ffmpeg/libavcodec/ratecontrol.c
Andreas Rheinhardt 73ea6db0ba avcodec/mpegpicture: Move encoding_error and mb_var_sum to MpegEncCtx
These fields are only ever set by the encoder for the current picture
and for no other picture. So only one set of these values needs to
exist, so move them to MpegEncContext.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-08-10 18:49:35 +02:00

1026 lines
34 KiB
C

/*
* Rate control for video encoders
*
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Rate control for video encoders.
*/
#include "libavutil/attributes.h"
#include "libavutil/internal.h"
#include "avcodec.h"
#include "ratecontrol.h"
#include "mpegutils.h"
#include "mpegvideoenc.h"
#include "libavutil/eval.h"
void ff_write_pass1_stats(MpegEncContext *s)
{
snprintf(s->avctx->stats_out, 256,
"in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
"fcode:%d bcode:%d mc-var:%"PRId64" var:%"PRId64" icount:%d skipcount:%d hbits:%d;\n",
s->current_picture_ptr->f->display_picture_number,
s->current_picture_ptr->f->coded_picture_number,
s->pict_type,
s->current_picture.f->quality,
s->i_tex_bits,
s->p_tex_bits,
s->mv_bits,
s->misc_bits,
s->f_code,
s->b_code,
s->mc_mb_var_sum,
s->mb_var_sum,
s->i_count, s->skip_count,
s->header_bits);
}
static double get_fps(AVCodecContext *avctx)
{
return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
}
static inline double qp2bits(RateControlEntry *rce, double qp)
{
if (qp <= 0.0) {
av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
}
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
}
static inline double bits2qp(RateControlEntry *rce, double bits)
{
if (bits < 0.9) {
av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
}
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
}
static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
{
RateControlContext *rcc = &s->rc_context;
AVCodecContext *a = s->avctx;
const int pict_type = rce->new_pict_type;
const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
if (pict_type == AV_PICTURE_TYPE_I &&
(a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
else if (pict_type == AV_PICTURE_TYPE_B &&
a->b_quant_factor > 0.0)
q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
if (q < 1)
q = 1;
/* last qscale / qdiff stuff */
if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
double last_q = rcc->last_qscale_for[pict_type];
const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
if (q > last_q + maxdiff)
q = last_q + maxdiff;
else if (q < last_q - maxdiff)
q = last_q - maxdiff;
}
rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
if (pict_type != AV_PICTURE_TYPE_B)
rcc->last_non_b_pict_type = pict_type;
return q;
}
/**
* Get the qmin & qmax for pict_type.
*/
static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
{
int qmin = s->lmin;
int qmax = s->lmax;
av_assert0(qmin <= qmax);
switch (pict_type) {
case AV_PICTURE_TYPE_B:
qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
break;
case AV_PICTURE_TYPE_I:
qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
break;
}
qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
if (qmax < qmin)
qmax = qmin;
*qmin_ret = qmin;
*qmax_ret = qmax;
}
static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
double q, int frame_num)
{
RateControlContext *rcc = &s->rc_context;
const double buffer_size = s->avctx->rc_buffer_size;
const double fps = get_fps(s->avctx);
const double min_rate = s->avctx->rc_min_rate / fps;
const double max_rate = s->avctx->rc_max_rate / fps;
