at least 4x
the binary code (due to it needing 4 different paths to do a single transform).
That version also has other issues which prevent it from being implemented
with SIMD code as efficiently, which makes it lose the marginal gains it offered,
and cannot be performed bottom-up, requiring many recursive call-return chains,
whose overhead adds up.

We go through a lot of effort to minimize load/stores by keeping as much in
registers in between construcring transforms. This saves us around 32 cycles,
on paper, but in reality a lot more due to load/store aliasing (a load from a
memory location cannot be issued while there's a store pending, and there are
only so many (2 for Zen 3) load/store units in a CPU).
Also, we interleave coefficients during the last stage to save on a store+load
per register.

Each of the smallest, basis transforms (4, 8 and 16-point in our case)
has been extremely optimized. Our 8-point transform is barely 20 instructions
in total, beating our old implementation 8-point transform by 1 instruction.
Our 2x8-point transform is 23 instructions, beating our old implementation by
6 instruction and needing 50% less cycles. Our 16-point transform's combination
code takes slightly more instructions than our old implementation, but makes up
for it by requiring a lot less arithmetic operations.

Overall, the transform was optimized for the timings of Zen 3, which at the
time of writing has the most IPC from all documented CPUs. Shuffles were
preferred over arithmetic operations due to their 1/0.5 latency/throughput.

On average, this code is 30% faster than our old libavcodec implementation.
It's able to trade blows with the previously-untouchable FFTW on small transforms,
and due to its tiny size and better prediction, outdoes FFTW on larger transforms
by 11% on the largest currently supported size.
2021-04-24 17:19:18 +02:00

