ffmpeg/libswscale/graph.c
Niklas Haas bf738412e8 swscale/graph: add new high-level scaler dispatch mechanism
This interface has been designed from the ground up to serve as a new
framework for dispatching various scaling operations at a high level. This
will eventually replace the old ad-hoc system of using cascaded contexts,
as well as allowing us to plug in more dynamic scaling passes requiring
intermediate steps, such as colorspace conversions, etc.

The starter implementation merely piggybacks off the existing sws_init() and
sws_scale(), functions, though it does bring the immediate improvement of
splitting up cascaded functions and pre/post conversion functions into
separate filter passes, which allows them to e.g. be executed in parallel
even when the main scaler is required to be single threaded. Additionally,
a dedicated (multi-threaded) noop memcpy pass substantially improves
throughput of that fast path.

Follow-up commits will eventually expand this to move all of the scaling
decision logic into the graph init function, and also eliminate some of the
current special cases.

Sponsored-by: Sovereign Tech Fund
Signed-off-by: Niklas Haas <git@haasn.dev>
2024-11-25 11:02:16 +01:00

618 lines
20 KiB
C

/*
* Copyright (C) 2024 Niklas Haas
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/error.h"
#include "libavutil/imgutils.h"
#include "libavutil/macros.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/slicethread.h"
#include "libswscale/swscale.h"
#include "libswscale/utils.h"
#include "swscale_internal.h"
#include "graph.h"
static int pass_alloc_output(SwsPass *pass)
{
if (!pass || pass->output.fmt != AV_PIX_FMT_NONE)
return 0;
pass->output.fmt = pass->format;
return av_image_alloc(pass->output.data, pass->output.linesize, pass->width,
pass->num_slices * pass->slice_h, pass->format, 64);
}
/* slice_align should be a power of two, or 0 to disable slice threading */
static SwsPass *pass_add(SwsGraph *graph, void *priv, enum AVPixelFormat fmt,
int w, int h, SwsPass *input, int slice_align,
sws_filter_run_t run)
{
int ret;
SwsPass *pass = av_mallocz(sizeof(*pass));
if (!pass)
return NULL;
pass->graph = graph;
pass->run = run;
pass->priv = priv;
pass->format = fmt;
pass->width = w;
pass->height = h;
pass->input = input;
pass->output.fmt = AV_PIX_FMT_NONE;
ret = pass_alloc_output(input);
if (ret < 0) {
av_free(pass);
return NULL;
}
if (!slice_align) {
pass->slice_h = pass->height;
pass->num_slices = 1;
} else {
pass->slice_h = (pass->height + graph->num_threads - 1) / graph->num_threads;
pass->slice_h = FFALIGN(pass->slice_h, slice_align);
pass->num_slices = (pass->height + pass->slice_h - 1) / pass->slice_h;
}
ret = av_dynarray_add_nofree(&graph->passes, &graph->num_passes, pass);
if (ret < 0)
av_freep(&pass);
return pass;
}
/* Wrapper around pass_add that chains a pass "in-place" */
static int pass_append(SwsGraph *graph, void *priv, enum AVPixelFormat fmt,
int w, int h, SwsPass **pass, int slice_align,
sws_filter_run_t run)
{
SwsPass *new = pass_add(graph, priv, fmt, w, h, *pass, slice_align, run);
if (!new)
return AVERROR(ENOMEM);
*pass = new;
return 0;
}
static int vshift(enum AVPixelFormat fmt, int plane)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(fmt);
return (plane == 1 || plane == 2) ? desc->log2_chroma_h : 0;
}
/* Shift an image vertically by y lines */
static SwsImg shift_img(const SwsImg *img_base, int y)
{
SwsImg img = *img_base;
for (int i = 0; i < 4 && img.data[i]; i++)
img.data[i] += (y >> vshift(img.fmt, i)) * img.linesize[i];
return img;
}
static void run_copy(const SwsImg *out_base, const SwsImg *in_base,
int y, int h, const SwsPass *pass)
{
SwsImg in = shift_img(in_base, y);
SwsImg out = shift_img(out_base, y);
for (int i = 0; i < FF_ARRAY_ELEMS(in.data) && in.data[i]; i++) {
const int lines = h >> vshift(in.fmt, i);
if (in.linesize[i] == out.linesize[i]) {
memcpy(out.data[i], in.data[i], lines * out.linesize[i]);
} else {
const int linesize = FFMIN(out.linesize[i], in.linesize[i]);
for (int j = 0; j < lines; j++) {
memcpy(out.data[i], in.data[i], linesize);
in.data[i] += in.linesize[i];