const int pict_type = rce->new_pict_type;
int qmin, qmax;
get_qminmax(&qmin, &qmax, s, pict_type);
/* modulation */
if (s->rc_qmod_freq &&
frame_num % s->rc_qmod_freq == 0 &&
pict_type == AV_PICTURE_TYPE_P)
q *= s->rc_qmod_amp;
/* buffer overflow/underflow protection */
if (buffer_size) {
double expected_size = rcc->buffer_index;
double q_limit;
if (min_rate) {
double d = 2 * (buffer_size - expected_size) / buffer_size;
if (d > 1.0)
d = 1.0;
else if (d < 0.0001)
d = 0.0001;
q *= pow(d, 1.0 / s->rc_buffer_aggressivity);
q_limit = bits2qp(rce,
FFMAX((min_rate - buffer_size + rcc->buffer_index) *
s->avctx->rc_min_vbv_overflow_use, 1));
if (q > q_limit) {
if (s->avctx->debug & FF_DEBUG_RC)
av_log(s->avctx, AV_LOG_DEBUG,
"limiting QP %f -> %f\n", q, q_limit);
q = q_limit;
}
}
if (max_rate) {
double d = 2 * expected_size / buffer_size;
if (d > 1.0)
d = 1.0;
else if (d < 0.0001)
d = 0.0001;
q /= pow(d, 1.0 / s->rc_buffer_aggressivity);
q_limit = bits2qp(rce,
FFMAX(rcc->buffer_index *
s->avctx->rc_max_available_vbv_use,
1));
if (q < q_limit) {
if (s->avctx->debug & FF_DEBUG_RC)
av_log(s->avctx, AV_LOG_DEBUG,
"limiting QP %f -> %f\n", q, q_limit);
q = q_limit;
}
}
}
ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
q, max_rate, min_rate, buffer_size, rcc->buffer_index,
s->rc_buffer_aggressivity);
if (s->rc_qsquish == 0.0 || qmin == qmax) {
if (q < qmin)
q = qmin;
else if (q > qmax)
q = qmax;
} else {
double min2 = log(qmin);
double max2 = log(qmax);
q = log(q);
q = (q - min2) / (max2 - min2) - 0.5;
q *= -4.0;
q = 1.0 / (1.0 + exp(q));
q = q * (max2 - min2) + min2;
q = exp(q);
}
return q;
}
/**
* Modify the bitrate curve from pass1 for one frame.
*/
static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
double rate_factor, int frame_num)
{
RateControlContext *rcc = &s->rc_context;
AVCodecContext *a = s->avctx;
const int pict_type = rce->new_pict_type;
const double mb_num = s->mb_num;
double q, bits;
int i;
double const_values[] = {
M_PI,
M_E,
rce->i_tex_bits * rce->qscale,
rce->p_tex_bits * rce->qscale,
(rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
rce->mv_bits / mb_num,
rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
rce->i_count / mb_num,
rce->mc_mb_var_sum / mb_num,
rce->mb_var_sum / mb_num,
rce->pict_type == AV_PICTURE_TYPE_I,
rce->pict_type == AV_PICTURE_TYPE_P,
rce->pict_type == AV_PICTURE_TYPE_B,
rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
a->qcompress,
rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
(rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
0
};
bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
if (isnan(bits)) {
av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq);
return -1;
}
rcc->pass1_rc_eq_output_sum += bits;
bits *= rate_factor;
if (bits < 0.0)
bits = 0.0;
bits += 1.0; // avoid 1/0 issues
/* user override */
for (i = 0; i < s->avctx->rc_override_count; i++) {
RcOverride *rco = s->avctx->rc_override;
if (rco[i].start_frame > frame_num)
continue;
if (rco[i].end_frame < frame_num)
continue;
if (rco[i].qscale)
bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
else
bits *= rco[i].quality_factor;
}
q = bits2qp(rce, bits);
/* I/B difference */
if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
if (q < 1)
q = 1;
return q;
}
static int init_pass2(MpegEncContext *s)
{
RateControlContext *rcc = &s->rc_context;
AVCodecContext *a = s->avctx;
int i, toobig;
double fps = get_fps(s->avctx);
double complexity[5] = { 0 }; // approximate bits at quant=1
