ffmpeg/libavfilter/framesync.c
Paul B Mahol a30adf9f96 avfilter/framesync: fix OOM case
Fixes OOM when caller keeps adding frames into filtergraph
that reached EOF by other means, for example EOF is signalled
by other filter in filtergraph or by buffersink.
2023-11-30 11:08:34 +01:00

428 lines
14 KiB
C

/*
* Copyright (c) 2013 Nicolas George
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/opt.h"
#include "avfilter.h"
#include "filters.h"
#include "framesync.h"
#include "internal.h"
#define OFFSET(member) offsetof(FFFrameSync, member)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_FILTERING_PARAM
static const char *framesync_name(void *ptr)
{
return "framesync";
}
static const AVOption framesync_options[] = {
{ "eof_action", "Action to take when encountering EOF from secondary input ",
OFFSET(opt_eof_action), AV_OPT_TYPE_INT, { .i64 = EOF_ACTION_REPEAT },
EOF_ACTION_REPEAT, EOF_ACTION_PASS, .flags = FLAGS, "eof_action" },
{ "repeat", "Repeat the previous frame.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_REPEAT }, .flags = FLAGS, "eof_action" },
{ "endall", "End both streams.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_ENDALL }, .flags = FLAGS, "eof_action" },
{ "pass", "Pass through the main input.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_PASS }, .flags = FLAGS, "eof_action" },
{ "shortest", "force termination when the shortest input terminates", OFFSET(opt_shortest), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
{ "repeatlast", "extend last frame of secondary streams beyond EOF", OFFSET(opt_repeatlast), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, FLAGS },
{ "ts_sync_mode", "How strictly to sync streams based on secondary input timestamps",
OFFSET(opt_ts_sync_mode), AV_OPT_TYPE_INT, { .i64 = TS_DEFAULT },
TS_DEFAULT, TS_NEAREST, .flags = FLAGS, "ts_sync_mode" },
{ "default", "Frame from secondary input with the nearest lower or equal timestamp to the primary input frame",
0, AV_OPT_TYPE_CONST, { .i64 = TS_DEFAULT }, .flags = FLAGS, "ts_sync_mode" },
{ "nearest", "Frame from secondary input with the absolute nearest timestamp to the primary input frame",
0, AV_OPT_TYPE_CONST, { .i64 = TS_NEAREST }, .flags = FLAGS, "ts_sync_mode" },
{ NULL }
};
static const AVClass framesync_class = {
.version = LIBAVUTIL_VERSION_INT,
.class_name = "framesync",
.item_name = framesync_name,
.category = AV_CLASS_CATEGORY_FILTER,
.option = framesync_options,
.parent_log_context_offset = OFFSET(parent),
};
const AVClass *ff_framesync_child_class_iterate(void **iter)
{
const AVClass *c = *iter ? NULL : &framesync_class;
*iter = (void *)(uintptr_t)c;
return c;
}
enum {
STATE_BOF,
STATE_RUN,
STATE_EOF,
};
static int consume_from_fifos(FFFrameSync *fs);
void ff_framesync_preinit(FFFrameSync *fs)
{
if (fs->class)
return;
fs->class = &framesync_class;
av_opt_set_defaults(fs);
}
int ff_framesync_init(FFFrameSync *fs, AVFilterContext *parent, unsigned nb_in)
{
/* For filters with several outputs, we will not be able to assume which
output is relevant for ff_outlink_frame_wanted() and
ff_outlink_set_status(). To be designed when needed. */
av_assert0(parent->nb_outputs == 1);
ff_framesync_preinit(fs);
fs->parent = parent;
fs->nb_in = nb_in;
fs->in = av_calloc(nb_in, sizeof(*fs->in));
if (!fs->in)
return AVERROR(ENOMEM);
return 0;
}
static void framesync_eof(FFFrameSync *fs)
{
fs->eof = 1;
fs->frame_ready = 0;
ff_outlink_set_status(fs->parent->outputs[0], AVERROR_EOF, AV_NOPTS_VALUE);
}
static void framesync_sync_level_update(FFFrameSync *fs)
{
unsigned i, level = 0;
for (i = 0; i < fs->nb_in; i++)
if (fs->in[i].state != STATE_EOF)
