mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-24 08:12:44 +00:00
ec6402b7c5
It's more readable and less prone to breakage.
1372 lines
43 KiB
C
1372 lines
43 KiB
C
/**
|
|
* FLAC audio encoder
|
|
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "libavutil/crc.h"
|
|
#include "libavutil/md5.h"
|
|
#include "libavutil/opt.h"
|
|
#include "avcodec.h"
|
|
#include "get_bits.h"
|
|
#include "golomb.h"
|
|
#include "lpc.h"
|
|
#include "flac.h"
|
|
#include "flacdata.h"
|
|
|
|
#define FLAC_SUBFRAME_CONSTANT 0
|
|
#define FLAC_SUBFRAME_VERBATIM 1
|
|
#define FLAC_SUBFRAME_FIXED 8
|
|
#define FLAC_SUBFRAME_LPC 32
|
|
|
|
#define MAX_FIXED_ORDER 4
|
|
#define MAX_PARTITION_ORDER 8
|
|
#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
|
|
#define MAX_LPC_PRECISION 15
|
|
#define MAX_LPC_SHIFT 15
|
|
#define MAX_RICE_PARAM 14
|
|
|
|
typedef struct CompressionOptions {
|
|
int compression_level;
|
|
int block_time_ms;
|
|
enum FFLPCType lpc_type;
|
|
int lpc_passes;
|
|
int lpc_coeff_precision;
|
|
int min_prediction_order;
|
|
int max_prediction_order;
|
|
int prediction_order_method;
|
|
int min_partition_order;
|
|
int max_partition_order;
|
|
} CompressionOptions;
|
|
|
|
typedef struct RiceContext {
|
|
int porder;
|
|
int params[MAX_PARTITIONS];
|
|
} RiceContext;
|
|
|
|
typedef struct FlacSubframe {
|
|
int type;
|
|
int type_code;
|
|
int obits;
|
|
int order;
|
|
int32_t coefs[MAX_LPC_ORDER];
|
|
int shift;
|
|
RiceContext rc;
|
|
int32_t samples[FLAC_MAX_BLOCKSIZE];
|
|
int32_t residual[FLAC_MAX_BLOCKSIZE+1];
|
|
} FlacSubframe;
|
|
|
|
typedef struct FlacFrame {
|
|
FlacSubframe subframes[FLAC_MAX_CHANNELS];
|
|
int blocksize;
|
|
int bs_code[2];
|
|
uint8_t crc8;
|
|
int ch_mode;
|
|
int verbatim_only;
|
|
} FlacFrame;
|
|
|
|
typedef struct FlacEncodeContext {
|
|
AVClass *class;
|
|
PutBitContext pb;
|
|
int channels;
|
|
int samplerate;
|
|
int sr_code[2];
|
|
int max_blocksize;
|
|
int min_framesize;
|
|
int max_framesize;
|
|
int max_encoded_framesize;
|
|
uint32_t frame_count;
|
|
uint64_t sample_count;
|
|
uint8_t md5sum[16];
|
|
FlacFrame frame;
|
|
CompressionOptions options;
|
|
AVCodecContext *avctx;
|
|
LPCContext lpc_ctx;
|
|
struct AVMD5 *md5ctx;
|
|
} FlacEncodeContext;
|
|
|
|
|
|
/**
|
|
* Write streaminfo metadata block to byte array.
|
|
*/
|
|
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
|
|
{
|
|
PutBitContext pb;
|
|
|
|
memset(header, 0, FLAC_STREAMINFO_SIZE);
|
|
init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
|
|
|
|
/* streaminfo metadata block */
|
|
put_bits(&pb, 16, s->max_blocksize);
|
|
put_bits(&pb, 16, s->max_blocksize);
|
|
put_bits(&pb, 24, s->min_framesize);
|
|
put_bits(&pb, 24, s->max_framesize);
|
|
put_bits(&pb, 20, s->samplerate);
|
|
put_bits(&pb, 3, s->channels-1);
|
|
put_bits(&pb, 5, 15); /* bits per sample - 1 */
|
|
/* write 36-bit sample count in 2 put_bits() calls */
|
|
put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
|
|
put_bits(&pb, 12, s->sample_count & 0x000000FFFLL);
|
|
flush_put_bits(&pb);
|
|
memcpy(&header[18], s->md5sum, 16);
|
|
}
|
|
|
|
|
|
/**
|
|
* Set blocksize based on samplerate.