uint64_t const_bits[5] = { 0 }; // quantizer independent bits
uint64_t all_const_bits;
uint64_t all_available_bits = (uint64_t)(s->bit_rate *
(double)rcc->num_entries / fps);
double rate_factor = 0;
double step;
const int filter_size = (int)(a->qblur * 4) | 1;
double expected_bits = 0; // init to silence gcc warning
double *qscale, *blurred_qscale, qscale_sum;
/* find complexity & const_bits & decide the pict_types */
for (i = 0; i < rcc->num_entries; i++) {
RateControlEntry *rce = &rcc->entry[i];
rce->new_pict_type = rce->pict_type;
rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
rcc->frame_count[rce->pict_type]++;
complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
(double)rce->qscale;
const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
}
all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
const_bits[AV_PICTURE_TYPE_P] +
const_bits[AV_PICTURE_TYPE_B];
if (all_available_bits < all_const_bits) {
av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
return -1;
}
qscale = av_malloc_array(rcc->num_entries, sizeof(double));
blurred_qscale = av_malloc_array(rcc->num_entries, sizeof(double));
if (!qscale || !blurred_qscale) {
av_free(qscale);
av_free(blurred_qscale);
return AVERROR(ENOMEM);
}
toobig = 0;
for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
expected_bits = 0;
rate_factor += step;
rcc->buffer_index = s->avctx->rc_buffer_size / 2;
/* find qscale */
for (i = 0; i < rcc->num_entries; i++) {
RateControlEntry *rce = &rcc->entry[i];
qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
rcc->last_qscale_for[rce->pict_type] = qscale[i];
}
av_assert0(filter_size % 2 == 1);
/* fixed I/B QP relative to P mode */
for (i = FFMAX(0, rcc->num_entries - 300); i < rcc->num_entries; i++) {
RateControlEntry *rce = &rcc->entry[i];
qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
}
for (i = rcc->num_entries - 1; i >= 0; i--) {
RateControlEntry *rce = &rcc->entry[i];
qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
}
/* smooth curve */
for (i = 0; i < rcc->num_entries; i++) {
RateControlEntry *rce = &rcc->entry[i];
const int pict_type = rce->new_pict_type;
int j;
double q = 0.0, sum = 0.0;
for (j = 0; j < filter_size; j++) {
int index = i + j - filter_size / 2;
double d = index - i;
double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
if (index < 0 || index >= rcc->num_entries)
continue;
if (pict_type != rcc->entry[index].new_pict_type)
continue;
q += qscale[index] * coeff;
sum += coeff;
}
blurred_qscale[i] = q / sum;
}
/* find expected bits */
for (i = 0; i < rcc->num_entries; i++) {
RateControlEntry *rce = &rcc->entry[i];
double bits;
rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
bits += 8 * ff_vbv_update(s, bits);
rce->expected_bits = expected_bits;
expected_bits += bits;
}
ff_dlog(s->avctx,
"expected_bits: %f all_available_bits: %d rate_factor: %f\n",
expected_bits, (int)all_available_bits, rate_factor);
if (expected_bits > all_available_bits) {
rate_factor -= step;
++toobig;
}
}
av_free(qscale);
av_free(blurred_qscale);
/* check bitrate calculations and print info */
qscale_sum = 0.0;
for (i = 0; i < rcc->num_entries; i++) {
ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
i,
rcc->entry[i].new_qscale,
rcc->entry[i].new_qscale / FF_QP2LAMBDA);
qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
s->avctx->qmin, s->avctx->qmax);
}
av_assert0(toobig <= 40);
av_log(s->avctx, AV_LOG_DEBUG,
"[lavc rc] requested bitrate: %"PRId64" bps expected bitrate: %"PRId64" bps\n",
