mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-30 11:22:14 +00:00
790f793844
There are lots of files that don't need it: The number of object files that actually need it went down from 2011 to 884 here. Keep it for external users in order to not cause breakages. Also improve the other headers a bit while just at it. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
803 lines
27 KiB
C
803 lines
27 KiB
C
/*
|
|
* TwinVQ decoder
|
|
* Copyright (c) 2009 Vitor Sessak
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
|
|
#include "libavutil/channel_layout.h"
|
|
#include "libavutil/float_dsp.h"
|
|
#include "libavutil/mem.h"
|
|
#include "avcodec.h"
|
|
#include "decode.h"
|
|
#include "lsp.h"
|
|
#include "metasound_twinvq_data.h"
|
|
#include "sinewin.h"
|
|
#include "twinvq.h"
|
|
|
|
/**
|
|
* Evaluate a single LPC amplitude spectrum envelope coefficient from the line
|
|
* spectrum pairs.
|
|
*
|
|
* @param lsp a vector of the cosine of the LSP values
|
|
* @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
|
|
* @param order the order of the LSP (and the size of the *lsp buffer). Must
|
|
* be a multiple of four.
|
|
* @return the LPC value
|
|
*
|
|
* @todo reuse code from Vorbis decoder: vorbis_floor0_decode
|
|
*/
|
|
static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
|
|
{
|
|
int j;
|
|
float p = 0.5f;
|
|
float q = 0.5f;
|
|
float two_cos_w = 2.0f * cos_val;
|
|
|
|
for (j = 0; j + 1 < order; j += 2 * 2) {
|
|
// Unroll the loop once since order is a multiple of four
|
|
q *= lsp[j] - two_cos_w;
|
|
p *= lsp[j + 1] - two_cos_w;
|
|
|
|
q *= lsp[j + 2] - two_cos_w;
|
|
p *= lsp[j + 3] - two_cos_w;
|
|
}
|
|
|
|
p *= p * (2.0f - two_cos_w);
|
|
q *= q * (2.0f + two_cos_w);
|
|
|
|
return 0.5 / (p + q);
|
|
}
|
|
|
|
/**
|
|
* Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
|
|
*/
|
|
static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
|
|
{
|
|
int i;
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
|
|
|
|
for (i = 0; i < size_s / 2; i++) {
|
|
float cos_i = tctx->cos_tabs[0][i];
|
|
lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
|
|
lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
|
|
}
|
|
}
|
|
|
|
static void interpolate(float *out, float v1, float v2, int size)
|
|
{
|
|
int i;
|
|
float step = (v1 - v2) / (size + 1);
|
|
|
|
for (i = 0; i < size; i++) {
|
|
v2 += step;
|
|
out[i] = v2;
|
|
}
|
|
}
|
|
|
|
static inline float get_cos(int idx, int part, const float *cos_tab, int size)
|
|
{
|
|
return part ? -cos_tab[size - idx - 1]
|
|
: cos_tab[idx];
|
|
}
|
|
|
|
/**
|
|
* Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
|
|
* Probably for speed reasons, the coefficients are evaluated as
|
|
* siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
|
|
* where s is an evaluated value, i is a value interpolated from the others
|
|
* and b might be either calculated or interpolated, depending on an
|
|
* unexplained condition.
|
|
*
|
|
* @param step the size of a block "siiiibiiii"
|
|
* @param in the cosine of the LSP data
|
|
* @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
|
|
* (negative cosine values)
|
|
* @param size the size of the whole output
|
|
*/
|
|
static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
|
|
enum TwinVQFrameType ftype,
|
|
float *out, const float *in,
|
|
int size, int step, int part)
|
|
{
|
|
int i;
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
const float *cos_tab = tctx->cos_tabs[ftype];
|
|
|
|
// Fill the 's'
|
|
for (i = 0; i < size; i += step)
|
|
out[i] =
|
|
eval_lpc_spectrum(in,
|
|
get_cos(i, part, cos_tab, size),
|
|
mtab->n_lsp);
|
|
|
|
// Fill the 'iiiibiiii'
|
|
for (i = step; i <= size - 2 * step; i += step) {
|
|
if (out[i + step] + out[i - step] > 1.95 * out[i] ||
|
|
out[i + step] >= out[i - step]) {
|
|
interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
|
|
} else {
|
|
out[i - step / 2] =
|
|
eval_lpc_spectrum(in,
|
|
get_cos(i - step / 2, part, cos_tab, size),
|
|
mtab->n_lsp);
|
|
interpolate(out + i - step + 1, out[i - step / 2],
|
|
out[i - step], step / 2 - 1);
|
|
interpolate(out + i - step / 2 + 1, out[i],
|
|
out[i - step / 2], step / 2 - 1);
|
|
}
|
|
}
|
|
|
|
interpolate(out + size - 2 * step + 1, out[size - step],
|
|
out[size - 2 * step], step - 1);
|
|
}
|
|
|
|
static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
|
|
const float *buf, float *lpc,
|
|
int size, int step)
|
|
{
|
|
eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
|
|
eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
|
|
2 * step, 1);
|
|
|
|
interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
|
|
lpc[size / 2 - step], step);
|
|
|
|
twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
|
|
2 * step - 1);
|
|
}
|
|
|
|
/**
|
|
* Inverse quantization. Read CB coefficients for cb1 and cb2 from the
|
|
* bitstream, sum the corresponding vectors and write the result to *out
|
|
* after permutation.