|
|
* Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
|
|
*/
|
|
static int select_blocksize(int samplerate, int block_time_ms)
|
|
{
|
|
int i;
|
|
int target;
|
|
int blocksize;
|
|
|
|
assert(samplerate > 0);
|
|
blocksize = ff_flac_blocksize_table[1];
|
|
target = (samplerate * block_time_ms) / 1000;
|
|
for (i = 0; i < 16; i++) {
|
|
if (target >= ff_flac_blocksize_table[i] &&
|
|
ff_flac_blocksize_table[i] > blocksize) {
|
|
blocksize = ff_flac_blocksize_table[i];
|
|
}
|
|
}
|
|
return blocksize;
|
|
}
|
|
|
|
|
|
static av_cold void dprint_compression_options(FlacEncodeContext *s)
|
|
{
|
|
AVCodecContext *avctx = s->avctx;
|
|
CompressionOptions *opt = &s->options;
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
|
|
|
|
switch (opt->lpc_type) {
|
|
case FF_LPC_TYPE_NONE:
|
|
av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
|
|
break;
|
|
case FF_LPC_TYPE_FIXED:
|
|
av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
|
|
break;
|
|
case FF_LPC_TYPE_LEVINSON:
|
|
av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
|
|
break;
|
|
case FF_LPC_TYPE_CHOLESKY:
|
|
av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
|
|
opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es");
|
|
break;
|
|
}
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
|
|
opt->min_prediction_order, opt->max_prediction_order);
|
|
|
|
switch (opt->prediction_order_method) {
|
|
case ORDER_METHOD_EST:
|
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate");
|
|
break;
|
|
case ORDER_METHOD_2LEVEL:
|
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level");
|
|
break;
|
|
case ORDER_METHOD_4LEVEL:
|
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level");
|
|
break;
|
|
case ORDER_METHOD_8LEVEL:
|
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level");
|
|
break;
|
|
case ORDER_METHOD_SEARCH:
|
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search");
|
|
break;
|
|
case ORDER_METHOD_LOG:
|
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search");
|
|
break;
|
|
}
|
|
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
|
|
opt->min_partition_order, opt->max_partition_order);
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
|
|
opt->lpc_coeff_precision);
|
|
}
|
|
|
|
|
|
static av_cold int flac_encode_init(AVCodecContext *avctx)
|
|
{
|
|
int freq = avctx->sample_rate;
|
|
int channels = avctx->channels;
|
|
FlacEncodeContext *s = avctx->priv_data;
|
|
int i, level, ret;
|
|
uint8_t *streaminfo;
|
|
|
|
s->avctx = avctx;
|
|
|
|
if (avctx->sample_fmt != AV_SAMPLE_FMT_S16)
|
|
return -1;
|
|
|
|
if (channels < 1 || channels > FLAC_MAX_CHANNELS)
|
|
return -1;
|
|
s->channels = channels;
|
|
|
|
/* find samplerate in table */
|
|
if (freq < 1)
|
|
return -1;
|
|
for (i = 4; i < 12; i++) {
|
|
if (freq == ff_flac_sample_rate_table[i]) {
|
|
s->samplerate = ff_flac_sample_rate_table[i];
|
|
s->sr_code[0] = i;
|
|
s->sr_code[1] = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* if not in table, samplerate is non-standard */
|
|
if (i == 12) {
|
|
if (freq % 1000 == 0 && freq < 255000) {
|
|
s->sr_code[0] = 12;
|
|
s->sr_code[1] = freq / 1000;
|
|
} else if (freq % 10 == 0 && freq < 655350) {
|
|
s->sr_code[0] = 14;
|
|
s->sr_code[1] = freq / 10;
|
|
} else if (freq < 65535) {
|
|
s->sr_code[0] = 13;
|
|
s->sr_code[1] = freq;
|
|
} else {
|
|
return -1;
|
|
}
|
|
s->samplerate = freq;
|
|
}
|
|
|
|
/* set compression option defaults based on avctx->compression_level */
|
|
if (avctx->compression_level < 0)
|
|
s->options.compression_level = 5;
|
|
else
|
|
s->options.compression_level = avctx->compression_level;
|
|
|
|
level = s->options.compression_level;
|
|
if (level > 12) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
|
|
s->options.compression_level);
|
|
return -1;
|
|
}
|
|
|
|
s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
|
|
|
|
if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT)
|
|
s->options.lpc_type = ((int[]){ FF_LPC_TYPE_FIXED, FF_LPC_TYPE_FIXED, FF_LPC_TYPE_FIXED,
|
|
FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
|
|
FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
|
|
FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
|
|
FF_LPC_TYPE_LEVINSON})[level];
|
|
|
|
s->options.min_prediction_order = ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
|
|
s->options.max_prediction_order = ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level];
|
|
|
|
if (s->options.prediction_order_method < 0)
|
|
s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
|
|
ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
|
|
ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL,
|
|
ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
|
|
ORDER_METHOD_SEARCH})[level];
|
|
|
|
if (s->options.min_partition_order > s->options.max_partition_order) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
|
|
s->options.min_partition_order, s->options.max_partition_order);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
if (s->options.min_partition_order < 0)
|
|
s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level];
|
|
if (s->options.max_partition_order < 0)
|
|
s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level];
|
|
|
|
