ffmpeg/libavcodec/vp8.c
Martin Storsjö 25f056e6d4 vp8: Enclose pthread function calls in ifdefs
This fixes building with threads disabled.

Signed-off-by: Martin Storsjö <martin@martin.st>
2012-07-15 13:55:18 +03:00

2086 lines
75 KiB
C

/*
* VP8 compatible video decoder
*
* Copyright (C) 2010 David Conrad
* Copyright (C) 2010 Ronald S. Bultje
* Copyright (C) 2010 Jason Garrett-Glaser
* Copyright (C) 2012 Daniel Kang
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/imgutils.h"
#include "avcodec.h"
#include "internal.h"
#include "vp8.h"
#include "vp8data.h"
#include "rectangle.h"
#include "thread.h"
#if ARCH_ARM
# include "arm/vp8.h"
#endif
static void free_buffers(VP8Context *s)
{
int i;
if (s->thread_data)
for (i = 0; i < MAX_THREADS; i++) {
av_freep(&s->thread_data[i].filter_strength);
av_freep(&s->thread_data[i].edge_emu_buffer);
}
av_freep(&s->thread_data);
av_freep(&s->macroblocks_base);
av_freep(&s->intra4x4_pred_mode_top);
av_freep(&s->top_nnz);
av_freep(&s->top_border);
s->macroblocks = NULL;
}
static int vp8_alloc_frame(VP8Context *s, AVFrame *f)
{
int ret;
if ((ret = ff_thread_get_buffer(s->avctx, f)) < 0)
return ret;
if (s->num_maps_to_be_freed && !s->maps_are_invalid) {
f->ref_index[0] = s->segmentation_maps[--s->num_maps_to_be_freed];
} else if (!(f->ref_index[0] = av_mallocz(s->mb_width * s->mb_height))) {
ff_thread_release_buffer(s->avctx, f);
return AVERROR(ENOMEM);
}
return 0;
}
static void vp8_release_frame(VP8Context *s, AVFrame *f, int prefer_delayed_free, int can_direct_free)
{
if (f->ref_index[0]) {
if (prefer_delayed_free) {
/* Upon a size change, we want to free the maps but other threads may still
* be using them, so queue them. Upon a seek, all threads are inactive so
* we want to cache one to prevent re-allocation in the next decoding
* iteration, but the rest we can free directly. */
int max_queued_maps = can_direct_free ? 1 : FF_ARRAY_ELEMS(s->segmentation_maps);
if (s->num_maps_to_be_freed < max_queued_maps) {
s->segmentation_maps[s->num_maps_to_be_freed++] = f->ref_index[0];
} else if (can_direct_free) /* vp8_decode_flush(), but our queue is full */ {
av_free(f->ref_index[0]);
} /* else: MEMLEAK (should never happen, but better that than crash) */
f->ref_index[0] = NULL;
} else /* vp8_decode_free() */ {
av_free(f->ref_index[0]);
}
}
ff_thread_release_buffer(s->avctx, f);
}
static void vp8_decode_flush_impl(AVCodecContext *avctx,
int prefer_delayed_free, int can_direct_free, int free_mem)
{
VP8Context *s = avctx->priv_data;
int i;
if (!avctx->internal->is_copy) {
for (i = 0; i < 5; i++)
if (s->frames[i].data[0])
vp8_release_frame(s, &s->frames[i], prefer_delayed_free, can_direct_free);
}
memset(s->framep, 0, sizeof(s->framep));
if (free_mem) {
free_buffers(s);
s->maps_are_invalid = 1;
}
}
static void vp8_decode_flush(AVCodecContext *avctx)
{
vp8_decode_flush_impl(avctx, 1, 1, 0);
}
static int update_dimensions(VP8Context *s, int width, int height)
{
AVCodecContext *avctx = s->avctx;
int i;
if (width != s->avctx->width ||
height != s->avctx->height) {
if (av_image_check_size(width, height, 0, s->avctx))
return AVERROR_INVALIDDATA;
vp8_decode_flush_impl(s->avctx, 1, 0, 1);
avcodec_set_dimensions(s->avctx, width, height);
}
s->mb_width = (s->avctx->coded_width +15) / 16;
s->mb_height = (s->avctx->coded_height+15) / 16;
s->mb_layout = (avctx->active_thread_type == FF_THREAD_SLICE) && (FFMIN(s->num_coeff_partitions, avctx->thread_count) > 1);
if (!s->mb_layout) { // Frame threading and one thread