|
|
*/
|
|
static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
|
|
enum TwinVQFrameType ftype,
|
|
const int16_t *cb0, const int16_t *cb1, int cb_len)
|
|
{
|
|
int pos = 0;
|
|
int i, j;
|
|
|
|
for (i = 0; i < tctx->n_div[ftype]; i++) {
|
|
int tmp0, tmp1;
|
|
int sign0 = 1;
|
|
int sign1 = 1;
|
|
const int16_t *tab0, *tab1;
|
|
int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
|
|
int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
|
|
|
|
int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
|
|
tmp0 = *cb_bits++;
|
|
if (bits == 7) {
|
|
if (tmp0 & 0x40)
|
|
sign0 = -1;
|
|
tmp0 &= 0x3F;
|
|
}
|
|
|
|
bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
|
|
tmp1 = *cb_bits++;
|
|
if (bits == 7) {
|
|
if (tmp1 & 0x40)
|
|
sign1 = -1;
|
|
tmp1 &= 0x3F;
|
|
}
|
|
|
|
tab0 = cb0 + tmp0 * cb_len;
|
|
tab1 = cb1 + tmp1 * cb_len;
|
|
|
|
for (j = 0; j < length; j++)
|
|
out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
|
|
sign1 * tab1[j];
|
|
|
|
pos += length;
|
|
}
|
|
}
|
|
|
|
static void dec_gain(TwinVQContext *tctx,
|
|
enum TwinVQFrameType ftype, float *out)
|
|
{
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
|
|
int i, j;
|
|
int channels = tctx->avctx->ch_layout.nb_channels;
|
|
int sub = mtab->fmode[ftype].sub;
|
|
float step = TWINVQ_AMP_MAX / ((1 << TWINVQ_GAIN_BITS) - 1);
|
|
float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
|
|
|
|
if (ftype == TWINVQ_FT_LONG) {
|
|
for (i = 0; i < channels; i++)
|
|
out[i] = (1.0 / (1 << 13)) *
|
|
twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
|
|
TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
|
|
} else {
|
|
for (i = 0; i < channels; i++) {
|
|
float val = (1.0 / (1 << 23)) *
|
|
twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
|
|
TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
|
|
|
|
for (j = 0; j < sub; j++)
|
|
out[i * sub + j] =
|
|
val * twinvq_mulawinv(sub_step * 0.5 +
|
|
sub_step * bits->sub_gain_bits[i * sub + j],
|
|
TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Rearrange the LSP coefficients so that they have a minimum distance of
|
|
* min_dist. This function does it exactly as described in section of 3.2.4
|
|
* of the G.729 specification (but interestingly is different from what the
|
|
* reference decoder actually does).