/* set compression option overrides from AVCodecContext */
|
|
#if FF_API_FLAC_GLOBAL_OPTS
|
|
if (avctx->lpc_type > FF_LPC_TYPE_DEFAULT) {
|
|
if (avctx->lpc_type > FF_LPC_TYPE_CHOLESKY) {
|
|
av_log(avctx, AV_LOG_ERROR, "unknown lpc type: %d\n", avctx->lpc_type);
|
|
return -1;
|
|
}
|
|
s->options.lpc_type = avctx->lpc_type;
|
|
if (s->options.lpc_type == FF_LPC_TYPE_CHOLESKY) {
|
|
if (avctx->lpc_passes < 0) {
|
|
// default number of passes for Cholesky
|
|
s->options.lpc_passes = 2;
|
|
} else if (avctx->lpc_passes == 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of lpc passes: %d\n",
|
|
avctx->lpc_passes);
|
|
return -1;
|
|
} else {
|
|
s->options.lpc_passes = avctx->lpc_passes;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
|
|
s->options.min_prediction_order = 0;
|
|
} else if (avctx->min_prediction_order >= 0) {
|
|
if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
|
|
if (avctx->min_prediction_order > MAX_FIXED_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
|
|
avctx->min_prediction_order);
|
|
return -1;
|
|
}
|
|
} else if (avctx->min_prediction_order < MIN_LPC_ORDER ||
|
|
avctx->min_prediction_order > MAX_LPC_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
|
|
avctx->min_prediction_order);
|
|
return -1;
|
|
}
|
|
s->options.min_prediction_order = avctx->min_prediction_order;
|
|
}
|
|
if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
|
|
s->options.max_prediction_order = 0;
|
|
} else if (avctx->max_prediction_order >= 0) {
|
|
if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
|
|
if (avctx->max_prediction_order > MAX_FIXED_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
|
|
avctx->max_prediction_order);
|
|
return -1;
|
|
}
|
|
} else if (avctx->max_prediction_order < MIN_LPC_ORDER ||
|
|
avctx->max_prediction_order > MAX_LPC_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
|
|
avctx->max_prediction_order);
|
|
return -1;
|
|
}
|
|
s->options.max_prediction_order = avctx->max_prediction_order;
|
|
}
|
|
if (s->options.max_prediction_order < s->options.min_prediction_order) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
|
|
s->options.min_prediction_order, s->options.max_prediction_order);
|
|
return -1;
|
|
}
|
|
|
|
#if FF_API_FLAC_GLOBAL_OPTS
|
|
if (avctx->prediction_order_method >= 0) {
|
|
if (avctx->prediction_order_method > ORDER_METHOD_LOG) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
|
|
avctx->prediction_order_method);
|
|
return -1;
|
|
}
|
|
s->options.prediction_order_method = avctx->prediction_order_method;
|
|
}
|
|
|
|
if (avctx->min_partition_order >= 0) {
|
|
if (avctx->min_partition_order > MAX_PARTITION_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
|
|
avctx->min_partition_order);
|
|
return -1;
|
|
}
|
|
s->options.min_partition_order = avctx->min_partition_order;
|
|
}
|
|
if (avctx->max_partition_order >= 0) {
|
|
if (avctx->max_partition_order > MAX_PARTITION_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
|
|
avctx->max_partition_order);
|
|
return -1;
|
|
}
|
|
s->options.max_partition_order = avctx->max_partition_order;
|
|
}
|
|
if (s->options.max_partition_order < s->options.min_partition_order) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
|
|
s->options.min_partition_order, s->options.max_partition_order);
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
if (avctx->frame_size > 0) {
|
|
if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
|
|
avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
|
|
avctx->frame_size);
|
|
return -1;
|
|
}
|
|
} else {
|
|
s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
|
|
}
|
|
s->max_blocksize = s->avctx->frame_size;
|
|
|
|
#if FF_API_FLAC_GLOBAL_OPTS
|
|
/* set LPC precision */
|
|
if (avctx->lpc_coeff_precision > 0) {
|
|
if (avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
|
|
avctx->lpc_coeff_precision);
|
|
return -1;
|
|
}
|
|
s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
|
|
}
|
|
#endif
|
|
|
|
/* set maximum encoded frame size in verbatim mode */
|
|
s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size,
|
|
s->channels, 16);
|
|
|
|
/* initialize MD5 context */
|
|
s->md5ctx = av_malloc(av_md5_size);
|
|
if (!s->md5ctx)
|
|
return AVERROR(ENOMEM);
|
|
av_md5_init(s->md5ctx);
|
|
|
|
streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
|
|
if (!streaminfo)
|
|
return AVERROR(ENOMEM);
|
|
write_streaminfo(s, streaminfo);
|
|
avctx->extradata = streaminfo;
|
|
avctx->extradata_size = FLAC_STREAMINFO_SIZE;
|
|
|
|
s->frame_count = 0;
|
|
s->min_framesize = s->max_framesize;
|
|
|
|
avctx->coded_frame = avcodec_alloc_frame();
|
|
if (!avctx->coded_frame)
|
|
return AVERROR(ENOMEM);
|
|
|
|
ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
|
|
s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON);
|
|
|
|
dprint_compression_options(s);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void init_frame(FlacEncodeContext *s)
|
|
{
|
|
int i, ch;
|
|
FlacFrame *frame;
|
|
|
|
frame = &s->frame;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (s->avctx->frame_size == ff_flac_blocksize_table[i]) {
|
|
frame->blocksize = ff_flac_blocksize_table[i];
|
|
frame->bs_code[0] = i;
|
|
frame->bs_code[1] = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (i == 16) {
