ffmpeg/libavcodec/cllc.c
Anton Khirnov 1f4cf92cfb pthread_frame: merge the functionality for normal decoder init and init_thread_copy
The current design, where
- proper init is called for the first per-thread context
- first thread's private data is copied into private data for all the
  other threads
- a "fixup" function is called for all the other threads to e.g.
  allocate dynamically allocated data
is very fragile and hard to follow, so it is abandoned. Instead, the
same init function is used to init each per-thread context. Where
necessary, AVCodecInternal.is_copy can be used to differentiate between
the first thread and the other ones (e.g. for decoding the extradata
just once).
2020-04-10 15:24:54 +02:00

521 lines
13 KiB
C

/*
* Canopus Lossless Codec decoder
*
* Copyright (c) 2012-2013 Derek Buitenhuis
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <inttypes.h>
#include "libavutil/intreadwrite.h"
#include "bswapdsp.h"
#include "canopus.h"
#include "get_bits.h"
#include "avcodec.h"
#include "internal.h"
#include "thread.h"
#define VLC_BITS 7
#define VLC_DEPTH 2
typedef struct CLLCContext {
AVCodecContext *avctx;
BswapDSPContext bdsp;
uint8_t *swapped_buf;
int swapped_buf_size;
} CLLCContext;
static int read_code_table(CLLCContext *ctx, GetBitContext *gb, VLC *vlc)
{
uint8_t symbols[256];
uint8_t bits[256];
uint16_t codes[256];
int num_lens, num_codes, num_codes_sum, prefix;
int i, j, count;
prefix = 0;
count = 0;
num_codes_sum = 0;
num_lens = get_bits(gb, 5);
if (num_lens > VLC_BITS * VLC_DEPTH) {
vlc->table = NULL;
av_log(ctx->avctx, AV_LOG_ERROR, "To long VLCs %d\n", num_lens);
return AVERROR_INVALIDDATA;
}
for (i = 0; i < num_lens; i++) {
num_codes = get_bits(gb, 9);
num_codes_sum += num_codes;
if (num_codes_sum > 256) {
vlc->table = NULL;
av_log(ctx->avctx, AV_LOG_ERROR,
"Too many VLCs (%d) to be read.\n", num_codes_sum);
return AVERROR_INVALIDDATA;
}
for (j = 0; j < num_codes; j++) {
symbols[count] = get_bits(gb, 8);
bits[count] = i + 1;
codes[count] = prefix++;
count++;
}
if (prefix > (65535 - 256)/2) {
vlc->table = NULL;
return AVERROR_INVALIDDATA;
}
prefix <<= 1;
}
return ff_init_vlc_sparse(vlc, VLC_BITS, count, bits, 1, 1,
codes, 2, 2, symbols, 1, 1, 0);
}
/*
* Unlike the RGB24 read/restore, which reads in a component at a time,
* ARGB read/restore reads in ARGB quads.
*/
static int read_argb_line(CLLCContext *ctx, GetBitContext *gb, int *top_left,
VLC *vlc, uint8_t *outbuf)
{
uint8_t *dst;
int pred[4];
int code;
int i;
OPEN_READER(bits, gb);
dst = outbuf;
pred[0] = top_left[0];
pred[1] = top_left[1];
pred[2] = top_left[2];
pred[3] = top_left[3];
for (i = 0; i < ctx->avctx->width; i++) {
/* Always get the alpha component */
UPDATE_CACHE(bits, gb);
GET_VLC(code, bits, gb, vlc[0].table, VLC_BITS, VLC_DEPTH);
pred[0] += code;
dst[0] = pred[0];
/* Skip the components if they are entirely transparent */
if (dst[0]) {
/* Red */
UPDATE_CACHE(bits, gb);
GET_VLC(code, bits, gb, vlc[1].table, VLC_BITS, VLC_DEPTH);
pred[1] += code;
dst[1] = pred[1];
/* Green */
UPDATE_CACHE(bits, gb);
GET_VLC(code, bits, gb, vlc[2].table, VLC_BITS, VLC_DEPTH);
pred[2] += code;
dst[2] = pred[2];
/* Blue */
UPDATE_CACHE(bits, gb);
GET_VLC(code, bits, gb, vlc[3].table, VLC_BITS, VLC_DEPTH);
pred[3] += code;
dst[3] = pred[3];
} else {
dst[1] = 0;
dst[2] = 0;
dst[3] = 0;
}
dst += 4;
}
CLOSE_READER(bits, gb);
top_left[0] = outbuf[0];
/* Only stash components if they are not transparent */
if (top_left[0]) {
top_left[1] = outbuf[1];