s->macroblocks_base = av_mallocz((s->mb_width+s->mb_height*2+1)*sizeof(*s->macroblocks));
s->intra4x4_pred_mode_top = av_mallocz(s->mb_width*4);
}
else // Sliced threading
s->macroblocks_base = av_mallocz((s->mb_width+2)*(s->mb_height+2)*sizeof(*s->macroblocks));
s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border));
s->thread_data = av_mallocz(MAX_THREADS*sizeof(VP8ThreadData));
for (i = 0; i < MAX_THREADS; i++) {
s->thread_data[i].filter_strength = av_mallocz(s->mb_width*sizeof(*s->thread_data[0].filter_strength));
#if HAVE_THREADS
pthread_mutex_init(&s->thread_data[i].lock, NULL);
pthread_cond_init(&s->thread_data[i].cond, NULL);
#endif
}
if (!s->macroblocks_base || !s->top_nnz || !s->top_border ||
(!s->intra4x4_pred_mode_top && !s->mb_layout))
return AVERROR(ENOMEM);
s->macroblocks = s->macroblocks_base + 1;
return 0;
}
static void parse_segment_info(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i;
s->segmentation.update_map = vp8_rac_get(c);
if (vp8_rac_get(c)) { // update segment feature data
s->segmentation.absolute_vals = vp8_rac_get(c);
for (i = 0; i < 4; i++)
s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
for (i = 0; i < 4; i++)
s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
}
if (s->segmentation.update_map)
for (i = 0; i < 3; i++)
s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
}
static void update_lf_deltas(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i;
for (i = 0; i < 4; i++) {
if (vp8_rac_get(c)) {
s->lf_delta.ref[i] = vp8_rac_get_uint(c, 6);
if (vp8_rac_get(c))
s->lf_delta.ref[i] = -s->lf_delta.ref[i];
}
}
for (i = MODE_I4x4; i <= VP8_MVMODE_SPLIT; i++) {
if (vp8_rac_get(c)) {
s->lf_delta.mode[i] = vp8_rac_get_uint(c, 6);
if (vp8_rac_get(c))
s->lf_delta.mode[i] = -s->lf_delta.mode[i];
}
}
}
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
{
const uint8_t *sizes = buf;
int i;
s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
buf += 3*(s->num_coeff_partitions-1);
buf_size -= 3*(s->num_coeff_partitions-1);
if (buf_size < 0)
return -1;
for (i = 0; i < s->num_coeff_partitions-1; i++) {
int size = AV_RL24(sizes + 3*i);
if (buf_size - size < 0)
return -1;
ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
buf += size;
buf_size -= size;
}
ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
return 0;
}
static void get_quants(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i, base_qi;
int yac_qi = vp8_rac_get_uint(c, 7);
int ydc_delta = vp8_rac_get_sint(c, 4);
int y2dc_delta = vp8_rac_get_sint(c, 4);
int y2ac_delta = vp8_rac_get_sint(c, 4);
int uvdc_delta = vp8_rac_get_sint(c, 4);
int uvac_delta = vp8_rac_get_sint(c, 4);
for (i = 0; i < 4; i++) {
if (s->segmentation.enabled) {
base_qi = s->segmentation.base_quant[i];
if (!s->segmentation.absolute_vals)
base_qi += yac_qi;
} else
base_qi = yac_qi;
s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + ydc_delta , 7)];
s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi , 7)];
s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip_uintp2(base_qi + y2dc_delta, 7)];
s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip_uintp2(base_qi + y2ac_delta, 7)] / 100;
s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + uvdc_delta, 7)];
s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + uvac_delta, 7)];
s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132);
}
}
/**
* Determine which buffers golden and altref should be updated with after this frame.