|
|
frame->blocksize = s->avctx->frame_size;
|
|
if (frame->blocksize <= 256) {
|
|
frame->bs_code[0] = 6;
|
|
frame->bs_code[1] = frame->blocksize-1;
|
|
} else {
|
|
frame->bs_code[0] = 7;
|
|
frame->bs_code[1] = frame->blocksize-1;
|
|
}
|
|
}
|
|
|
|
for (ch = 0; ch < s->channels; ch++)
|
|
frame->subframes[ch].obits = 16;
|
|
|
|
frame->verbatim_only = 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Copy channel-interleaved input samples into separate subframes.
|
|
*/
|
|
static void copy_samples(FlacEncodeContext *s, const int16_t *samples)
|
|
{
|
|
int i, j, ch;
|
|
FlacFrame *frame;
|
|
|
|
frame = &s->frame;
|
|
for (i = 0, j = 0; i < frame->blocksize; i++)
|
|
for (ch = 0; ch < s->channels; ch++, j++)
|
|
frame->subframes[ch].samples[i] = samples[j];
|
|
}
|
|
|
|
|
|
static int rice_count_exact(int32_t *res, int n, int k)
|
|
{
|
|
int i;
|
|
int count = 0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
int32_t v = -2 * res[i] - 1;
|
|
v ^= v >> 31;
|
|
count += (v >> k) + 1 + k;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
static int subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub,
|
|
int pred_order)
|
|
{
|
|
int p, porder, psize;
|
|
int i, part_end;
|
|
int count = 0;
|
|
|
|
/* subframe header */
|
|
count += 8;
|
|
|
|
/* subframe */
|
|
if (sub->type == FLAC_SUBFRAME_CONSTANT) {
|
|
count += sub->obits;
|
|
} else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
|
|
count += s->frame.blocksize * sub->obits;
|
|
} else {
|
|
/* warm-up samples */
|
|
count += pred_order * sub->obits;
|
|
|
|
/* LPC coefficients */
|
|
if (sub->type == FLAC_SUBFRAME_LPC)
|
|
count += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
|
|
|
|
/* rice-encoded block */
|
|
count += 2;
|
|
|
|
/* partition order */
|
|
porder = sub->rc.porder;
|
|
psize = s->frame.blocksize >> porder;
|
|
count += 4;
|
|
|
|
/* residual */
|
|
i = pred_order;
|
|
part_end = psize;
|
|
for (p = 0; p < 1 << porder; p++) {
|
|
int k = sub->rc.params[p];
|
|
count += 4;
|
|
count += rice_count_exact(&sub->residual[i], part_end - i, k);
|
|
i = part_end;
|
|
part_end = FFMIN(s->frame.blocksize, part_end + psize);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
|
|
|
|
/**
|
|
* Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
|
|
*/
|
|
static int find_optimal_param(uint32_t sum, int n)
|
|
{
|
|
int k;
|
|
uint32_t sum2;
|
|
|
|
if (sum <= n >> 1)
|
|
return 0;
|
|
sum2 = sum - (n >> 1);
|
|
k = av_log2(n < 256 ? FASTDIV(sum2, n) : sum2 / n);
|
|
return FFMIN(k, MAX_RICE_PARAM);
|
|
}
|
|
|
|
|
|
static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
|
|
uint32_t *sums, int n, int pred_order)
|
|
{
|
|
int i;
|
|
int k, cnt, part;
|
|
uint32_t all_bits;
|
|
|
|
part = (1 << porder);
|
|
all_bits = 4 * part;
|
|
|
|
cnt = (n >> porder) - pred_order;
|
|
for (i = 0; i < part; i++) {
|
|
k = find_optimal_param(sums[i], cnt);
|
|
rc->params[i] = k;
|
|
all_bits += rice_encode_count(sums[i], cnt, k);
|
|
cnt = n >> porder;
|
|
}
|
|
|
|
rc->porder = porder;
|
|
|
|
return all_bits;
|
|
}
|
|
|
|
|
|
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
|
|
uint32_t sums[][MAX_PARTITIONS])
|
|
{
|
|
int i, j;
|
|
int parts;
|
|
uint32_t *res, *res_end;
|
|
|
|
/* sums for highest level */
|
|
parts = (1 << pmax);
|
|
res = &data[pred_order];
|
|
res_end = &data[n >> pmax];
|
|
for (i = 0; i < parts; i++) {
|
|
uint32_t sum = 0;
|
|
while (res < res_end)
|
|
sum += *(res++);
|
|
sums[pmax][i] = sum;
|
|
res_end += n >> pmax;
|
|
}
|
|
/* sums for lower levels */
|
|
for (i = pmax - 1; i >= pmin; i--) {
|
|
parts = (1 << i);
|
|
for (j = 0; j < parts; j++)
|
|
sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
|
|
}
|
|
}
|
|
|
|
|
|
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
|
|
int32_t *data, int n, int pred_order)
|
|
{
|
|
int i;
|
|
uint32_t bits[MAX_PARTITION_ORDER+1];
|
|
int opt_porder;
|
|
RiceContext tmp_rc;
|
|
uint32_t *udata;
|
|
uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
|
|
|
|
assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
|
|
assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
|
|
assert(pmin <= pmax);
|
|
|
|
udata = av_malloc(n * sizeof(uint32_t));
|
|
for (i = 0; i < n; i++)
|
|
udata[i] = (2*data[i]) ^ (data[i]>>31);
|
|
|
|
calc_sums(pmin, pmax, udata, n, pred_order, sums);
|
|
|
|
opt_porder = pmin;
|
|
bits[pmin] = UINT32_MAX;
|
|
for (i = pmin; i <= pmax; i++) {
|
|
bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
|
|
if (bits[i] <= bits[opt_porder]) {
|
|
opt_porder = i;
|
|
*rc = tmp_rc;
|
|
}
|
|
}
|
|
|
|
av_freep(&udata);
|
|
return bits[opt_porder];
|
|
}
|
|
|
|
|
|
static int get_max_p_order(int max_porder, int n, int order)
|
|
{
|
|
int porder = FFMIN(max_porder, av_log2(n^(n-1)));
|
|
if (order > 0)
|
|
porder = FFMIN(porder, av_log2(n/order));
|
|
return porder;
|
|
}
|
|
|
|
|
|
static uint32_t find_subframe_rice_params(FlacEncodeContext *s,
|
|
FlacSubframe *sub, int pred_order)
|
|
{
|
|
int pmin = get_max_p_order(s->options.min_partition_order,
|
|
s->frame.blocksize, pred_order);
|
|
int pmax = get_max_p_order(s->options.max_partition_order,
|
|
s->frame.blocksize, pred_order);
|
|
|
|
uint32_t bits = 8 + pred_order * sub->obits + 2 + 4;