level = FFMAX(level, fs->in[i].sync);
av_assert0(level <= fs->sync_level);
if (level < fs->sync_level)
av_log(fs, AV_LOG_VERBOSE, "Sync level %u\n", level);
if (fs->opt_ts_sync_mode > TS_DEFAULT) {
for (i = 0; i < fs->nb_in; i++) {
if (fs->in[i].sync < level)
fs->in[i].ts_mode = fs->opt_ts_sync_mode;
else
fs->in[i].ts_mode = TS_DEFAULT;
}
}
if (level)
fs->sync_level = level;
else
framesync_eof(fs);
}
int ff_framesync_configure(FFFrameSync *fs)
{
unsigned i;
if (!fs->opt_repeatlast || fs->opt_eof_action == EOF_ACTION_PASS) {
fs->opt_repeatlast = 0;
fs->opt_eof_action = EOF_ACTION_PASS;
}
if (fs->opt_shortest || fs->opt_eof_action == EOF_ACTION_ENDALL) {
fs->opt_shortest = 1;
fs->opt_eof_action = EOF_ACTION_ENDALL;
}
if (!fs->opt_repeatlast) {
for (i = 1; i < fs->nb_in; i++) {
fs->in[i].after = EXT_NULL;
fs->in[i].sync = 0;
}
}
if (fs->opt_shortest) {
for (i = 0; i < fs->nb_in; i++)
fs->in[i].after = EXT_STOP;
}
if (!fs->time_base.num) {
for (i = 0; i < fs->nb_in; i++) {
if (fs->in[i].sync) {
if (fs->time_base.num) {
fs->time_base = av_gcd_q(fs->time_base, fs->in[i].time_base,
AV_TIME_BASE / 2, AV_TIME_BASE_Q);
} else {
fs->time_base = fs->in[i].time_base;
}
}
}
if (!fs->time_base.num) {
av_log(fs, AV_LOG_ERROR, "Impossible to set time base\n");
return AVERROR(EINVAL);
}
av_log(fs, AV_LOG_VERBOSE, "Selected %d/%d time base\n",
fs->time_base.num, fs->time_base.den);
}
for (i = 0; i < fs->nb_in; i++)
fs->in[i].pts = fs->in[i].pts_next = AV_NOPTS_VALUE;
fs->sync_level = UINT_MAX;
framesync_sync_level_update(fs);
return 0;
}
static int framesync_advance(FFFrameSync *fs)
{
unsigned i;
int64_t pts;
int ret;
while (!(fs->frame_ready || fs->eof)) {
ret = consume_from_fifos(fs);
if (ret <= 0)
return ret;
pts = INT64_MAX;
for (i = 0; i < fs->nb_in; i++)
if (fs->in[i].have_next && fs->in[i].pts_next < pts)
pts = fs->in[i].pts_next;
if (pts == INT64_MAX) {
framesync_eof(fs);
break;
}
for (i = 0; i < fs->nb_in; i++) {
if (fs->in[i].pts_next == pts ||
(fs->in[i].ts_mode == TS_NEAREST &&
fs->in[i].have_next &&
fs->in[i].pts_next != INT64_MAX && fs->in[i].pts != AV_NOPTS_VALUE &&
fs->in[i].pts_next - pts < pts - fs->in[i].pts) ||
(fs->in[i].before == EXT_INFINITY &&
fs->in[i].state == STATE_BOF)) {
av_frame_free(&fs->in[i].frame);
fs->in[i].frame = fs->in[i].frame_next;
fs->in[i].pts = fs->in[i].pts_next;
fs->in[i].frame_next = NULL;
fs->in[i].pts_next = AV_NOPTS_VALUE;
fs->in[i].have_next = 0;
fs->in[i].state = fs->in[i].frame ? STATE_RUN : STATE_EOF;
if (fs->in[i].sync == fs->sync_level && fs->in[i].frame)
fs->frame_ready = 1;
if (fs->in[i].state == STATE_EOF &&
fs->in[i].after == EXT_STOP)
framesync_eof(fs);
}
}
if (fs->frame_ready)
for (i = 0; i < fs->nb_in; i++)
if ((fs->in[i].state == STATE_BOF &&
fs->in[i].before == EXT_STOP))
fs->frame_ready = 0;
fs->pts = pts;
}
return 0;
}
static int64_t framesync_pts_extrapolate(FFFrameSync *fs, unsigned in,
int64_t pts)
{
/* Possible enhancement: use the link's frame rate */
return pts + 1;
}
static void framesync_inject_frame(FFFrameSync *fs, unsigned in, AVFrame *frame)
{
int64_t pts;
av_assert0(!fs->in[in].have_next);
av_assert0(frame);
pts = av_rescale_q(frame->pts, fs->in[in].time_base, fs->time_base);
frame->pts = pts;
fs->in[in].frame_next = frame;
fs->in[in].pts_next = pts;
fs->in[in].have_next = 1;
}
static void framesync_inject_status(FFFrameSync *fs, unsigned in, int status, int64_t pts)
{
av_assert0(!fs->in[in].have_next);
pts = fs->in[in].state != STATE_RUN || fs->in[in].after == EXT_INFINITY
? INT64_MAX : framesync_pts_extrapolate(fs, in, fs->in[in].pts);
fs->in[in].sync = 0;