* The spec isn't clear here, so I'm going by my understanding of what libvpx does
*
* Intra frames update all 3 references
* Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
* If the update (golden|altref) flag is set, it's updated with the current frame
* if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
* If the flag is not set, the number read means:
* 0: no update
* 1: VP56_FRAME_PREVIOUS
* 2: update golden with altref, or update altref with golden
*/
static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
{
VP56RangeCoder *c = &s->c;
if (update)
return VP56_FRAME_CURRENT;
switch (vp8_rac_get_uint(c, 2)) {
case 1:
return VP56_FRAME_PREVIOUS;
case 2:
return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
}
return VP56_FRAME_NONE;
}
static void update_refs(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int update_golden = vp8_rac_get(c);
int update_altref = vp8_rac_get(c);
s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
}
static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
{
VP56RangeCoder *c = &s->c;
int header_size, hscale, vscale, i, j, k, l, m, ret;
int width = s->avctx->width;
int height = s->avctx->height;
s->keyframe = !(buf[0] & 1);
s->profile = (buf[0]>>1) & 7;
s->invisible = !(buf[0] & 0x10);
header_size = AV_RL24(buf) >> 5;
buf += 3;
buf_size -= 3;
if (s->profile > 3)
av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
if (!s->profile)
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
else // profile 1-3 use bilinear, 4+ aren't defined so whatever
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
if (header_size > buf_size - 7*s->keyframe) {
av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
return AVERROR_INVALIDDATA;
}
if (s->keyframe) {
if (AV_RL24(buf) != 0x2a019d) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf));
return AVERROR_INVALIDDATA;
}
width = AV_RL16(buf+3) & 0x3fff;
height = AV_RL16(buf+5) & 0x3fff;
hscale = buf[4] >> 6;
vscale = buf[6] >> 6;
buf += 7;
buf_size -= 7;
if (hscale || vscale)
av_log_missing_feature(s->avctx, "Upscaling", 1);
s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
for (i = 0; i < 4; i++)
for (j = 0; j < 16; j++)
memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]],
sizeof(s->prob->token[i][j]));
memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc));
memset(&s->segmentation, 0, sizeof(s->segmentation));
}
ff_vp56_init_range_decoder(c, buf, header_size);
buf += header_size;
buf_size -= header_size;
if (s->keyframe) {
if (vp8_rac_get(c))
av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
vp8_rac_get(c); // whether we can skip clamping in dsp functions
}
if ((s->segmentation.enabled = vp8_rac_get(c)))
parse_segment_info(s);
else
s->segmentation.update_map = 0; // FIXME: move this to some init function?
s->filter.simple = vp8_rac_get(c);
s->filter.level = vp8_rac_get_uint(c, 6);
s->filter.sharpness = vp8_rac_get_uint(c, 3);
if ((s->lf_delta.enabled = vp8_rac_get(c)))
if (vp8_rac_get(c))
update_lf_deltas(s);
if (setup_partitions(s, buf, buf_size)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
return AVERROR_INVALIDDATA;
}
if (!s->macroblocks_base || /* first frame */
width != s->avctx->width || height != s->avctx->height) {
if ((ret = update_dimensions(s, width, height)) < 0)
return ret;
}
get_quants(s);
if (!s->keyframe) {
update_refs(s);
s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c);
s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
}
// if we aren't saving this frame's probabilities for future frames,
// make a copy of the current probabilities
if (!(s->update_probabilities = vp8_rac_get(c)))
s->prob[1] = s->prob[0];
s->update_last = s->keyframe || vp8_rac_get(c);
for (i = 0; i < 4; i++)
for (j = 0; j < 8; j++)
for (k = 0; k < 3; k++)
for (l = 0; l < NUM_DCT_TOKENS-1; l++)
if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) {
int prob = vp8_rac_get_uint(c, 8);
for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++)
s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob;
}
if ((s->mbskip_enabled = vp8_rac_get(c)))
s->prob->mbskip = vp8_rac_get_uint(c, 8);
if (!s->keyframe) {
s->prob->intra = vp8_rac_get_uint(c, 8);
s->prob->last = vp8_rac_get_uint(c, 8);
s->prob->golden = vp8_rac_get_uint(c, 8);
if (vp8_rac_get(c))
for (i = 0; i < 4; i++)
s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
if (vp8_rac_get(c))
for (i = 0; i < 3; i++)
s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
// 17.2 MV probability update
for (i = 0; i < 2; i++)
for (j = 0; j < 19; j++)
if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j]))
s->prob->mvc[i][j] = vp8_rac_get_nn(c);
}
return 0;
}
static av_always_inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src)
{
dst->x = av_clip(src->x, s->mv_min.x, s->mv_max.x);
dst->y = av_clip(src->y, s->mv_min.y, s->mv_max.y);
}
/**
* Motion vector coding, 17.1.