s->bit_rate,
(int64_t)(expected_bits / ((double)all_available_bits / s->bit_rate)));
av_log(s->avctx, AV_LOG_DEBUG,
"[lavc rc] estimated target average qp: %.3f\n",
(float)qscale_sum / rcc->num_entries);
if (toobig == 0) {
av_log(s->avctx, AV_LOG_INFO,
"[lavc rc] Using all of requested bitrate is not "
"necessary for this video with these parameters.\n");
} else if (toobig == 40) {
av_log(s->avctx, AV_LOG_ERROR,
"[lavc rc] Error: bitrate too low for this video "
"with these parameters.\n");
return -1;
} else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
av_log(s->avctx, AV_LOG_ERROR,
"[lavc rc] Error: 2pass curve failed to converge\n");
return -1;
}
return 0;
}
av_cold int ff_rate_control_init(MpegEncContext *s)
{
RateControlContext *rcc = &s->rc_context;
int i, res;
static const char * const const_names[] = {
"PI",
"E",
"iTex",
"pTex",
"tex",
"mv",
"fCode",
"iCount",
"mcVar",
"var",
"isI",
"isP",
"isB",
"avgQP",
"qComp",
"avgIITex",
"avgPITex",
"avgPPTex",
"avgBPTex",
"avgTex",
NULL
};
static double (* const func1[])(void *, double) = {
(double (*)(void *, double)) bits2qp,
(double (*)(void *, double)) qp2bits,
NULL
};
static const char * const func1_names[] = {
"bits2qp",
"qp2bits",
NULL
};
emms_c();
if (!s->avctx->rc_max_available_vbv_use && s->avctx->rc_buffer_size) {
if (s->avctx->rc_max_rate) {
s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/3, 1.0);
} else
s->avctx->rc_max_available_vbv_use = 1.0;
}
res = av_expr_parse(&rcc->rc_eq_eval,
s->rc_eq ? s->rc_eq : "tex^qComp",
const_names, func1_names, func1,
NULL, NULL, 0, s->avctx);
if (res < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->rc_eq);
return res;
}
for (i = 0; i < 5; i++) {
rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
rcc->pred[i].count = 1.0;
rcc->pred[i].decay = 0.4;
rcc->i_cplx_sum [i] =
rcc->p_cplx_sum [i] =
rcc->mv_bits_sum[i] =
rcc->qscale_sum [i] =
rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
}
rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
if (!rcc->buffer_index)
rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
int i;
char *p;
/* find number of pics */
p = s->avctx->stats_in;
for (i = -1; p; i++)
p = strchr(p + 1, ';');
i += s->max_b_frames;
if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
return -1;
rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
if (!rcc->entry)
return AVERROR(ENOMEM);
rcc->num_entries = i;
/* init all to skipped P-frames
* (with B-frames we might have a not encoded frame at the end FIXME) */
for (i = 0; i < rcc->num_entries; i++) {
RateControlEntry *rce = &rcc->entry[i];
rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
rce->misc_bits = s->mb_num + 10;
rce->mb_var_sum = s->mb_num * 100;
}
/* read stats */
p = s->avctx->stats_in;
for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
RateControlEntry *rce;
int picture_number;
int e;
char *next;
next = strchr(p, ';');
if (next) {
(*next) = 0; // sscanf is unbelievably slow on looong strings // FIXME copy / do not write
next++;
}
e = sscanf(p, " in:%d ", &picture_number);
av_assert0(picture_number >= 0);
av_assert0(picture_number < rcc->num_entries);
rce = &rcc->entry[picture_number];
e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%"SCNd64" var:%"SCNd64" icount:%d skipcount:%d hbits:%d",
&rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
&rce->mv_bits, &rce->misc_bits,
&rce->f_code, &rce->b_code,
&rce->mc_mb_var_sum, &rce->mb_var_sum,
&rce->i_count, &rce->skip_count, &rce->header_bits);