|
|
if (sub->type == FLAC_SUBFRAME_LPC)
|
|
bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
|
|
bits += calc_rice_params(&sub->rc, pmin, pmax, sub->residual,
|
|
s->frame.blocksize, pred_order);
|
|
return bits;
|
|
}
|
|
|
|
|
|
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
|
|
int order)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < order; i++)
|
|
res[i] = smp[i];
|
|
|
|
if (order == 0) {
|
|
for (i = order; i < n; i++)
|
|
res[i] = smp[i];
|
|
} else if (order == 1) {
|
|
for (i = order; i < n; i++)
|
|
res[i] = smp[i] - smp[i-1];
|
|
} else if (order == 2) {
|
|
int a = smp[order-1] - smp[order-2];
|
|
for (i = order; i < n; i += 2) {
|
|
int b = smp[i ] - smp[i-1];
|
|
res[i] = b - a;
|
|
a = smp[i+1] - smp[i ];
|
|
res[i+1] = a - b;
|
|
}
|
|
} else if (order == 3) {
|
|
int a = smp[order-1] - smp[order-2];
|
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
|
|
for (i = order; i < n; i += 2) {
|
|
int b = smp[i ] - smp[i-1];
|
|
int d = b - a;
|
|
res[i] = d - c;
|
|
a = smp[i+1] - smp[i ];
|
|
c = a - b;
|
|
res[i+1] = c - d;
|
|
}
|
|
} else {
|
|
int a = smp[order-1] - smp[order-2];
|
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
|
|
int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
|
|
for (i = order; i < n; i += 2) {
|
|
int b = smp[i ] - smp[i-1];
|
|
int d = b - a;
|
|
int f = d - c;
|
|
res[i ] = f - e;
|
|
a = smp[i+1] - smp[i ];
|
|
c = a - b;
|
|
e = c - d;
|
|
res[i+1] = e - f;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#define LPC1(x) {\
|
|
int c = coefs[(x)-1];\
|
|
p0 += c * s;\
|
|
s = smp[i-(x)+1];\
|
|
p1 += c * s;\
|
|
}
|
|
|
|
static av_always_inline void encode_residual_lpc_unrolled(int32_t *res,
|
|
const int32_t *smp, int n, int order,
|
|
const int32_t *coefs, int shift, int big)
|
|
{
|
|
int i;
|
|
for (i = order; i < n; i += 2) {
|
|
int s = smp[i-order];
|
|
int p0 = 0, p1 = 0;
|
|
if (big) {
|
|
switch (order) {
|
|
case 32: LPC1(32)
|
|
case 31: LPC1(31)
|
|
case 30: LPC1(30)
|
|
case 29: LPC1(29)
|
|
case 28: LPC1(28)
|
|
case 27: LPC1(27)
|
|
case 26: LPC1(26)
|
|
case 25: LPC1(25)
|
|
case 24: LPC1(24)
|
|
case 23: LPC1(23)
|
|
case 22: LPC1(22)
|
|
case 21: LPC1(21)
|
|
case 20: LPC1(20)
|
|
case 19: LPC1(19)
|
|
case 18: LPC1(18)
|
|
case 17: LPC1(17)
|
|
case 16: LPC1(16)
|
|
case 15: LPC1(15)
|
|
case 14: LPC1(14)
|
|
case 13: LPC1(13)
|
|
case 12: LPC1(12)
|
|
case 11: LPC1(11)
|
|
case 10: LPC1(10)
|
|
case 9: LPC1( 9)
|
|
LPC1( 8)
|
|
LPC1( 7)
|
|
LPC1( 6)
|
|
LPC1( 5)
|
|
LPC1( 4)
|
|
LPC1( 3)
|
|
LPC1( 2)
|
|
LPC1( 1)
|
|
}
|
|
} else {
|
|
switch (order) {
|
|
case 8: LPC1( 8)
|
|
case 7: LPC1( 7)
|
|
case 6: LPC1( 6)
|
|
case 5: LPC1( 5)
|
|
case 4: LPC1( 4)
|
|
case 3: LPC1( 3)
|
|
case 2: LPC1( 2)
|
|
case 1: LPC1( 1)
|
|
}
|
|
}
|
|
res[i ] = smp[i ] - (p0 >> shift);
|
|
res[i+1] = smp[i+1] - (p1 >> shift);
|
|
}
|
|
}
|
|
|
|
|
|
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
|
|
int order, const int32_t *coefs, int shift)
|
|
{
|
|
int i;
|
|
for (i = 0; i < order; i++)
|
|
res[i] = smp[i];
|
|
#if CONFIG_SMALL
|
|
for (i = order; i < n; i += 2) {
|
|
int j;
|
|
int s = smp[i];
|
|
int p0 = 0, p1 = 0;
|
|
for (j = 0; j < order; j++) {
|
|
int c = coefs[j];
|
|
p1 += c * s;
|
|
s = smp[i-j-1];
|
|
p0 += c * s;
|
|
}
|
|
res[i ] = smp[i ] - (p0 >> shift);
|
|
res[i+1] = smp[i+1] - (p1 >> shift);
|
|
}
|
|
#else
|
|
switch (order) {
|
|
case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
|
|
case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
|
|
case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
|
|
case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
|
|
case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
|
|
case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
|
|
case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
|
|
case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
|
|
default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
static int encode_residual_ch(FlacEncodeContext *s, int ch)
|
|
{
|
|
int i, n;
|
|
int min_order, max_order, opt_order, omethod;
|
|
FlacFrame *frame;
|
|
FlacSubframe *sub;
|
|
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
|
|
int shift[MAX_LPC_ORDER];
|
|
int32_t *res, *smp;
|
|
|
|
frame = &s->frame;
|
|
sub = &frame->subframes[ch];
|
|
res = sub->residual;
|
|
smp = sub->samples;
|
|
n = frame->blocksize;
|
|
|
|
/* CONSTANT */
|
|
for (i = 1; i < n; i++)
|
|
if(smp[i] != smp[0])
|
|
break;
|
|
if (i == n) {
|
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
|
|
res[0] = smp[0];
|
|
return subframe_count_exact(s, sub, 0);
|
|
}
|
|
|
|
/* VERBATIM */
|
|
if (frame->verbatim_only || n < 5) {
|
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
|
|
memcpy(res, smp, n * sizeof(int32_t));
|
|
return subframe_count_exact(s, sub, 0);
|
|
}
|
|
|
|
min_order = s->options.min_prediction_order;
|
|
max_order = s->options.max_prediction_order;
|
|
omethod = s->options.prediction_order_method;
|
|
|
|
/* FIXED */
|
|
sub->type = FLAC_SUBFRAME_FIXED;
|
|
if (s->options.lpc_type == FF_LPC_TYPE_NONE ||
|
|
s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) {
|
|
uint32_t bits[MAX_FIXED_ORDER+1];
|
|
if (max_order > MAX_FIXED_ORDER)