out.data[i] += out.linesize[i];
}
}
}
}
static void run_rgb0(const SwsImg *out, const SwsImg *in, int y, int h,
const SwsPass *pass)
{
SwsInternal *c = pass->priv;
const int x0 = c->src0Alpha - 1;
const int w4 = 4 * pass->width;
const int src_stride = in->linesize[0];
const int dst_stride = out->linesize[0];
const uint8_t *src = in->data[0] + y * src_stride;
uint8_t *dst = out->data[0] + y * dst_stride;
for (int y = 0; y < h; y++) {
memcpy(dst, src, w4 * sizeof(*dst));
for (int x = x0; x < w4; x += 4)
dst[x] = 0xFF;
src += src_stride;
dst += dst_stride;
}
}
static void run_xyz2rgb(const SwsImg *out, const SwsImg *in, int y, int h,
const SwsPass *pass)
{
ff_xyz12Torgb48(pass->priv, out->data[0] + y * out->linesize[0], out->linesize[0],
in->data[0] + y * in->linesize[0], in->linesize[0],
pass->width, h);
}
static void run_rgb2xyz(const SwsImg *out, const SwsImg *in, int y, int h,
const SwsPass *pass)
{
ff_rgb48Toxyz12(pass->priv, out->data[0] + y * out->linesize[0], out->linesize[0],
in->data[0] + y * in->linesize[0], in->linesize[0],
pass->width, h);
}
/***********************************************************************
* Internal ff_swscale() wrapper. This re-uses the legacy scaling API. *
* This is considered fully deprecated, and will be replaced by a full *
* reimplementation ASAP. *
***********************************************************************/
static void free_legacy_swscale(void *priv)
{
SwsContext *sws = priv;
sws_free_context(&sws);
}
static void setup_legacy_swscale(const SwsImg *out, const SwsImg *in,
const SwsPass *pass)
{
SwsContext *sws = pass->priv;
SwsInternal *c = sws_internal(sws);
if (sws->flags & SWS_BITEXACT && sws->dither == SWS_DITHER_ED && c->dither_error[0]) {
for (int i = 0; i < 4; i++)
memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (sws->dst_w + 2));
}
if (usePal(sws->src_format))
ff_update_palette(c, (const uint32_t *) in->data[1]);
}
static inline SwsContext *slice_ctx(const SwsPass *pass, int y)
{
SwsContext *sws = pass->priv;
SwsInternal *parent = sws_internal(sws);
if (pass->num_slices == 1)
return sws;
av_assert1(parent->nb_slice_ctx == pass->num_slices);
sws = parent->slice_ctx[y / pass->slice_h];
if (usePal(sws->src_format)) {
SwsInternal *sub = sws_internal(sws);
memcpy(sub->pal_yuv, parent->pal_yuv, sizeof(sub->pal_yuv));
memcpy(sub->pal_rgb, parent->pal_rgb, sizeof(sub->pal_rgb));
}
return sws;
}
static void run_legacy_unscaled(const SwsImg *out, const SwsImg *in_base,
int y, int h, const SwsPass *pass)
{
SwsContext *sws = slice_ctx(pass, y);
SwsInternal *c = sws_internal(sws);
const SwsImg in = shift_img(in_base, y);
c->convert_unscaled(c, (const uint8_t *const *) in.data, in.linesize, y, h,
out->data, out->linesize);
}
static void run_legacy_swscale(const SwsImg *out_base, const SwsImg *in,
int y, int h, const SwsPass *pass)
{
SwsContext *sws = slice_ctx(pass, y);
SwsInternal *c = sws_internal(sws);
const SwsImg out = shift_img(out_base, y);
ff_swscale(c, (const uint8_t *const *) in->data, in->linesize, 0,
sws->src_h, out.data, out.linesize, y, h);
}
static void get_chroma_pos(SwsGraph *graph, int *h_chr_pos, int *v_chr_pos,
const SwsFormat *fmt)
{
enum AVChromaLocation chroma_loc = fmt->loc;
const int sub_x = fmt->desc->log2_chroma_w;
const int sub_y = fmt->desc->log2_chroma_h;
int x_pos, y_pos;
/* Explicitly default to center siting for compatibility with swscale */
if (chroma_loc == AVCHROMA_LOC_UNSPECIFIED) {
chroma_loc = AVCHROMA_LOC_CENTER;
graph->incomplete |= sub_x || sub_y;
}
/* av_chroma_location_enum_to_pos() always gives us values in the range from
* 0 to 256, but we need to adjust this to the true value range of the
* subsampling grid, which may be larger for h/v_sub > 1 */
av_chroma_location_enum_to_pos(&x_pos, &y_pos, chroma_loc);
x_pos *= (1 << sub_x) - 1;
y_pos *= (1 << sub_y) - 1;
/* Fix vertical chroma position for interlaced frames */
if (sub_y && fmt->interlaced) {
/* When vertically subsampling, chroma samples are effectively only
* placed next to even rows. To access them from the odd field, we need
* to account for this shift by offsetting the distance of one luma row.