if (e != 14) {
av_log(s->avctx, AV_LOG_ERROR,
"statistics are damaged at line %d, parser out=%d\n",
i, e);
return -1;
}
p = next;
}
if (init_pass2(s) < 0) {
ff_rate_control_uninit(s);
return -1;
}
}
if (!(s->avctx->flags & AV_CODEC_FLAG_PASS2)) {
rcc->short_term_qsum = 0.001;
rcc->short_term_qcount = 0.001;
rcc->pass1_rc_eq_output_sum = 0.001;
rcc->pass1_wanted_bits = 0.001;
if (s->avctx->qblur > 1.0) {
av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
return -1;
}
/* init stuff with the user specified complexity */
if (s->rc_initial_cplx) {
for (i = 0; i < 60 * 30; i++) {
double bits = s->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
RateControlEntry rce;
if (i % ((s->gop_size + 3) / 4) == 0)
rce.pict_type = AV_PICTURE_TYPE_I;
else if (i % (s->max_b_frames + 1))
rce.pict_type = AV_PICTURE_TYPE_B;
else
rce.pict_type = AV_PICTURE_TYPE_P;
rce.new_pict_type = rce.pict_type;
rce.mc_mb_var_sum = bits * s->mb_num / 100000;
rce.mb_var_sum = s->mb_num;
rce.qscale = FF_QP2LAMBDA * 2;
rce.f_code = 2;
rce.b_code = 1;
rce.misc_bits = 1;
if (s->pict_type == AV_PICTURE_TYPE_I) {
rce.i_count = s->mb_num;
rce.i_tex_bits = bits;
rce.p_tex_bits = 0;
rce.mv_bits = 0;
} else {
rce.i_count = 0; // FIXME we do know this approx
rce.i_tex_bits = 0;
rce.p_tex_bits = bits * 0.9;
rce.mv_bits = bits * 0.1;
}
rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
rcc->frame_count[rce.pict_type]++;
get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
// FIXME misbehaves a little for variable fps
rcc->pass1_wanted_bits += s->bit_rate / get_fps(s->avctx);
}
}
}
return 0;
}
av_cold void ff_rate_control_uninit(MpegEncContext *s)
{
RateControlContext *rcc = &s->rc_context;
emms_c();
av_expr_free(rcc->rc_eq_eval);
av_freep(&rcc->entry);
}
int ff_vbv_update(MpegEncContext *s, int frame_size)
{
RateControlContext *rcc = &s->rc_context;
const double fps = get_fps(s->avctx);
const int buffer_size = s->avctx->rc_buffer_size;
const double min_rate = s->avctx->rc_min_rate / fps;
const double max_rate = s->avctx->rc_max_rate / fps;
ff_dlog(s, "%d %f %d %f %f\n",
buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
if (buffer_size) {
int left;
rcc->buffer_index -= frame_size;
if (rcc->buffer_index < 0) {
av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
if (frame_size > max_rate && s->qscale == s->avctx->qmax) {
av_log(s->avctx, AV_LOG_ERROR, "max bitrate possibly too small or try trellis with large lmax or increase qmax\n");
}
rcc->buffer_index = 0;
}
left = buffer_size - rcc->buffer_index - 1;
rcc->buffer_index += av_clip(left, min_rate, max_rate);
if (rcc->buffer_index > buffer_size) {
int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
stuffing = 4;
rcc->buffer_index -= 8 * stuffing;
if (s->avctx->debug & FF_DEBUG_RC)
av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
return stuffing;
}
}
return 0;
}
static double predict_size(Predictor *p, double q, double var)
{
return p->coeff * var / (q * p->count);
}
static void update_predictor(Predictor *p, double q, double var, double size)
{
double new_coeff = size * q / (var + 1);
if (var < 10)
return;
p->count *= p->decay;
p->coeff *= p->decay;
p->count++;
p->coeff += new_coeff;
}
static void adaptive_quantization(MpegEncContext *s, double q)
{
int i;
const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
const float p_masking = s->avctx->p_masking;
const float border_masking = s->border_masking;
float bits_sum = 0.0;
float cplx_sum = 0.0;
float *cplx_tab = s->cplx_tab;