|
|
max_order = MAX_FIXED_ORDER;
|
|
opt_order = 0;
|
|
bits[0] = UINT32_MAX;
|
|
for (i = min_order; i <= max_order; i++) {
|
|
encode_residual_fixed(res, smp, n, i);
|
|
bits[i] = find_subframe_rice_params(s, sub, i);
|
|
if (bits[i] < bits[opt_order])
|
|
opt_order = i;
|
|
}
|
|
sub->order = opt_order;
|
|
sub->type_code = sub->type | sub->order;
|
|
if (sub->order != max_order) {
|
|
encode_residual_fixed(res, smp, n, sub->order);
|
|
find_subframe_rice_params(s, sub, sub->order);
|
|
}
|
|
return subframe_count_exact(s, sub, sub->order);
|
|
}
|
|
|
|
/* LPC */
|
|
sub->type = FLAC_SUBFRAME_LPC;
|
|
opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
|
|
s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
|
|
s->options.lpc_passes, omethod,
|
|
MAX_LPC_SHIFT, 0);
|
|
|
|
if (omethod == ORDER_METHOD_2LEVEL ||
|
|
omethod == ORDER_METHOD_4LEVEL ||
|
|
omethod == ORDER_METHOD_8LEVEL) {
|
|
int levels = 1 << omethod;
|
|
uint32_t bits[1 << ORDER_METHOD_8LEVEL];
|
|
int order;
|
|
int opt_index = levels-1;
|
|
opt_order = max_order-1;
|
|
bits[opt_index] = UINT32_MAX;
|
|
for (i = levels-1; i >= 0; i--) {
|
|
order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
|
|
if (order < 0)
|
|
order = 0;
|
|
encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
|
|
bits[i] = find_subframe_rice_params(s, sub, order+1);
|
|
if (bits[i] < bits[opt_index]) {
|
|
opt_index = i;
|
|
opt_order = order;
|
|
}
|
|
}
|
|
opt_order++;
|
|
} else if (omethod == ORDER_METHOD_SEARCH) {
|
|
// brute-force optimal order search
|
|
uint32_t bits[MAX_LPC_ORDER];
|
|
opt_order = 0;
|
|
bits[0] = UINT32_MAX;
|
|
for (i = min_order-1; i < max_order; i++) {
|
|
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
|
|
bits[i] = find_subframe_rice_params(s, sub, i+1);
|
|
if (bits[i] < bits[opt_order])
|
|
opt_order = i;
|
|
}
|
|
opt_order++;
|
|
} else if (omethod == ORDER_METHOD_LOG) {
|
|
uint32_t bits[MAX_LPC_ORDER];
|
|
int step;
|
|
|
|
opt_order = min_order - 1 + (max_order-min_order)/3;
|
|
memset(bits, -1, sizeof(bits));
|
|
|
|
for (step = 16; step; step >>= 1) {
|
|
int last = opt_order;
|
|
for (i = last-step; i <= last+step; i += step) {
|
|
if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
|
|
continue;
|
|
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
|
|
bits[i] = find_subframe_rice_params(s, sub, i+1);
|
|
if (bits[i] < bits[opt_order])
|
|
opt_order = i;
|
|
}
|
|
}
|
|
opt_order++;
|
|
}
|
|
|
|
sub->order = opt_order;
|
|
sub->type_code = sub->type | (sub->order-1);
|
|
sub->shift = shift[sub->order-1];
|
|
for (i = 0; i < sub->order; i++)
|
|
sub->coefs[i] = coefs[sub->order-1][i];
|
|
|
|
encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
|
|
|
|
find_subframe_rice_params(s, sub, sub->order);
|
|
|
|
return subframe_count_exact(s, sub, sub->order);
|
|
}
|
|
|
|
|
|
static int count_frame_header(FlacEncodeContext *s)
|
|
{
|
|
uint8_t av_unused tmp;
|
|
int count;
|
|
|
|
/*
|
|
<14> Sync code
|
|
<1> Reserved
|
|
<1> Blocking strategy
|
|
<4> Block size in inter-channel samples
|
|
<4> Sample rate
|
|
<4> Channel assignment
|
|
<3> Sample size in bits
|
|
<1> Reserved
|
|
*/
|
|
count = 32;
|
|
|
|
/* coded frame number */
|
|
PUT_UTF8(s->frame_count, tmp, count += 8;)
|
|
|
|
/* explicit block size */
|
|
if (s->frame.bs_code[0] == 6)
|
|
count += 8;
|
|
else if (s->frame.bs_code[0] == 7)
|
|
count += 16;
|
|
|
|
/* explicit sample rate */
|
|
count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12)) * 8;
|
|
|
|
/* frame header CRC-8 */
|
|
count += 8;
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
static int encode_frame(FlacEncodeContext *s)
|
|
{
|
|
int ch, count;
|
|
|
|
count = count_frame_header(s);
|
|
|
|
for (ch = 0; ch < s->channels; ch++)
|
|
count += encode_residual_ch(s, ch);
|
|
|
|
count += (8 - (count & 7)) & 7; // byte alignment
|
|
count += 16; // CRC-16
|
|
|
|
return count >> 3;
|
|
}
|
|
|
|
|
|
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
|
|
{
|
|
int i, best;
|
|
int32_t lt, rt;
|
|
uint64_t sum[4];
|
|
uint64_t score[4];
|
|
int k;
|
|
|
|
/* calculate sum of 2nd order residual for each channel */
|
|
sum[0] = sum[1] = sum[2] = sum[3] = 0;
|
|
for (i = 2; i < n; i++) {
|
|
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
|
|
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
|
|
sum[2] += FFABS((lt + rt) >> 1);
|
|
sum[3] += FFABS(lt - rt);
|
|
sum[0] += FFABS(lt);
|
|
sum[1] += FFABS(rt);
|
|
}
|
|
/* estimate bit counts */
|
|
for (i = 0; i < 4; i++) {
|
|
k = find_optimal_param(2 * sum[i], n);
|
|
sum[i] = rice_encode_count( 2 * sum[i], n, k);
|
|
}
|
|
|
|
/* calculate score for each mode */
|
|
score[0] = sum[0] + sum[1];
|
|
score[1] = sum[0] + sum[3];
|
|
score[2] = sum[1] + sum[3];
|
|
score[3] = sum[2] + sum[3];
|
|
|
|
/* return mode with lowest score */
|
|
best = 0;
|
|
for (i = 1; i < 4; i++)
|
|
if (score[i] < score[best])
|
|
best = i;
|
|
if (best == 0) {
|
|
return FLAC_CHMODE_INDEPENDENT;
|
|
} else if (best == 1) {
|
|
return FLAC_CHMODE_LEFT_SIDE;
|
|
} else if (best == 2) {
|
|
return FLAC_CHMODE_RIGHT_SIDE;
|
|
} else {
|
|
return FLAC_CHMODE_MID_SIDE;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Perform stereo channel decorrelation.