framesync_sync_level_update(fs);
fs->in[in].frame_next = NULL;
fs->in[in].pts_next = pts;
fs->in[in].have_next = 1;
}
int ff_framesync_get_frame(FFFrameSync *fs, unsigned in, AVFrame **rframe,
unsigned get)
{
AVFrame *frame;
unsigned need_copy = 0, i;
int64_t pts_next;
int ret;
if (!fs->in[in].frame) {
*rframe = NULL;
return 0;
}
frame = fs->in[in].frame;
if (get) {
/* Find out if we need to copy the frame: is there another sync
stream, and do we know if its current frame will outlast this one? */
pts_next = fs->in[in].have_next ? fs->in[in].pts_next : INT64_MAX;
for (i = 0; i < fs->nb_in && !need_copy; i++)
if (i != in && fs->in[i].sync &&
(!fs->in[i].have_next || fs->in[i].pts_next < pts_next))
need_copy = 1;
if (need_copy) {
if (!(frame = av_frame_clone(frame)))
return AVERROR(ENOMEM);
if ((ret = ff_inlink_make_frame_writable(fs->parent->inputs[in], &frame)) < 0) {
av_frame_free(&frame);
return ret;
}
} else {
fs->in[in].frame = NULL;
}
fs->frame_ready = 0;
}
*rframe = frame;
return 0;
}
void ff_framesync_uninit(FFFrameSync *fs)
{
unsigned i;
for (i = 0; i < fs->nb_in; i++) {
av_frame_free(&fs->in[i].frame);
av_frame_free(&fs->in[i].frame_next);
}
av_freep(&fs->in);
}
static int consume_from_fifos(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
AVFrame *frame = NULL;
int64_t pts;
unsigned i, nb_active, nb_miss;
int ret, status;
nb_active = nb_miss = 0;
for (i = 0; i < fs->nb_in; i++) {
if (fs->in[i].have_next || fs->in[i].state == STATE_EOF)
continue;
nb_active++;
ret = ff_inlink_consume_frame(ctx->inputs[i], &frame);
if (ret < 0)
return ret;
if (ret) {
av_assert0(frame);
framesync_inject_frame(fs, i, frame);
} else {
ret = ff_inlink_acknowledge_status(ctx->inputs[i], &status, &pts);
if (ret > 0) {
framesync_inject_status(fs, i, status, pts);
} else if (!ret) {
nb_miss++;
}
}
}
if (nb_miss) {
if (nb_miss == nb_active && !ff_outlink_frame_wanted(ctx->outputs[0]))
return FFERROR_NOT_READY;
for (i = 0; i < fs->nb_in; i++)
if (!fs->in[i].have_next && fs->in[i].state != STATE_EOF)
ff_inlink_request_frame(ctx->inputs[i]);
return 0;
}
return 1;
}
int ff_framesync_activate(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
int ret;
FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
ret = framesync_advance(fs);
if (ret < 0)
return ret;
if (fs->eof || !fs->frame_ready)
return 0;
ret = fs->on_event(fs);
if (ret < 0)
return ret;
fs->frame_ready = 0;
return 0;
}
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
{
int ret;
ret = ff_framesync_init(fs, parent, 2);
if (ret < 0)
return ret;
fs->in[0].time_base = parent->inputs[0]->time_base;
fs->in[1].time_base = parent->inputs[1]->time_base;
fs->in[0].sync = 2;
fs->in[0].before = EXT_STOP;
fs->in[0].after = EXT_INFINITY;
fs->in[1].sync = 1;
fs->in[1].before = EXT_NULL;
fs->in[1].after = EXT_INFINITY;
return 0;
}
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
{
AVFilterContext *ctx = fs->parent;
AVFrame *mainpic = NULL, *secondpic = NULL;
int ret;
if ((ret = ff_framesync_get_frame(fs, 0, &mainpic, 1)) < 0 ||
(ret = ff_framesync_get_frame(fs, 1, &secondpic, 0)) < 0) {
av_frame_free(&mainpic);
return ret;
}
av_assert0(mainpic);
mainpic->pts = av_rescale_q(fs->pts, fs->time_base, ctx->outputs[0]->time_base);
if (ctx->is_disabled)
secondpic = NULL;
*f0 = mainpic;
*f1 = secondpic;
return 0;
}
int ff_framesync_dualinput_get_writable(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
{
int ret;
ret = ff_framesync_dualinput_get(fs, f0, f1);
if (ret < 0)
return ret;
ret = ff_inlink_make_frame_writable(fs->parent->inputs[0], f0);
if (ret < 0) {
av_frame_free(f0);
*f1 = NULL;
return ret;
}
return 0;
}