|
|
*/
|
|
static void rearrange_lsp(int order, float *lsp, float min_dist)
|
|
{
|
|
int i;
|
|
float min_dist2 = min_dist * 0.5;
|
|
for (i = 1; i < order; i++)
|
|
if (lsp[i] - lsp[i - 1] < min_dist) {
|
|
float avg = (lsp[i] + lsp[i - 1]) * 0.5;
|
|
|
|
lsp[i - 1] = avg - min_dist2;
|
|
lsp[i] = avg + min_dist2;
|
|
}
|
|
}
|
|
|
|
static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
|
|
int lpc_hist_idx, float *lsp, float *hist)
|
|
{
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
int i, j;
|
|
|
|
const float *cb = mtab->lspcodebook;
|
|
const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp;
|
|
const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
|
|
|
|
const int8_t funny_rounding[4] = {
|
|
-2,
|
|
mtab->lsp_split == 4 ? -2 : 1,
|
|
mtab->lsp_split == 4 ? -2 : 1,
|
|
0
|
|
};
|
|
|
|
j = 0;
|
|
for (i = 0; i < mtab->lsp_split; i++) {
|
|
int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
|
|
mtab->lsp_split;
|
|
for (; j < chunk_end; j++)
|
|
lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] +
|
|
cb2[lpc_idx2[i] * mtab->n_lsp + j];
|
|
}
|
|
|
|
rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
|
|
|
|
for (i = 0; i < mtab->n_lsp; i++) {
|
|
float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i];
|
|
float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
|
|
hist[i] = lsp[i];
|
|
lsp[i] = lsp[i] * tmp1 + tmp2;
|
|
}
|
|
|
|
rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
|
|
rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
|
|
ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
|
|
}
|
|
|
|
static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
|
|
enum TwinVQFrameType ftype, float *lpc)
|
|
{
|
|
int i;
|
|
int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
|
|
|
|
for (i = 0; i < tctx->mtab->n_lsp; i++)
|
|
lsp[i] = 2 * cos(lsp[i]);
|
|
|
|
switch (ftype) {
|
|
case TWINVQ_FT_LONG:
|
|
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
|
|
break;
|
|
case TWINVQ_FT_MEDIUM:
|
|
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
|
|
break;
|
|
case TWINVQ_FT_SHORT:
|
|
eval_lpcenv(tctx, lsp, lpc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
|
|
|
|
static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
|
|
int wtype, float *in, float *prev, int ch)
|
|
{
|
|
AVTXContext *tx = tctx->tx[ftype];
|
|
av_tx_fn tx_fn = tctx->tx_fn[ftype];
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
int bsize = mtab->size / mtab->fmode[ftype].sub;
|
|
int size = mtab->size;
|
|
float *buf1 = tctx->tmp_buf;
|
|
int j, first_wsize, wsize; // Window size
|
|
float *out = tctx->curr_frame + 2 * ch * mtab->size;
|
|
float *out2 = out;
|
|
float *prev_buf;
|
|
int types_sizes[] = {
|
|
mtab->size / mtab->fmode[TWINVQ_FT_LONG].sub,
|
|
mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub,
|
|
mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
|
|
};
|
|
|
|
wsize = types_sizes[wtype_to_wsize[wtype]];
|
|
first_wsize = wsize;
|
|
prev_buf = prev + (size - bsize) / 2;
|
|
|
|
for (j = 0; j < mtab->fmode[ftype].sub; j++) {
|
|
int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
|
|
|
|
if (!j && wtype == 4)
|
|
sub_wtype = 4;
|
|
else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
|
|
sub_wtype = 7;
|
|
|
|
wsize = types_sizes[wtype_to_wsize[sub_wtype]];
|
|
|
|
tx_fn(tx, buf1 + bsize * j, in + bsize * j, sizeof(float));
|
|
|
|
tctx->fdsp->vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
|
|
buf1 + bsize * j,
|
|
ff_sine_windows[av_log2(wsize)],
|
|
wsize / 2);
|
|
out2 += wsize;
|
|
|
|
memcpy(out2, buf1 + bsize * j + wsize / 2,
|
|
(bsize - wsize / 2) * sizeof(float));
|
|
|
|
out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
|
|
|
|
prev_buf = buf1 + bsize * j + bsize / 2;
|
|
}
|
|
|
|
tctx->last_block_pos[ch] = (size + first_wsize) / 2;
|
|
}
|
|
|
|
static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
|
|
int wtype, float **out, int offset)
|
|
{
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
|
|
int channels = tctx->avctx->ch_layout.nb_channels;
|
|
int size1, size2, i;
|
|
float *out1, *out2;
|
|
|
|