|
|
*/
|
|
static void channel_decorrelation(FlacEncodeContext *s)
|
|
{
|
|
FlacFrame *frame;
|
|
int32_t *left, *right;
|
|
int i, n;
|
|
|
|
frame = &s->frame;
|
|
n = frame->blocksize;
|
|
left = frame->subframes[0].samples;
|
|
right = frame->subframes[1].samples;
|
|
|
|
if (s->channels != 2) {
|
|
frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
|
|
return;
|
|
}
|
|
|
|
frame->ch_mode = estimate_stereo_mode(left, right, n);
|
|
|
|
/* perform decorrelation and adjust bits-per-sample */
|
|
if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
|
|
return;
|
|
if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
|
|
int32_t tmp;
|
|
for (i = 0; i < n; i++) {
|
|
tmp = left[i];
|
|
left[i] = (tmp + right[i]) >> 1;
|
|
right[i] = tmp - right[i];
|
|
}
|
|
frame->subframes[1].obits++;
|
|
} else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
|
|
for (i = 0; i < n; i++)
|
|
right[i] = left[i] - right[i];
|
|
frame->subframes[1].obits++;
|
|
} else {
|
|
for (i = 0; i < n; i++)
|
|
left[i] -= right[i];
|
|
frame->subframes[0].obits++;
|
|
}
|
|
}
|
|
|
|
|
|
static void write_utf8(PutBitContext *pb, uint32_t val)
|
|
{
|
|
uint8_t tmp;
|
|
PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
|
|
}
|
|
|
|
|
|
static void write_frame_header(FlacEncodeContext *s)
|
|
{
|
|
FlacFrame *frame;
|
|
int crc;
|
|
|
|
frame = &s->frame;
|
|
|
|
put_bits(&s->pb, 16, 0xFFF8);
|
|
put_bits(&s->pb, 4, frame->bs_code[0]);
|
|
put_bits(&s->pb, 4, s->sr_code[0]);
|
|
|
|
if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
|
|
put_bits(&s->pb, 4, s->channels-1);
|
|
else
|
|
put_bits(&s->pb, 4, frame->ch_mode);
|
|
|
|
put_bits(&s->pb, 3, 4); /* bits-per-sample code */
|
|
put_bits(&s->pb, 1, 0);
|
|
write_utf8(&s->pb, s->frame_count);
|
|
|
|
if (frame->bs_code[0] == 6)
|
|
put_bits(&s->pb, 8, frame->bs_code[1]);
|
|
else if (frame->bs_code[0] == 7)
|
|
put_bits(&s->pb, 16, frame->bs_code[1]);
|
|
|
|
if (s->sr_code[0] == 12)
|
|
put_bits(&s->pb, 8, s->sr_code[1]);
|
|
else if (s->sr_code[0] > 12)
|
|
put_bits(&s->pb, 16, s->sr_code[1]);
|
|
|
|
flush_put_bits(&s->pb);
|
|
crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
|
|
put_bits_count(&s->pb) >> 3);
|
|
put_bits(&s->pb, 8, crc);
|
|
}
|
|
|
|
|
|
static void write_subframes(FlacEncodeContext *s)
|
|
{
|
|
int ch;
|
|
|
|
for (ch = 0; ch < s->channels; ch++) {
|
|
FlacSubframe *sub = &s->frame.subframes[ch];
|
|
int i, p, porder, psize;
|
|
int32_t *part_end;
|
|
int32_t *res = sub->residual;
|
|
int32_t *frame_end = &sub->residual[s->frame.blocksize];
|
|
|
|
/* subframe header */
|
|
put_bits(&s->pb, 1, 0);
|
|
put_bits(&s->pb, 6, sub->type_code);
|
|
put_bits(&s->pb, 1, 0); /* no wasted bits */
|
|
|
|
/* subframe */
|
|
if (sub->type == FLAC_SUBFRAME_CONSTANT) {
|
|
put_sbits(&s->pb, sub->obits, res[0]);
|
|
} else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
|
|
while (res < frame_end)
|
|
put_sbits(&s->pb, sub->obits, *res++);
|
|
} else {
|
|
/* warm-up samples */
|
|
for (i = 0; i < sub->order; i++)
|
|
put_sbits(&s->pb, sub->obits, *res++);
|
|
|
|
/* LPC coefficients */
|
|
if (sub->type == FLAC_SUBFRAME_LPC) {
|
|
int cbits = s->options.lpc_coeff_precision;
|
|
put_bits( &s->pb, 4, cbits-1);
|
|
put_sbits(&s->pb, 5, sub->shift);
|
|
for (i = 0; i < sub->order; i++)
|
|
put_sbits(&s->pb, cbits, sub->coefs[i]);
|
|
}
|
|
|
|
/* rice-encoded block */
|
|
put_bits(&s->pb, 2, 0);
|
|
|
|
/* partition order */
|
|
porder = sub->rc.porder;
|
|
psize = s->frame.blocksize >> porder;
|
|
put_bits(&s->pb, 4, porder);
|
|
|
|
/* residual */
|
|
part_end = &sub->residual[psize];
|
|
for (p = 0; p < 1 << porder; p++) {
|
|
int k = sub->rc.params[p];
|
|
put_bits(&s->pb, 4, k);
|
|
while (res < part_end)
|
|
set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0);
|
|
part_end = FFMIN(frame_end, part_end + psize);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void write_frame_footer(FlacEncodeContext *s)
|
|
{
|
|
int crc;
|
|
flush_put_bits(&s->pb);
|
|
crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf,
|
|
put_bits_count(&s->pb)>>3));
|
|
put_bits(&s->pb, 16, crc);
|
|
flush_put_bits(&s->pb);
|
|
}
|
|
|
|
|
|
static int write_frame(FlacEncodeContext *s, uint8_t *frame, int buf_size)
|
|
{
|
|
init_put_bits(&s->pb, frame, buf_size);
|
|
write_frame_header(s);
|
|
write_subframes(s);
|
|
write_frame_footer(s);
|
|
return put_bits_count(&s->pb) >> 3;
|
|
}
|
|
|
|
|
|
static void update_md5_sum(FlacEncodeContext *s, const int16_t *samples)
|
|
{
|
|
#if HAVE_BIGENDIAN
|
|
int i;
|
|
for (i = 0; i < s->frame.blocksize * s->channels; i++) {
|
|