*
* For 4x vertical subsampling (v_sub == 2), they are only placed
* next to every *other* even row, so we need to shift by three luma
* rows to get to the chroma sample. */
if (graph->field == FIELD_BOTTOM)
y_pos += (256 << sub_y) - 256;
/* Luma row distance is doubled for fields, so halve offsets */
y_pos >>= 1;
}
/* Explicitly strip chroma offsets when not subsampling, because it
* interferes with the operation of flags like SWS_FULL_CHR_H_INP */
*h_chr_pos = sub_x ? x_pos : -513;
*v_chr_pos = sub_y ? y_pos : -513;
}
static void legacy_chr_pos(SwsGraph *graph, int *chr_pos, int override, int *warned)
{
if (override == -513 || override == *chr_pos)
return;
if (!*warned) {
av_log(NULL, AV_LOG_WARNING,
"Setting chroma position directly is deprecated, make sure "
"the frame is tagged with the correct chroma location.\n");
*warned = 1;
}
*chr_pos = override;
}
static int init_legacy_subpass(SwsGraph *graph, SwsContext *sws, int cascaded,
SwsPass *input, SwsPass **output)
{
SwsInternal *c = sws_internal(sws);
const int src_w = sws->src_w, src_h = sws->src_h;
const int dst_w = sws->dst_w, dst_h = sws->dst_h;
const int unscaled = src_w == dst_w && src_h == dst_h;
int align = c->dst_slice_align;
SwsPass *pass = NULL;
int ret;
if (c->cascaded_context[0]) {
const int num_cascaded = c->cascaded_context[2] ? 3 : 2;
for (int i = 0; i < num_cascaded; i++) {
SwsContext *sub = c->cascaded_context[i];
const int is_last = i + 1 == num_cascaded;
ret = init_legacy_subpass(graph, sub, 1, input, is_last ? output : &input);
if (ret < 0)
return ret;
}
return 0;
}
if (sws->dither == SWS_DITHER_ED && !c->convert_unscaled)
align = 0; /* disable slice threading */
if (c->src0Alpha && !c->dst0Alpha && isALPHA(sws->dst_format)) {
ret = pass_append(graph, c, AV_PIX_FMT_RGBA, src_w, src_h, &input, 1, run_rgb0);
if (ret < 0)
return ret;
}
if (c->srcXYZ && !(c->dstXYZ && unscaled)) {
ret = pass_append(graph, c, AV_PIX_FMT_RGB48, src_w, src_h, &input, 1, run_xyz2rgb);
if (ret < 0)
return ret;
}
pass = pass_add(graph, sws, sws->dst_format, dst_w, dst_h, input, align,
c->convert_unscaled ? run_legacy_unscaled : run_legacy_swscale);
if (!pass)
return AVERROR(ENOMEM);
pass->setup = setup_legacy_swscale;
if (!cascaded) /* parent context frees this automatically */
pass->free = free_legacy_swscale;
/**
* For slice threading, we need to create sub contexts, similar to how
* swscale normally handles it internally. The most important difference
* is that we handle cascaded contexts before threaded contexts; whereas
* context_init_threaded() does it the other way around.