top_left[2] = outbuf[2];
top_left[3] = outbuf[3];
}
return 0;
}
static int read_rgb24_component_line(CLLCContext *ctx, GetBitContext *gb,
int *top_left, VLC *vlc, uint8_t *outbuf)
{
uint8_t *dst;
int pred, code;
int i;
OPEN_READER(bits, gb);
dst = outbuf;
pred = *top_left;
/* Simultaneously read and restore the line */
for (i = 0; i < ctx->avctx->width; i++) {
UPDATE_CACHE(bits, gb);
GET_VLC(code, bits, gb, vlc->table, VLC_BITS, VLC_DEPTH);
pred += code;
dst[0] = pred;
dst += 3;
}
CLOSE_READER(bits, gb);
/* Stash the first pixel */
*top_left = outbuf[0];
return 0;
}
static int read_yuv_component_line(CLLCContext *ctx, GetBitContext *gb,
int *top_left, VLC *vlc, uint8_t *outbuf,
int is_chroma)
{
int pred, code;
int i;
OPEN_READER(bits, gb);
pred = *top_left;
/* Simultaneously read and restore the line */
for (i = 0; i < ctx->avctx->width >> is_chroma; i++) {
UPDATE_CACHE(bits, gb);
GET_VLC(code, bits, gb, vlc->table, VLC_BITS, VLC_DEPTH);
pred += code;
outbuf[i] = pred;
}
CLOSE_READER(bits, gb);
/* Stash the first pixel */
*top_left = outbuf[0];
return 0;
}
static int decode_argb_frame(CLLCContext *ctx, GetBitContext *gb, AVFrame *pic)
{
AVCodecContext *avctx = ctx->avctx;
uint8_t *dst;
int pred[4];
int ret;
int i, j;
VLC vlc[4];
pred[0] = 0;
pred[1] = 0x80;
pred[2] = 0x80;
pred[3] = 0x80;
dst = pic->data[0];
skip_bits(gb, 16);
/* Read in code table for each plane */
for (i = 0; i < 4; i++) {
ret = read_code_table(ctx, gb, &vlc[i]);
if (ret < 0) {
for (j = 0; j <= i; j++)
ff_free_vlc(&vlc[j]);
av_log(ctx->avctx, AV_LOG_ERROR,
"Could not read code table %d.\n", i);
return ret;
}
}
/* Read in and restore every line */
for (i = 0; i < avctx->height; i++) {
read_argb_line(ctx, gb, pred, vlc, dst);
dst += pic->linesize[0];
}
for (i = 0; i < 4; i++)
ff_free_vlc(&vlc[i]);
return 0;
}
static int decode_rgb24_frame(CLLCContext *ctx, GetBitContext *gb, AVFrame *pic)
{
AVCodecContext *avctx = ctx->avctx;
uint8_t *dst;
int pred[3];
int ret;
int i, j;
VLC vlc[3];
pred[0] = 0x80;
pred[1] = 0x80;
pred[2] = 0x80;
dst = pic->data[0];
skip_bits(gb, 16);
/* Read in code table for each plane */
for (i = 0; i < 3; i++) {
ret = read_code_table(ctx, gb, &vlc[i]);
if (ret < 0) {
for (j = 0; j <= i; j++)
ff_free_vlc(&vlc[j]);
av_log(ctx->avctx, AV_LOG_ERROR,
"Could not read code table %d.\n", i);
return ret;
}
}
/* Read in and restore every line */
for (i = 0; i < avctx->height; i++) {
for (j = 0; j < 3; j++)
read_rgb24_component_line(ctx, gb, &pred[j], &vlc[j], &dst[j]);
dst += pic->linesize[0];
}
for (i = 0; i < 3; i++)
ff_free_vlc(&vlc[i]);
return 0;
}
static int decode_yuv_frame(CLLCContext *ctx, GetBitContext *gb, AVFrame *pic)
{
AVCodecContext *avctx = ctx->avctx;
uint8_t block;
uint8_t *dst[3];
int pred[3];
int ret;
int i, j;
VLC vlc[2];
pred[0] = 0x80;
pred[1] = 0x80;
pred[2] = 0x80;
dst[0] = pic->data[0];
dst[1] = pic->data[1];
dst[2] = pic->data[2];
skip_bits(gb, 8);
block = get_bits(gb, 8);
if (block) {
avpriv_request_sample(ctx->avctx, "Blocked YUV");
return AVERROR_PATCHWELCOME;
}
/* Read in code table for luma and chroma */
for (i = 0; i < 2; i++) {
ret = read_code_table(ctx, gb, &vlc[i]);
if (ret < 0) {
for (j = 0; j <= i; j++)
ff_free_vlc(&vlc[j]);
av_log(ctx->avctx, AV_LOG_ERROR,
"Could not read code table %d.\n", i);
return ret;
}
}
/* Read in and restore every line */
for (i = 0; i < avctx->height; i++) {
read_yuv_component_line(ctx, gb, &pred[0], &vlc[0], dst[0], 0); /* Y */
read_yuv_component_line(ctx, gb, &pred[1], &vlc[1], dst[1], 1); /* U */