*/
static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
{
int bit, x = 0;
if (vp56_rac_get_prob_branchy(c, p[0])) {
int i;
for (i = 0; i < 3; i++)
x += vp56_rac_get_prob(c, p[9 + i]) << i;
for (i = 9; i > 3; i--)
x += vp56_rac_get_prob(c, p[9 + i]) << i;
if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
x += 8;
} else {
// small_mvtree
const uint8_t *ps = p+2;
bit = vp56_rac_get_prob(c, *ps);
ps += 1 + 3*bit;
x += 4*bit;
bit = vp56_rac_get_prob(c, *ps);
ps += 1 + bit;
x += 2*bit;
x += vp56_rac_get_prob(c, *ps);
}
return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
}
static av_always_inline
const uint8_t *get_submv_prob(uint32_t left, uint32_t top)
{
if (left == top)
return vp8_submv_prob[4-!!left];
if (!top)
return vp8_submv_prob[2];
return vp8_submv_prob[1-!!left];
}
/**
* Split motion vector prediction, 16.4.
* @returns the number of motion vectors parsed (2, 4 or 16)
*/
static av_always_inline
int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, int layout)
{
int part_idx;
int n, num;
VP8Macroblock *top_mb;
VP8Macroblock *left_mb = &mb[-1];
const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
*mbsplits_top,
*mbsplits_cur, *firstidx;
VP56mv *top_mv;
VP56mv *left_mv = left_mb->bmv;
VP56mv *cur_mv = mb->bmv;
if (!layout) // layout is inlined, s->mb_layout is not
top_mb = &mb[2];
else
top_mb = &mb[-s->mb_width-1];
mbsplits_top = vp8_mbsplits[top_mb->partitioning];
top_mv = top_mb->bmv;
if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) {
if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[1])) {
part_idx = VP8_SPLITMVMODE_16x8 + vp56_rac_get_prob(c, vp8_mbsplit_prob[2]);
} else {
part_idx = VP8_SPLITMVMODE_8x8;
}
} else {
part_idx = VP8_SPLITMVMODE_4x4;
}
num = vp8_mbsplit_count[part_idx];
mbsplits_cur = vp8_mbsplits[part_idx],
firstidx = vp8_mbfirstidx[part_idx];
mb->partitioning = part_idx;
for (n = 0; n < num; n++) {
int k = firstidx[n];
uint32_t left, above;
const uint8_t *submv_prob;
if (!(k & 3))
left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
else
left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
if (k <= 3)
above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
else
above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
submv_prob = get_submv_prob(left, above);
if (vp56_rac_get_prob_branchy(c, submv_prob[0])) {
if (vp56_rac_get_prob_branchy(c, submv_prob[1])) {
if (vp56_rac_get_prob_branchy(c, submv_prob[2])) {
mb->bmv[n].y = mb->mv.y + read_mv_component(c, s->prob->mvc[0]);
mb->bmv[n].x = mb->mv.x + read_mv_component(c, s->prob->mvc[1]);
} else {
AV_ZERO32(&mb->bmv[n]);
}
} else {
AV_WN32A(&mb->bmv[n], above);
}
} else {
AV_WN32A(&mb->bmv[n], left);
}
}
return num;
}
static av_always_inline
void decode_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int layout)
{
VP8Macroblock *mb_edge[3] = { 0 /* top */,
mb - 1 /* left */,
0 /* top-left */ };
enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
int idx = CNT_ZERO;
int cur_sign_bias = s->sign_bias[mb->ref_frame];
int8_t *sign_bias = s->sign_bias;
VP56mv near_mv[4];
uint8_t cnt[4] = { 0 };
VP56RangeCoder *c = &s->c;
if (!layout) { // layout is inlined (s->mb_layout is not)
mb_edge[0] = mb + 2;
mb_edge[2] = mb + 1;
}
else {
mb_edge[0] = mb - s->mb_width-1;
mb_edge[2] = mb - s->mb_width-2;
}
AV_ZERO32(&near_mv[0]);
AV_ZERO32(&near_mv[1]);
AV_ZERO32(&near_mv[2]);
/* Process MB on top, left and top-left */
#define MV_EDGE_CHECK(n)\
{\
VP8Macroblock *edge = mb_edge[n];\
int edge_ref = edge->ref_frame;\
if (edge_ref != VP56_FRAME_CURRENT) {\
uint32_t mv = AV_RN32A(&edge->mv);\