for (i = 0; i < channels; i++)
|
|
imdct_and_window(tctx, ftype, wtype,
|
|
tctx->spectrum + i * mtab->size,
|
|
prev_buf + 2 * i * mtab->size,
|
|
i);
|
|
|
|
if (!out)
|
|
return;
|
|
|
|
size2 = tctx->last_block_pos[0];
|
|
size1 = mtab->size - size2;
|
|
|
|
out1 = &out[0][0] + offset;
|
|
memcpy(out1, prev_buf, size1 * sizeof(*out1));
|
|
memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1));
|
|
|
|
if (channels == 2) {
|
|
out2 = &out[1][0] + offset;
|
|
memcpy(out2, &prev_buf[2 * mtab->size],
|
|
size1 * sizeof(*out2));
|
|
memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size],
|
|
size2 * sizeof(*out2));
|
|
tctx->fdsp->butterflies_float(out1, out2, mtab->size);
|
|
}
|
|
}
|
|
|
|
static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
|
|
enum TwinVQFrameType ftype)
|
|
{
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
|
|
int channels = tctx->avctx->ch_layout.nb_channels;
|
|
int sub = mtab->fmode[ftype].sub;
|
|
int block_size = mtab->size / sub;
|
|
float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
|
|
float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
|
|
|
|
int i, j;
|
|
|
|
dequant(tctx, bits->main_coeffs, out, ftype,
|
|
mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
|
|
mtab->fmode[ftype].cb_len_read);
|
|
|
|
dec_gain(tctx, ftype, gain);
|
|
|
|
if (ftype == TWINVQ_FT_LONG) {
|
|
int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
|
|
tctx->n_div[3];
|
|
dequant(tctx, bits->ppc_coeffs, ppc_shape,
|
|
TWINVQ_FT_PPC, mtab->ppc_shape_cb,
|
|
mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
|
|
cb_len_p);
|
|
}
|
|
|
|
for (i = 0; i < channels; i++) {
|
|
float *chunk = out + mtab->size * i;
|
|
float lsp[TWINVQ_LSP_COEFS_MAX];
|
|
|
|
for (j = 0; j < sub; j++) {
|
|
tctx->dec_bark_env(tctx, bits->bark1[i][j],
|
|
bits->bark_use_hist[i][j], i,
|
|
tctx->tmp_buf, gain[sub * i + j], ftype);
|
|
|
|
tctx->fdsp->vector_fmul(chunk + block_size * j,
|
|
chunk + block_size * j,
|
|
tctx->tmp_buf, block_size);
|
|
}
|
|
|
|
if (ftype == TWINVQ_FT_LONG)
|
|
tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
|
|
ppc_shape + i * mtab->ppc_shape_len, chunk);
|
|
|
|
decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
|
|
bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
|
|
|
|
dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
|
|
|
|
for (j = 0; j < mtab->fmode[ftype].sub; j++) {
|
|
tctx->fdsp->vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
|
|
chunk += block_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = {
|
|
TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG,
|
|
TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_MEDIUM,
|
|
TWINVQ_FT_MEDIUM
|
|
};
|
|
|
|
int ff_twinvq_decode_frame(AVCodecContext *avctx, AVFrame *frame,
|
|
int *got_frame_ptr, AVPacket *avpkt)
|
|
{
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
TwinVQContext *tctx = avctx->priv_data;
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
float **out = NULL;
|
|
int ret;
|
|
|
|
/* get output buffer */
|
|
if (tctx->discarded_packets >= 2) {
|
|
frame->nb_samples = mtab->size * tctx->frames_per_packet;
|
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
|
|
return ret;
|
|
out = (float **)frame->extended_data;
|
|
}
|
|
|
|
if (buf_size < avctx->block_align) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Frame too small (%d bytes). Truncated file?\n", buf_size);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
|
|
return ret;
|
|
|
|
for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet;
|
|
tctx->cur_frame++) {
|
|
read_and_decode_spectrum(tctx, tctx->spectrum,
|
|
tctx->bits[tctx->cur_frame].ftype);
|
|
|
|
imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype,
|
|
tctx->bits[tctx->cur_frame].window_type, out,
|
|
tctx->cur_frame * mtab->size);
|
|
|
|
FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
|
|
}
|
|
|
|
if (tctx->discarded_packets < 2) {
|
|
tctx->discarded_packets++;
|
|
*got_frame_ptr = 0;
|
|
return buf_size;
|
|
}
|
|
|
|
*got_frame_ptr = 1;
|
|
|
|
// VQF can deliver packets 1 byte greater than block align
|
|
if (buf_size == avctx->block_align + 1)