read_yuv_component_line(ctx, gb, &pred[2], &vlc[1], dst[2], 1); /* V */
for (j = 0; j < 3; j++)
dst[j] += pic->linesize[j];
}
for (i = 0; i < 2; i++)
ff_free_vlc(&vlc[i]);
return 0;
}
static int cllc_decode_frame(AVCodecContext *avctx, void *data,
int *got_picture_ptr, AVPacket *avpkt)
{
CLLCContext *ctx = avctx->priv_data;
AVFrame *pic = data;
ThreadFrame frame = { .f = data };
uint8_t *src = avpkt->data;
uint32_t info_tag, info_offset;
int data_size;
GetBitContext gb;
int coding_type, ret;
if (avpkt->size < 4 + 4) {
av_log(avctx, AV_LOG_ERROR, "Frame is too small %d.\n", avpkt->size);
return AVERROR_INVALIDDATA;
}
info_offset = 0;
info_tag = AV_RL32(src);
if (info_tag == MKTAG('I', 'N', 'F', 'O')) {
info_offset = AV_RL32(src + 4);
if (info_offset > UINT32_MAX - 8 || info_offset + 8 > avpkt->size) {
av_log(avctx, AV_LOG_ERROR,
"Invalid INFO header offset: 0x%08"PRIX32" is too large.\n",
info_offset);
return AVERROR_INVALIDDATA;
}
ff_canopus_parse_info_tag(avctx, src + 8, info_offset);
info_offset += 8;
src += info_offset;
}
data_size = (avpkt->size - info_offset) & ~1;
/* Make sure our bswap16'd buffer is big enough */
av_fast_padded_malloc(&ctx->swapped_buf,
&ctx->swapped_buf_size, data_size);
if (!ctx->swapped_buf) {
av_log(avctx, AV_LOG_ERROR, "Could not allocate swapped buffer.\n");
return AVERROR(ENOMEM);
}
/* bswap16 the buffer since CLLC's bitreader works in 16-bit words */
ctx->bdsp.bswap16_buf((uint16_t *) ctx->swapped_buf, (uint16_t *) src,
data_size / 2);
if ((ret = init_get_bits8(&gb, ctx->swapped_buf, data_size)) < 0)
return ret;
/*
* Read in coding type. The types are as follows:
*
* 0 - YUY2
* 1 - BGR24 (Triples)
* 2 - BGR24 (Quads)
* 3 - BGRA
*/
coding_type = (AV_RL32(src) >> 8) & 0xFF;
av_log(avctx, AV_LOG_DEBUG, "Frame coding type: %d\n", coding_type);
if(get_bits_left(&gb) < avctx->height * avctx->width)
return AVERROR_INVALIDDATA;
switch (coding_type) {
case 0:
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
avctx->bits_per_raw_sample = 8;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
ret = decode_yuv_frame(ctx, &gb, pic);
if (ret < 0)
return ret;
break;
case 1:
case 2:
avctx->pix_fmt = AV_PIX_FMT_RGB24;
avctx->bits_per_raw_sample = 8;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
ret = decode_rgb24_frame(ctx, &gb, pic);
if (ret < 0)
return ret;
break;
case 3:
avctx->pix_fmt = AV_PIX_FMT_ARGB;
avctx->bits_per_raw_sample = 8;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
ret = decode_argb_frame(ctx, &gb, pic);
if (ret < 0)
return ret;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown coding type: %d.\n", coding_type);
return AVERROR_INVALIDDATA;
}
pic->key_frame = 1;
pic->pict_type = AV_PICTURE_TYPE_I;
*got_picture_ptr = 1;
return avpkt->size;
}
static av_cold int cllc_decode_close(AVCodecContext *avctx)
{
CLLCContext *ctx = avctx->priv_data;
av_freep(&ctx->swapped_buf);
return 0;
}
static av_cold int cllc_decode_init(AVCodecContext *avctx)
{
CLLCContext *ctx = avctx->priv_data;
/* Initialize various context values */
ctx->avctx = avctx;
ctx->swapped_buf = NULL;
ctx->swapped_buf_size = 0;
ff_bswapdsp_init(&ctx->bdsp);
return 0;
}
AVCodec ff_cllc_decoder = {
.name = "cllc",
.long_name = NULL_IF_CONFIG_SMALL("Canopus Lossless Codec"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_CLLC,
.priv_data_size = sizeof(CLLCContext),
.init = cllc_decode_init,
.decode = cllc_decode_frame,
.close = cllc_decode_close,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};