*/
if (pass->num_slices > 1) {
c->slice_ctx = av_calloc(pass->num_slices, sizeof(*c->slice_ctx));
if (!c->slice_ctx)
return AVERROR(ENOMEM);
for (int i = 0; i < pass->num_slices; i++) {
SwsContext *slice;
SwsInternal *c2;
slice = c->slice_ctx[i] = sws_alloc_context();
if (!slice)
return AVERROR(ENOMEM);
c->nb_slice_ctx++;
c2 = sws_internal(slice);
c2->parent = sws;
ret = av_opt_copy(slice, sws);
if (ret < 0)
return ret;
ret = ff_sws_init_single_context(slice, NULL, NULL);
if (ret < 0)
return ret;
sws_setColorspaceDetails(slice, c->srcColorspaceTable,
slice->src_range, c->dstColorspaceTable,
slice->dst_range, c->brightness, c->contrast,
c->saturation);
for (int i = 0; i < FF_ARRAY_ELEMS(c->srcColorspaceTable); i++) {
c2->srcColorspaceTable[i] = c->srcColorspaceTable[i];
c2->dstColorspaceTable[i] = c->dstColorspaceTable[i];
}
}
}
if (c->dstXYZ && !(c->srcXYZ && unscaled)) {
ret = pass_append(graph, c, AV_PIX_FMT_RGB48, dst_w, dst_h, &pass, 1, run_rgb2xyz);
if (ret < 0)
return ret;
}
*output = pass;
return 0;
}
static int add_legacy_sws_pass(SwsGraph *graph, SwsFormat src, SwsFormat dst,
SwsPass *input, SwsPass **output)
{
int ret, warned = 0;
SwsContext *const ctx = graph->ctx;
SwsContext *sws = sws_alloc_context();
if (!sws)
return AVERROR(ENOMEM);
sws->flags = ctx->flags;
sws->dither = ctx->dither;
sws->alpha_blend = ctx->alpha_blend;
sws->gamma_flag = ctx->gamma_flag;
sws->src_w = src.width;
sws->src_h = src.height;
sws->src_format = src.format;
sws->src_range = src.range == AVCOL_RANGE_JPEG;
sws->dst_w = dst.width;
sws->dst_h = dst.height;
sws->dst_format = dst.format;
sws->dst_range = dst.range == AVCOL_RANGE_JPEG;
get_chroma_pos(graph, &sws->src_h_chr_pos, &sws->src_v_chr_pos, &src);
get_chroma_pos(graph, &sws->dst_h_chr_pos, &sws->dst_v_chr_pos, &dst);
graph->incomplete |= src.range == AVCOL_RANGE_UNSPECIFIED;
graph->incomplete |= dst.range == AVCOL_RANGE_UNSPECIFIED;
/* Allow overriding chroma position with the legacy API */
legacy_chr_pos(graph, &sws->src_h_chr_pos, ctx->src_h_chr_pos, &warned);
legacy_chr_pos(graph, &sws->src_v_chr_pos, ctx->src_v_chr_pos, &warned);
legacy_chr_pos(graph, &sws->dst_h_chr_pos, ctx->dst_h_chr_pos, &warned);
legacy_chr_pos(graph, &sws->dst_v_chr_pos, ctx->dst_v_chr_pos, &warned);
ret = sws_init_context(sws, NULL, NULL);
if (ret < 0) {
sws_free_context(&sws);
return ret;
}
/* Set correct color matrices */
{
int in_full, out_full, brightness, contrast, saturation;
const int *inv_table, *table;
sws_getColorspaceDetails(sws, (int **)&inv_table, &in_full,
(int **)&table, &out_full,
&brightness, &contrast, &saturation);
inv_table = sws_getCoefficients(src.csp);
table = sws_getCoefficients(dst.csp);
graph->incomplete |= src.csp != dst.csp &&
(src.csp == AVCOL_SPC_UNSPECIFIED ||
dst.csp == AVCOL_SPC_UNSPECIFIED);
sws_setColorspaceDetails(sws, inv_table, in_full, table, out_full,
brightness, contrast, saturation);
}
ret = init_legacy_subpass(graph, sws, 0, input, output);
if (ret < 0) {
sws_free_context(&sws);
return ret;
}
return 0;
}
/***************************************
* Main filter graph construction code *
***************************************/
static int init_passes(SwsGraph *graph)
{
const SwsFormat src = graph->src;
const SwsFormat dst = graph->dst;
SwsPass *pass = NULL; /* read from main input image */
int ret;
if (!ff_fmt_equal(&src, &dst)) {
ret = add_legacy_sws_pass(graph, src, dst, pass, &pass);
if (ret < 0)
return ret;
}