int16_t smp = av_le2ne16(samples[i]);
|
|
av_md5_update(s->md5ctx, (uint8_t *)&smp, 2);
|
|
}
|
|
#else
|
|
av_md5_update(s->md5ctx, (const uint8_t *)samples, s->frame.blocksize*s->channels*2);
|
|
#endif
|
|
}
|
|
|
|
|
|
static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
|
|
int buf_size, void *data)
|
|
{
|
|
FlacEncodeContext *s;
|
|
const int16_t *samples = data;
|
|
int frame_bytes, out_bytes;
|
|
|
|
s = avctx->priv_data;
|
|
|
|
/* when the last block is reached, update the header in extradata */
|
|
if (!data) {
|
|
s->max_framesize = s->max_encoded_framesize;
|
|
av_md5_final(s->md5ctx, s->md5sum);
|
|
write_streaminfo(s, avctx->extradata);
|
|
return 0;
|
|
}
|
|
|
|
/* change max_framesize for small final frame */
|
|
if (avctx->frame_size < s->frame.blocksize) {
|
|
s->max_framesize = ff_flac_get_max_frame_size(avctx->frame_size,
|
|
s->channels, 16);
|
|
}
|
|
|
|
init_frame(s);
|
|
|
|
copy_samples(s, samples);
|
|
|
|
channel_decorrelation(s);
|
|
|
|
frame_bytes = encode_frame(s);
|
|
|
|
/* fallback to verbatim mode if the compressed frame is larger than it
|
|
would be if encoded uncompressed. */
|
|
if (frame_bytes > s->max_framesize) {
|
|
s->frame.verbatim_only = 1;
|
|
frame_bytes = encode_frame(s);
|
|
}
|
|
|
|
if (buf_size < frame_bytes) {
|
|
av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
|
|
return 0;
|
|
}
|
|
out_bytes = write_frame(s, frame, buf_size);
|
|
|
|
s->frame_count++;
|
|
avctx->coded_frame->pts = s->sample_count;
|
|
s->sample_count += avctx->frame_size;
|
|
update_md5_sum(s, samples);
|
|
if (out_bytes > s->max_encoded_framesize)
|
|
s->max_encoded_framesize = out_bytes;
|
|
if (out_bytes < s->min_framesize)
|
|
s->min_framesize = out_bytes;
|
|
|
|
return out_bytes;
|
|
}
|
|
|
|
|
|
static av_cold int flac_encode_close(AVCodecContext *avctx)
|
|
{
|
|
if (avctx->priv_data) {
|
|
FlacEncodeContext *s = avctx->priv_data;
|
|
av_freep(&s->md5ctx);
|
|
ff_lpc_end(&s->lpc_ctx);
|
|
}
|
|
av_freep(&avctx->extradata);
|
|
avctx->extradata_size = 0;
|
|
av_freep(&avctx->coded_frame);
|
|
return 0;
|
|
}
|
|
|
|
#define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
|
|
static const AVOption options[] = {
|
|
{ "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), FF_OPT_TYPE_INT, {.dbl = 15 }, 0, MAX_LPC_PRECISION, FLAGS },
|
|
{ "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), FF_OPT_TYPE_INT, {.dbl = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" },
|
|
{ "none", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = FF_LPC_TYPE_NONE }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
|
|
{ "fixed", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = FF_LPC_TYPE_FIXED }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
|
|
{ "levinson", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
|
|
{ "cholesky", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
|
|
{ "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes), FF_OPT_TYPE_INT, {.dbl = -1 }, INT_MIN, INT_MAX, FLAGS },
|
|
{ "min_partition_order", NULL, offsetof(FlacEncodeContext, options.min_partition_order), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, MAX_PARTITION_ORDER, FLAGS },
|
|
{ "max_partition_order", NULL, offsetof(FlacEncodeContext, options.max_partition_order), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, MAX_PARTITION_ORDER, FLAGS },
|
|
{ "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" },
|
|
{ "estimation", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = ORDER_METHOD_EST }, INT_MIN, INT_MAX, FLAGS, "predm" },
|
|
{ "2level", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
|
|
{ "4level", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
|
|
{ "8level", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
|
|
{ "search", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" },
|
|
{ "log", NULL, 0, FF_OPT_TYPE_CONST, {.dbl = ORDER_METHOD_LOG }, INT_MIN, INT_MAX, FLAGS, "predm" },
|
|
{ NULL },
|
|
};
|
|
|
|
static const AVClass flac_encoder_class = {
|
|
"FLAC encoder",
|
|
av_default_item_name,
|
|
options,
|
|
LIBAVUTIL_VERSION_INT,
|
|
};
|
|
|
|
AVCodec ff_flac_encoder = {
|
|
.name = "flac",
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = CODEC_ID_FLAC,
|
|
.priv_data_size = sizeof(FlacEncodeContext),
|
|
.init = flac_encode_init,
|
|
.encode = flac_encode_frame,
|
|
.close = flac_encode_close,
|
|
.capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
|
|
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
|
|
.long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
|
|
.priv_class = &flac_encoder_class,
|
|
};
|