if (mv) {\
if (cur_sign_bias != sign_bias[edge_ref]) {\
/* SWAR negate of the values in mv. */\
mv = ~mv;\
mv = ((mv&0x7fff7fff) + 0x00010001) ^ (mv&0x80008000);\
}\
if (!n || mv != AV_RN32A(&near_mv[idx]))\
AV_WN32A(&near_mv[++idx], mv);\
cnt[idx] += 1 + (n != 2);\
} else\
cnt[CNT_ZERO] += 1 + (n != 2);\
}\
}
MV_EDGE_CHECK(0)
MV_EDGE_CHECK(1)
MV_EDGE_CHECK(2)
mb->partitioning = VP8_SPLITMVMODE_NONE;
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_ZERO]][0])) {
mb->mode = VP8_MVMODE_MV;
/* If we have three distinct MVs, merge first and last if they're the same */
if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) == AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT]))
cnt[CNT_NEAREST] += 1;
/* Swap near and nearest if necessary */
if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
}
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAREST]][1])) {
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAR]][2])) {
/* Choose the best mv out of 0,0 and the nearest mv */
clamp_mv(s, &mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]);
cnt[CNT_SPLITMV] = ((mb_edge[VP8_EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) +
(mb_edge[VP8_EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
(mb_edge[VP8_EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_SPLITMV]][3])) {
mb->mode = VP8_MVMODE_SPLIT;
mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout) - 1];
} else {
mb->mv.y += read_mv_component(c, s->prob->mvc[0]);
mb->mv.x += read_mv_component(c, s->prob->mvc[1]);
mb->bmv[0] = mb->mv;
}
} else {
clamp_mv(s, &mb->mv, &near_mv[CNT_NEAR]);
mb->bmv[0] = mb->mv;
}
} else {
clamp_mv(s, &mb->mv, &near_mv[CNT_NEAREST]);
mb->bmv[0] = mb->mv;
}
} else {
mb->mode = VP8_MVMODE_ZERO;
AV_ZERO32(&mb->mv);
mb->bmv[0] = mb->mv;
}
}
static av_always_inline
void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
int mb_x, int keyframe, int layout)
{
uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb;
if (layout == 1) {
VP8Macroblock *mb_top = mb - s->mb_width - 1;
memcpy(mb->intra4x4_pred_mode_top, mb_top->intra4x4_pred_mode_top, 4);
}
if (keyframe) {
int x, y;
uint8_t* top;
uint8_t* const left = s->intra4x4_pred_mode_left;
if (layout == 1)
top = mb->intra4x4_pred_mode_top;
else
top = s->intra4x4_pred_mode_top + 4 * mb_x;
for (y = 0; y < 4; y++) {
for (x = 0; x < 4; x++) {
const uint8_t *ctx;
ctx = vp8_pred4x4_prob_intra[top[x]][left[y]];
*intra4x4 = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
left[y] = top[x] = *intra4x4;
intra4x4++;
}
}
} else {
int i;
for (i = 0; i < 16; i++)
intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter);
}
}
static av_always_inline
void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
uint8_t *segment, uint8_t *ref, int layout)
{
VP56RangeCoder *c = &s->c;
if (s->segmentation.update_map)
*segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
else if (s->segmentation.enabled)
*segment = ref ? *ref : *segment;
mb->segment = *segment;
mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
if (s->keyframe) {
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
if (mb->mode == MODE_I4x4) {
decode_intra4x4_modes(s, c, mb, mb_x, 1, layout);
} else {
const uint32_t modes = vp8_pred4x4_mode[mb->mode] * 0x01010101u;
if (s->mb_layout == 1)
AV_WN32A(mb->intra4x4_pred_mode_top, modes);
else
AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes);
AV_WN32A( s->intra4x4_pred_mode_left, modes);
}
mb->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
mb->ref_frame = VP56_FRAME_CURRENT;