if (!pass) {
/* No passes were added, so no operations were necessary */
graph->noop = 1;
/* Add threaded memcpy pass */
pass = pass_add(graph, NULL, dst.format, dst.width, dst.height, pass, 1, run_copy);
if (!pass)
return AVERROR(ENOMEM);
}
return 0;
}
static void sws_graph_worker(void *priv, int jobnr, int threadnr, int nb_jobs,
int nb_threads)
{
SwsGraph *graph = priv;
const SwsPass *pass = graph->exec.pass;
const SwsImg *input = pass->input ? &pass->input->output : &graph->exec.input;
const SwsImg *output = pass->output.fmt != AV_PIX_FMT_NONE ? &pass->output : &graph->exec.output;
const int slice_y = jobnr * pass->slice_h;
const int slice_h = FFMIN(pass->slice_h, pass->height - slice_y);
pass->run(output, input, slice_y, slice_h, pass);
}
int sws_graph_create(SwsContext *ctx, const SwsFormat *dst, const SwsFormat *src,
int field, SwsGraph **out_graph)
{
int ret;
SwsGraph *graph = av_mallocz(sizeof(*graph));
if (!graph)
return AVERROR(ENOMEM);
graph->ctx = ctx;
graph->src = *src;
graph->dst = *dst;
graph->field = field;
graph->opts_copy = *ctx;
graph->exec.input.fmt = src->format;
graph->exec.output.fmt = dst->format;
ret = avpriv_slicethread_create(&graph->slicethread, (void *) graph,
sws_graph_worker, NULL, ctx->threads);
if (ret == AVERROR(ENOSYS))
graph->num_threads = 1;
else if (ret < 0)
goto error;
else
graph->num_threads = ret;
ret = init_passes(graph);
if (ret < 0)
goto error;
*out_graph = graph;
return 0;
error:
sws_graph_free(&graph);
return ret;
}
void sws_graph_free(SwsGraph **pgraph)
{
SwsGraph *graph = *pgraph;
if (!graph)
return;
avpriv_slicethread_free(&graph->slicethread);
for (int i = 0; i < graph->num_passes; i++) {
SwsPass *pass = graph->passes[i];
if (pass->free)
pass->free(pass->priv);
if (pass->output.fmt != AV_PIX_FMT_NONE)
av_free(pass->output.data[0]);
av_free(pass);
}
av_free(graph->passes);
av_free(graph);
*pgraph = NULL;
}
/* Tests only options relevant to SwsGraph */
static int opts_equal(const SwsContext *c1, const SwsContext *c2)
{
return c1->flags == c2->flags &&
c1->threads == c2->threads &&
c1->dither == c2->dither &&
c1->alpha_blend == c2->alpha_blend &&
c1->gamma_flag == c2->gamma_flag &&
c1->src_h_chr_pos == c2->src_h_chr_pos &&
c1->src_v_chr_pos == c2->src_v_chr_pos &&
c1->dst_h_chr_pos == c2->dst_h_chr_pos &&
c1->dst_v_chr_pos == c2->dst_v_chr_pos &&
!memcmp(c1->scaler_params, c2->scaler_params, sizeof(c1->scaler_params));
}
int sws_graph_reinit(SwsContext *ctx, const SwsFormat *dst, const SwsFormat *src,
int field, SwsGraph **out_graph)
{
const SwsGraph *graph = *out_graph;
if (graph && ff_fmt_equal(&graph->src, src) &&
ff_fmt_equal(&graph->dst, dst) &&
opts_equal(ctx, &graph->opts_copy))
return 0;
sws_graph_free(out_graph);
return sws_graph_create(ctx, dst, src, field, out_graph);
}
void sws_graph_run(SwsGraph *graph, uint8_t *const out_data[4],
const int out_linesize[4],
const uint8_t *const in_data[4],
const int in_linesize[4])
{
SwsImg *out = &graph->exec.output;
SwsImg *in = &graph->exec.input;
memcpy(out->data, out_data, sizeof(out->data));
memcpy(out->linesize, out_linesize, sizeof(out->linesize));
memcpy(in->data, in_data, sizeof(in->data));
memcpy(in->linesize, in_linesize, sizeof(in->linesize));
for (int i = 0; i < graph->num_passes; i++) {
const SwsPass *pass = graph->passes[i];
graph->exec.pass = pass;
if (pass->setup)
pass->setup(out, in, pass);
avpriv_slicethread_execute(graph->slicethread, pass->num_slices, 0);
}
}