float *bits_tab = s->bits_tab;
const int qmin = s->avctx->mb_lmin;
const int qmax = s->avctx->mb_lmax;
const int mb_width = s->mb_width;
const int mb_height = s->mb_height;
for (i = 0; i < s->mb_num; i++) {
const int mb_xy = s->mb_index2xy[i];
float temp_cplx = sqrt(s->mc_mb_var[mb_xy]); // FIXME merge in pow()
float spat_cplx = sqrt(s->mb_var[mb_xy]);
const int lumi = s->mb_mean[mb_xy];
float bits, cplx, factor;
int mb_x = mb_xy % s->mb_stride;
int mb_y = mb_xy / s->mb_stride;
int mb_distance;
float mb_factor = 0.0;
if (spat_cplx < 4)
spat_cplx = 4; // FIXME fine-tune
if (temp_cplx < 4)
temp_cplx = 4; // FIXME fine-tune
if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
cplx = spat_cplx;
factor = 1.0 + p_masking;
} else {
cplx = temp_cplx;
factor = pow(temp_cplx, -temp_cplx_masking);
}
factor *= pow(spat_cplx, -spatial_cplx_masking);
if (lumi > 127)
factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
else
factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
if (mb_x < mb_width / 5) {
mb_distance = mb_width / 5 - mb_x;
mb_factor = (float)mb_distance / (float)(mb_width / 5);
} else if (mb_x > 4 * mb_width / 5) {
mb_distance = mb_x - 4 * mb_width / 5;
mb_factor = (float)mb_distance / (float)(mb_width / 5);
}
if (mb_y < mb_height / 5) {
mb_distance = mb_height / 5 - mb_y;
mb_factor = FFMAX(mb_factor,
(float)mb_distance / (float)(mb_height / 5));
} else if (mb_y > 4 * mb_height / 5) {
mb_distance = mb_y - 4 * mb_height / 5;
mb_factor = FFMAX(mb_factor,
(float)mb_distance / (float)(mb_height / 5));
}
factor *= 1.0 - border_masking * mb_factor;
if (factor < 0.00001)
factor = 0.00001;
bits = cplx * factor;
cplx_sum += cplx;
bits_sum += bits;
cplx_tab[i] = cplx;
bits_tab[i] = bits;
}
/* handle qmin/qmax clipping */
if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
float factor = bits_sum / cplx_sum;
for (i = 0; i < s->mb_num; i++) {
float newq = q * cplx_tab[i] / bits_tab[i];
newq *= factor;
if (newq > qmax) {
bits_sum -= bits_tab[i];
cplx_sum -= cplx_tab[i] * q / qmax;
} else if (newq < qmin) {
bits_sum -= bits_tab[i];
cplx_sum -= cplx_tab[i] * q / qmin;
}
}
if (bits_sum < 0.001)
bits_sum = 0.001;
if (cplx_sum < 0.001)
cplx_sum = 0.001;
}
for (i = 0; i < s->mb_num; i++) {
const int mb_xy = s->mb_index2xy[i];
float newq = q * cplx_tab[i] / bits_tab[i];
int intq;
if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
newq *= bits_sum / cplx_sum;
}
intq = (int)(newq + 0.5);
if (intq > qmax)
intq = qmax;
else if (intq < qmin)
intq = qmin;
s->lambda_table[mb_xy] = intq;
}
}
void ff_get_2pass_fcode(MpegEncContext *s)
{
RateControlContext *rcc = &s->rc_context;
RateControlEntry *rce = &rcc->entry[s->picture_number];
s->f_code = rce->f_code;
s->b_code = rce->b_code;
}
// FIXME rd or at least approx for dquant
float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
{
float q;
int qmin, qmax;
float br_compensation;
double diff;
double short_term_q;
double fps;
int picture_number = s->picture_number;
int64_t wanted_bits;
RateControlContext *rcc = &s->rc_context;
AVCodecContext *a = s->avctx;
RateControlEntry local_rce, *rce;
double bits;
double rate_factor;
int64_t var;
const int pict_type = s->pict_type;
emms_c();
get_qminmax(&qmin, &qmax, s, pict_type);
fps = get_fps(s->avctx);
/* update predictors */
if (picture_number > 2 && !dry_run) {
const int64_t last_var =
s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
: rcc->last_mc_mb_var_sum;
av_assert1(s->frame_bits >= s->stuffing_bits);
update_predictor(&rcc->pred[s->last_pict_type],
