ffmpeg/libavcodec/arm/dsputil_vfp.S

190 lines
7.0 KiB
ArmAsm

/*
* Copyright (c) 2008 Siarhei Siamashka <ssvb@users.sourceforge.net>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include "asm.S"
.fpu neon @ required for gas to accept UAL syntax
/*
* VFP is a floating point coprocessor used in some ARM cores. VFP11 has 1 cycle
* throughput for almost all the instructions (except for double precision
* arithmetics), but rather high latency. Latency is 4 cycles for loads and 8 cycles
* for arithmetic operations. Scheduling code to avoid pipeline stalls is very
* important for performance. One more interesting feature is that VFP has
* independent load/store and arithmetics pipelines, so it is possible to make
* them work simultaneously and get more than 1 operation per cycle. Load/store
* pipeline can process 2 single precision floating point values per cycle and
* supports bulk loads and stores for large sets of registers. Arithmetic operations
* can be done on vectors, which allows to keep the arithmetics pipeline busy,
* while the processor may issue and execute other instructions. Detailed
* optimization manuals can be found at http://www.arm.com
*/
/**
* ARM VFP optimized implementation of 'vector_fmul_c' function.
* Assume that len is a positive number and is multiple of 8
*/
@ void ff_vector_fmul_vfp(float *dst, const float *src, int len)
function ff_vector_fmul_vfp, export=1
vpush {d8-d15}
mov r3, r0
fmrx r12, fpscr
orr r12, r12, #(3 << 16) /* set vector size to 4 */
fmxr fpscr, r12
vldmia r3!, {s0-s3}
vldmia r1!, {s8-s11}
vldmia r3!, {s4-s7}
vldmia r1!, {s12-s15}
vmul.f32 s8, s0, s8
1:
subs r2, r2, #16
vmul.f32 s12, s4, s12
vldmiage r3!, {s16-s19}
vldmiage r1!, {s24-s27}
vldmiage r3!, {s20-s23}
vldmiage r1!, {s28-s31}
vmulge.f32 s24, s16, s24
vstmia r0!, {s8-s11}
vstmia r0!, {s12-s15}
vmulge.f32 s28, s20, s28
vldmiagt r3!, {s0-s3}
vldmiagt r1!, {s8-s11}
vldmiagt r3!, {s4-s7}
vldmiagt r1!, {s12-s15}
vmulge.f32 s8, s0, s8
vstmiage r0!, {s24-s27}
vstmiage r0!, {s28-s31}
bgt 1b
bic r12, r12, #(7 << 16) /* set vector size back to 1 */
fmxr fpscr, r12
vpop {d8-d15}
bx lr
.endfunc
/**
* ARM VFP optimized implementation of 'vector_fmul_reverse_c' function.
* Assume that len is a positive number and is multiple of 8
*/
@ void ff_vector_fmul_reverse_vfp(float *dst, const float *src0,
@ const float *src1, int len)
function ff_vector_fmul_reverse_vfp, export=1
vpush {d8-d15}
add r2, r2, r3, lsl #2
vldmdb r2!, {s0-s3}
vldmia r1!, {s8-s11}
vldmdb r2!, {s4-s7}
vldmia r1!, {s12-s15}
vmul.f32 s8, s3, s8
vmul.f32 s9, s2, s9
vmul.f32 s10, s1, s10
vmul.f32 s11, s0, s11
1:
subs r3, r3, #16
vldmdbge r2!, {s16-s19}
vmul.f32 s12, s7, s12
vldmiage r1!, {s24-s27}
vmul.f32 s13, s6, s13
vldmdbge r2!, {s20-s23}
vmul.f32 s14, s5, s14
vldmiage r1!, {s28-s31}
vmul.f32 s15, s4, s15
vmulge.f32 s24, s19, s24
vldmdbgt r2!, {s0-s3}
vmulge.f32 s25, s18, s25
vstmia r0!, {s8-s13}
vmulge.f32 s26, s17, s26
vldmiagt r1!, {s8-s11}
vmulge.f32 s27, s16, s27
vmulge.f32 s28, s23, s28
vldmdbgt r2!, {s4-s7}
vmulge.f32 s29, s22, s29
vstmia r0!, {s14-s15}
vmulge.f32 s30, s21, s30
vmulge.f32 s31, s20, s31
vmulge.f32 s8, s3, s8
vldmiagt r1!, {s12-s15}
vmulge.f32 s9, s2, s9
vmulge.f32 s10, s1, s10
vstmiage r0!, {s24-s27}
vmulge.f32 s11, s0, s11
vstmiage r0!, {s28-s31}
bgt 1b
vpop {d8-d15}
bx lr
.endfunc
#if HAVE_ARMV6
/**
* ARM VFP optimized float to int16 conversion.
* Assume that len is a positive number and is multiple of 8, destination
* buffer is at least 4 bytes aligned (8 bytes alignment is better for
* performance), little endian byte sex
*/
@ void ff_float_to_int16_vfp(int16_t *dst, const float *src, int len)
function ff_float_to_int16_vfp, export=1
push {r4-r8,lr}
vpush {d8-d11}
vldmia r1!, {s16-s23}
vcvt.s32.f32 s0, s16
vcvt.s32.f32 s1, s17
vcvt.s32.f32 s2, s18
vcvt.s32.f32 s3, s19
vcvt.s32.f32 s4, s20
vcvt.s32.f32 s5, s21
vcvt.s32.f32 s6, s22
vcvt.s32.f32 s7, s23
1:
subs r2, r2, #8
vmov r3, r4, s0, s1
vmov r5, r6, s2, s3
vmov r7, r8, s4, s5
vmov ip, lr, s6, s7
vldmiagt r1!, {s16-s23}
ssat r4, #16, r4
ssat r3, #16, r3
ssat r6, #16, r6
ssat r5, #16, r5
pkhbt r3, r3, r4, lsl #16
pkhbt r4, r5, r6, lsl #16
vcvtgt.s32.f32 s0, s16
vcvtgt.s32.f32 s1, s17
vcvtgt.s32.f32 s2, s18
vcvtgt.s32.f32 s3, s19
vcvtgt.s32.f32 s4, s20
vcvtgt.s32.f32 s5, s21
vcvtgt.s32.f32 s6, s22
vcvtgt.s32.f32 s7, s23
ssat r8, #16, r8
ssat r7, #16, r7
ssat lr, #16, lr
ssat ip, #16, ip
pkhbt r5, r7, r8, lsl #16
pkhbt r6, ip, lr, lsl #16
stmia r0!, {r3-r6}
bgt 1b
vpop {d8-d11}
pop {r4-r8,pc}
.endfunc
#endif