267 lines
7.6 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "tx_priv.h"
int ff_tx_type_is_mdct(enum AVTXType type)
{
switch (type) {
case AV_TX_FLOAT_MDCT:
case AV_TX_DOUBLE_MDCT:
case AV_TX_INT32_MDCT:
return 1;
default:
return 0;
}
}
/* Calculates the modular multiplicative inverse */
static av_always_inline int mulinv(int n, int m)
{
n = n % m;
for (int x = 1; x < m; x++)
if (((n * x) % m) == 1)
return x;
av_assert0(0); /* Never reached */
}
/* Guaranteed to work for any n, m where gcd(n, m) == 1 */
int ff_tx_gen_compound_mapping(AVTXContext *s)
{
int *in_map, *out_map;
const int n = s->n;
const int m = s->m;
const int inv = s->inv;
const int len = n*m;
const int m_inv = mulinv(m, n);
const int n_inv = mulinv(n, m);
const int mdct = ff_tx_type_is_mdct(s->type);
if (!(s->pfatab = av_malloc(2*len*sizeof(*s->pfatab))))
return AVERROR(ENOMEM);
in_map = s->pfatab;
out_map = s->pfatab + n*m;
/* Ruritanian map for input, CRT map for output, can be swapped */
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
/* Shifted by 1 to simplify MDCTs */
in_map[j*n + i] = ((i*m + j*n) % len) << mdct;
out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j;
}
}
/* Change transform direction by reversing all ACs */
if (inv) {
for (int i = 0; i < m; i++) {
int *in = &in_map[i*n + 1]; /* Skip the DC */
for (int j = 0; j < ((n - 1) >> 1); j++)
FFSWAP(int, in[j], in[n - j - 2]);
}
}
/* Our 15-point transform is also a compound one, so embed its input map */
if (n == 15) {
for (int k = 0; k < m; k++) {
int tmp[15];
memcpy(tmp, &in_map[k*15], 15*sizeof(*tmp));
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 3; j++)
in_map[k*15 + i*3 + j] = tmp[(i*3 + j*5) % 15];
}
}
}
return 0;
}
static inline int split_radix_permutation(int i, int m, int inverse)
{
m >>= 1;
if (m <= 1)
return i & 1;
if (!(i & m))
return (split_radix_permutation(i, m, inverse) << 1);
m >>= 1;
return (split_radix_permutation(i, m, inverse) << 2) + 1 - 2*(!(i & m) ^ inverse);
}
int ff_tx_gen_ptwo_revtab(AVTXContext *s, int invert_lookup)
{
const int m = s->m, inv = s->inv;
if (!(s->revtab = av_malloc(s->m*sizeof(*s->revtab))))
return AVERROR(ENOMEM);
if (!(s->revtab_c = av_malloc(m*sizeof(*s->revtab_c))))
return AVERROR(ENOMEM);
/* Default */
for (int i = 0; i < m; i++) {
int k = -split_radix_permutation(i, m, inv) & (m - 1);
if (invert_lookup)
s->revtab[i] = s->revtab_c[i] = k;
else
s->revtab[i] = s->revtab_c[k] = i;
}
return 0;
}
int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s, int *revtab)
{
int nb_inplace_idx = 0;
if (!(s->inplace_idx = av_malloc(s->m*sizeof(*s->inplace_idx))))
return AVERROR(ENOMEM);
/* The first coefficient is always already in-place */
for (int src = 1; src < s->m; src++) {
int dst = revtab[src];
int found = 0;
if (dst <= src)
continue;
/* This just checks if a closed loop has been encountered before,
* and if so, skips it, since to fully permute a loop we must only
* enter it once. */
do {
for (int j = 0; j < nb_inplace_idx; j++) {
if (dst == s->inplace_idx[j]) {
found = 1;
break;
}
}
dst = revtab[dst];
} while (dst != src && !found);
if (!found)
s->inplace_idx[nb_inplace_idx++] = src;
}
s->inplace_idx[nb_inplace_idx++] = 0;
return 0;
}
static void parity_revtab_generator(int *revtab, int n, int inv, int offset,
int is_dual, int dual_high, int len,
int basis, int dual_stride)
{
len >>= 1;
if (len <= basis) {
int k1, k2, *even, *odd, stride;
is_dual = is_dual && dual_stride;
dual_high = is_dual & dual_high;
stride = is_dual ? FFMIN(dual_stride, len) : 0;
even = &revtab[offset + dual_high*(stride - 2*len)];
odd = &even[len + (is_dual && !dual_high)*len + dual_high*len];
for (int i = 0; i < len; i++) {
k1 = -split_radix_permutation(offset + i*2 + 0, n, inv) & (n - 1);
k2 = -split_radix_permutation(offset + i*2 + 1, n, inv) & (n - 1);
*even++ = k1;
*odd++ = k2;
if (stride && !((i + 1) % stride)) {
even += stride;
odd += stride;
}
}
return;
}
parity_revtab_generator(revtab, n, inv, offset,
0, 0, len >> 0, basis, dual_stride);
parity_revtab_generator(revtab, n, inv, offset + (len >> 0),
1, 0, len >> 1, basis, dual_stride);
parity_revtab_generator(revtab, n, inv, offset + (len >> 0) + (len >> 1),
1, 1, len >> 1, basis, dual_stride);
}
void ff_tx_gen_split_radix_parity_revtab(int *revtab, int len, int inv,
int basis, int dual_stride)
{
basis >>= 1;
if (len < basis)
return;
av_assert0(!dual_stride || !(dual_stride & (dual_stride - 1)));
av_assert0(dual_stride <= basis);
parity_revtab_generator(revtab, len, inv, 0, 0, 0, len, basis, dual_stride);
}
av_cold void av_tx_uninit(AVTXContext **ctx)
{
if (!(*ctx))
return;
av_free((*ctx)->pfatab);
av_free((*ctx)->exptab);
av_free((*ctx)->revtab);
av_free((*ctx)->revtab_c);
av_free((*ctx)->inplace_idx);
av_free((*ctx)->tmp);
av_freep(ctx);
}
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type,
int inv, int len, const void *scale, uint64_t flags)
{
int err;
AVTXContext *s = av_mallocz(sizeof(*s));
if (!s)
return AVERROR(ENOMEM);
switch (type) {
case AV_TX_FLOAT_FFT:
case AV_TX_FLOAT_MDCT:
if ((err = ff_tx_init_mdct_fft_float(s, tx, type, inv, len, scale, flags)))
goto fail;
if (ARCH_X86)
ff_tx_init_float_x86(s, tx);
break;
case AV_TX_DOUBLE_FFT:
case AV_TX_DOUBLE_MDCT:
if ((err = ff_tx_init_mdct_fft_double(s, tx, type, inv, len, scale, flags)))
goto fail;
break;
case AV_TX_INT32_FFT:
case AV_TX_INT32_MDCT:
if ((err = ff_tx_init_mdct_fft_int32(s, tx, type, inv, len, scale, flags)))
goto fail;
break;
default:
err = AVERROR(EINVAL);
goto fail;
}
*ctx = s;
return 0;
fail:
av_tx_uninit(&s);
*tx = NULL;
return err;
}