rcc->last_qscale,
sqrt(last_var),
s->frame_bits - s->stuffing_bits);
}
if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
av_assert0(picture_number >= 0);
if (picture_number >= rcc->num_entries) {
av_log(s, AV_LOG_ERROR, "Input is longer than 2-pass log file\n");
return -1;
}
rce = &rcc->entry[picture_number];
wanted_bits = rce->expected_bits;
} else {
Picture *dts_pic;
rce = &local_rce;
/* FIXME add a dts field to AVFrame and ensure it is set and use it
* here instead of reordering but the reordering is simpler for now
* until H.264 B-pyramid must be handled. */
if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
dts_pic = s->current_picture_ptr;
else
dts_pic = s->last_picture_ptr;
if (!dts_pic || dts_pic->f->pts == AV_NOPTS_VALUE)
wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
else
wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f->pts / fps);
}
diff = s->total_bits - wanted_bits;
br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
if (br_compensation <= 0.0)
br_compensation = 0.001;
var = pict_type == AV_PICTURE_TYPE_I ? s->mb_var_sum : s->mc_mb_var_sum;
short_term_q = 0; /* avoid warning */
if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
if (pict_type != AV_PICTURE_TYPE_I)
av_assert0(pict_type == rce->new_pict_type);
q = rce->new_qscale / br_compensation;
ff_dlog(s, "%f %f %f last:%d var:%"PRId64" type:%d//\n", q, rce->new_qscale,
br_compensation, s->frame_bits, var, pict_type);
} else {
rce->pict_type =
rce->new_pict_type = pict_type;
rce->mc_mb_var_sum = s->mc_mb_var_sum;
rce->mb_var_sum = s->mb_var_sum;
rce->qscale = FF_QP2LAMBDA * 2;
rce->f_code = s->f_code;
rce->b_code = s->b_code;
rce->misc_bits = 1;
bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
if (pict_type == AV_PICTURE_TYPE_I) {
rce->i_count = s->mb_num;
rce->i_tex_bits = bits;
rce->p_tex_bits = 0;
rce->mv_bits = 0;
} else {
rce->i_count = 0; // FIXME we do know this approx
rce->i_tex_bits = 0;
rce->p_tex_bits = bits * 0.9;
rce->mv_bits = bits * 0.1;
}
rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
rcc->mv_bits_sum[pict_type] += rce->mv_bits;
rcc->frame_count[pict_type]++;
rate_factor = rcc->pass1_wanted_bits /
rcc->pass1_rc_eq_output_sum * br_compensation;
q = get_qscale(s, rce, rate_factor, picture_number);
if (q < 0)
return -1;
av_assert0(q > 0.0);
q = get_diff_limited_q(s, rce, q);
av_assert0(q > 0.0);
// FIXME type dependent blur like in 2-pass
if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
rcc->short_term_qsum *= a->qblur;
rcc->short_term_qcount *= a->qblur;
rcc->short_term_qsum += q;
rcc->short_term_qcount++;
q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
}
av_assert0(q > 0.0);
q = modify_qscale(s, rce, q, picture_number);
rcc->pass1_wanted_bits += s->bit_rate / fps;
av_assert0(q > 0.0);
}
if (s->avctx->debug & FF_DEBUG_RC) {
av_log(s->avctx, AV_LOG_DEBUG,
"%c qp:%d<%2.1f<%d %d want:%"PRId64" total:%"PRId64" comp:%f st_q:%2.2f "
"size:%d var:%"PRId64"/%"PRId64" br:%"PRId64" fps:%d\n",
av_get_picture_type_char(pict_type),
qmin, q, qmax, picture_number,
wanted_bits / 1000, s->total_bits / 1000,
br_compensation, short_term_q, s->frame_bits,
s->mb_var_sum, s->mc_mb_var_sum,
s->bit_rate / 1000, (int)fps);
}
if (q < qmin)
q = qmin;
else if (q > qmax)
q = qmax;
if (s->adaptive_quant)
adaptive_quantization(s, q);
else
q = (int)(q + 0.5);
if (!dry_run) {
rcc->last_qscale = q;
rcc->last_mc_mb_var_sum = s->mc_mb_var_sum;
rcc->last_mb_var_sum = s->mb_var_sum;
}
return q;
}