|
|
return buf_size;
|
|
return avctx->block_align;
|
|
}
|
|
|
|
/**
|
|
* Init IMDCT and windowing tables
|
|
*/
|
|
static av_cold int init_mdct_win(TwinVQContext *tctx)
|
|
{
|
|
int i, j, ret;
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
|
|
int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
|
|
int channels = tctx->avctx->ch_layout.nb_channels;
|
|
float norm = channels == 1 ? 2.0 : 1.0;
|
|
int table_size = 2 * mtab->size * channels;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
|
|
const float scale = -sqrt(norm / bsize) / (1 << 15);
|
|
if ((ret = av_tx_init(&tctx->tx[i], &tctx->tx_fn[i], AV_TX_FLOAT_MDCT,
|
|
1, bsize, &scale, 0)))
|
|
return ret;
|
|
}
|
|
|
|
if (!FF_ALLOC_TYPED_ARRAY(tctx->tmp_buf, mtab->size) ||
|
|
!FF_ALLOC_TYPED_ARRAY(tctx->spectrum, table_size) ||
|
|
!FF_ALLOC_TYPED_ARRAY(tctx->curr_frame, table_size) ||
|
|
!FF_ALLOC_TYPED_ARRAY(tctx->prev_frame, table_size))
|
|
return AVERROR(ENOMEM);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
int m = 4 * mtab->size / mtab->fmode[i].sub;
|
|
double freq = 2 * M_PI / m;
|
|
if (!FF_ALLOC_TYPED_ARRAY(tctx->cos_tabs[i], m / 4))
|
|
return AVERROR(ENOMEM);
|
|
for (j = 0; j <= m / 8; j++)
|
|
tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
|
|
for (j = 1; j < m / 8; j++)
|
|
tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
|
|
}
|
|
|
|
ff_init_ff_sine_windows(av_log2(size_m));
|
|
ff_init_ff_sine_windows(av_log2(size_s / 2));
|
|
ff_init_ff_sine_windows(av_log2(mtab->size));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Interpret the data as if it were a num_blocks x line_len[0] matrix and for
|
|
* each line do a cyclic permutation, i.e.
|
|
* abcdefghijklm -> defghijklmabc
|
|
* where the amount to be shifted is evaluated depending on the column.
|
|
*/
|
|
static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
|
|
int block_size,
|
|
const uint8_t line_len[2], int length_div,
|
|
enum TwinVQFrameType ftype)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < line_len[0]; i++) {
|
|
int shift;
|
|
|
|
if (num_blocks == 1 ||
|
|
(ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
|
|
(ftype != TWINVQ_FT_LONG && num_vect & 1) ||
|
|
i == line_len[1]) {
|
|
shift = 0;
|
|
} else if (ftype == TWINVQ_FT_LONG) {
|
|
shift = i;
|
|
} else
|
|
shift = i * i;
|
|
|
|
for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
|
|
tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Interpret the input data as in the following table:
|
|
*
|
|
* @verbatim
|
|
*
|
|
* abcdefgh
|
|
* ijklmnop
|
|
* qrstuvw
|
|
* x123456
|
|
*
|
|
* @endverbatim
|
|
*
|
|
* and transpose it, giving the output
|
|
* aiqxbjr1cks2dlt3emu4fvn5gow6hp
|
|
*/
|
|
static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
|
|
const uint8_t line_len[2], int length_div)
|
|
{
|
|
int i, j;
|
|
int cont = 0;
|
|
|
|
for (i = 0; i < num_vect; i++)
|
|
for (j = 0; j < line_len[i >= length_div]; j++)
|
|
out[cont++] = in[j * num_vect + i];
|
|
}
|
|
|
|
static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
|
|
{
|
|
int block_size = size / n_blocks;
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
|
|
}
|
|
|
|
static av_cold void construct_perm_table(TwinVQContext *tctx,
|
|
enum TwinVQFrameType ftype)
|
|
{
|
|
int block_size, size;
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
|
|
|
|
if (ftype == TWINVQ_FT_PPC) {
|
|
size = tctx->avctx->ch_layout.nb_channels;
|
|
block_size = mtab->ppc_shape_len;
|
|
} else {
|
|
size = tctx->avctx->ch_layout.nb_channels * mtab->fmode[ftype].sub;
|
|
block_size = mtab->size / mtab->fmode[ftype].sub;
|
|
}
|
|
|
|
permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
|
|
block_size, tctx->length[ftype],
|
|
tctx->length_change[ftype], ftype);
|
|
|
|
transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
|
|
tctx->length[ftype], tctx->length_change[ftype]);
|
|
|
|
linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
|
|
size * block_size);
|
|
}
|
|
|
|
static av_cold void init_bitstream_params(TwinVQContext *tctx)
|
|
{
|
|
const TwinVQModeTab *mtab = tctx->mtab;
|
|
int n_ch = tctx->avctx->ch_layout.nb_channels;
|
|
int total_fr_bits = tctx->avctx->bit_rate * mtab->size /
|
|
tctx->avctx->sample_rate;
|
|
|
|
int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
|
|
mtab->lsp_split * mtab->lsp_bit2);
|
|
|
|
int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
|
|
mtab->ppc_period_bit);
|
|
|
|
int bsize_no_main_cb[3], bse_bits[3], i;
|
|
enum TwinVQFrameType frametype;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
// +1 for history usage switch
|
|
bse_bits[i] = n_ch *
|
|
(mtab->fmode[i].bark_n_coef *
|
|
mtab->fmode[i].bark_n_bit + 1);
|
|
|
|
bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
|
|
TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS;
|
|
|
|
for (i = 0; i < 2; i++)
|
|
bsize_no_main_cb[i] =
|
|
lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
|
|
TWINVQ_WINDOW_TYPE_BITS +
|
|
mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
|
|
|
|
if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) {
|
|
bsize_no_main_cb[1] += 2;
|
|
bsize_no_main_cb[2] += 2;
|
|
}
|
|
|
|
// The remaining bits are all used for the main spectrum coefficients
|
|
for (i = 0; i < 4; i++) {
|
|
int bit_size, vect_size;
|
|
int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
|
|
if (i == 3) {
|
|
bit_size = n_ch * mtab->ppc_shape_bit;
|
|
vect_size = n_ch * mtab->ppc_shape_len;
|
|
} else {
|
|
bit_size = total_fr_bits - bsize_no_main_cb[i];
|
|
vect_size = n_ch * mtab->size;
|
|
}
|
|
|
|
tctx->n_div[i] = (bit_size + 13) / 14;
|
|
|
|
rounded_up = (bit_size + tctx->n_div[i] - 1) /
|
|
tctx->n_div[i];
|
|
rounded_down = (bit_size) / tctx->n_div[i];
|
|
num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
|
|
num_rounded_up = tctx->n_div[i] - num_rounded_down;
|
|
tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2;
|
|
tctx->bits_main_spec[1][i][0] = rounded_up / 2;
|
|
tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2;
|
|
tctx->bits_main_spec[1][i][1] = rounded_down / 2;
|
|
tctx->bits_main_spec_change[i] = num_rounded_up;
|
|
|
|
rounded_up = (vect_size + tctx->n_div[i] - 1) /
|
|
tctx->n_div[i];
|
|
rounded_down = (vect_size) / tctx->n_div[i];
|
|
num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
|
|
num_rounded_up = tctx->n_div[i] - num_rounded_down;
|
|
tctx->length[i][0] = rounded_up;
|
|
tctx->length[i][1] = rounded_down;
|
|
tctx->length_change[i] = num_rounded_up;
|
|
}
|
|
|
|
for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
|
|
construct_perm_table(tctx, frametype);
|
|
}
|
|
|
|
av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
|
|
{
|
|
TwinVQContext *tctx = avctx->priv_data;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
av_tx_uninit(&tctx->tx[i]);
|
|
av_freep(&tctx->cos_tabs[i]);
|
|
}
|
|
|
|
av_freep(&tctx->curr_frame);
|
|
av_freep(&tctx->spectrum);
|
|
av_freep(&tctx->prev_frame);
|
|
av_freep(&tctx->tmp_buf);
|
|
av_freep(&tctx->fdsp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
|
|
{
|
|
int ret;
|
|
TwinVQContext *tctx = avctx->priv_data;
|
|
int64_t frames_per_packet;
|
|
|
|
tctx->avctx = avctx;
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
|
|
|
|
if (!avctx->block_align) {
|
|
avctx->block_align = tctx->frame_size + 7 >> 3;
|
|
}
|
|
frames_per_packet = avctx->block_align * 8LL / tctx->frame_size;
|
|
if (frames_per_packet <= 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Block align is %"PRId64" bits, expected %d\n",
|
|
avctx->block_align * (int64_t)8, tctx->frame_size);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) {
|
|
av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%"PRId64")\n",
|
|
frames_per_packet);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
tctx->frames_per_packet = frames_per_packet;
|
|
|
|
tctx->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
|
|
if (!tctx->fdsp)
|
|
return AVERROR(ENOMEM);
|
|
if ((ret = init_mdct_win(tctx))) {
|
|
av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
|
|
return ret;
|
|
}
|
|
init_bitstream_params(tctx);
|
|
|
|
twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
|
|
FF_ARRAY_ELEMS(tctx->bark_hist));
|
|
|
|
return 0;
|
|
}
|