} else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) {
// inter MB, 16.2
if (vp56_rac_get_prob_branchy(c, s->prob->last))
mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
else
mb->ref_frame = VP56_FRAME_PREVIOUS;
s->ref_count[mb->ref_frame-1]++;
// motion vectors, 16.3
decode_mvs(s, mb, mb_x, mb_y, layout);
} else {
// intra MB, 16.1
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
if (mb->mode == MODE_I4x4)
decode_intra4x4_modes(s, c, mb, mb_x, 0, layout);
mb->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
mb->ref_frame = VP56_FRAME_CURRENT;
mb->partitioning = VP8_SPLITMVMODE_NONE;
AV_ZERO32(&mb->bmv[0]);
}
}
#ifndef decode_block_coeffs_internal
/**
* @param c arithmetic bitstream reader context
* @param block destination for block coefficients
* @param probs probabilities to use when reading trees from the bitstream
* @param i initial coeff index, 0 unless a separate DC block is coded
* @param qmul array holding the dc/ac dequant factor at position 0/1
* @return 0 if no coeffs were decoded
* otherwise, the index of the last coeff decoded plus one
*/
static int decode_block_coeffs_internal(VP56RangeCoder *r, DCTELEM block[16],
uint8_t probs[16][3][NUM_DCT_TOKENS-1],
int i, uint8_t *token_prob, int16_t qmul[2])
{
VP56RangeCoder c = *r;
goto skip_eob;
do {
int coeff;
if (!vp56_rac_get_prob_branchy(&c, token_prob[0])) // DCT_EOB
break;
skip_eob:
if (!vp56_rac_get_prob_branchy(&c, token_prob[1])) { // DCT_0
if (++i == 16)
break; // invalid input; blocks should end with EOB
token_prob = probs[i][0];
goto skip_eob;
}
if (!vp56_rac_get_prob_branchy(&c, token_prob[2])) { // DCT_1
coeff = 1;
token_prob = probs[i+1][1];
} else {
if (!vp56_rac_get_prob_branchy(&c, token_prob[3])) { // DCT 2,3,4
coeff = vp56_rac_get_prob_branchy(&c, token_prob[4]);
if (coeff)
coeff += vp56_rac_get_prob(&c, token_prob[5]);
coeff += 2;
} else {
// DCT_CAT*
if (!vp56_rac_get_prob_branchy(&c, token_prob[6])) {
if (!vp56_rac_get_prob_branchy(&c, token_prob[7])) { // DCT_CAT1
coeff = 5 + vp56_rac_get_prob(&c, vp8_dct_cat1_prob[0]);
} else { // DCT_CAT2
coeff = 7;
coeff += vp56_rac_get_prob(&c, vp8_dct_cat2_prob[0]) << 1;
coeff += vp56_rac_get_prob(&c, vp8_dct_cat2_prob[1]);
}
} else { // DCT_CAT3 and up
int a = vp56_rac_get_prob(&c, token_prob[8]);
int b = vp56_rac_get_prob(&c, token_prob[9+a]);
int cat = (a<<1) + b;
coeff = 3 + (8<<cat);
coeff += vp8_rac_get_coeff(&c, ff_vp8_dct_cat_prob[cat]);
}
}
token_prob = probs[i+1][2];
}
block[zigzag_scan[i]] = (vp8_rac_get(&c) ? -coeff : coeff) * qmul[!!i];
} while (++i < 16);
*r = c;
return i;
}
#endif
/**
* @param c arithmetic bitstream reader context
* @param block destination for block coefficients
* @param probs probabilities to use when reading trees from the bitstream
* @param i initial coeff index, 0 unless a separate DC block is coded
* @param zero_nhood the initial prediction context for number of surrounding
* all-zero blocks (only left/top, so 0-2)
* @param qmul array holding the dc/ac dequant factor at position 0/1
* @return 0 if no coeffs were decoded
* otherwise, the index of the last coeff decoded plus one
*/
static av_always_inline
int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16],
uint8_t probs[16][3][NUM_DCT_TOKENS-1],
int i, int zero_nhood, int16_t qmul[2])
{
uint8_t *token_prob = probs[i][zero_nhood];
if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB
return 0;
return decode_block_coeffs_internal(c, block, probs, i, token_prob, qmul);
}
static av_always_inline
void decode_mb_coeffs(VP8Context *s, VP8ThreadData *td, VP56RangeCoder *c, VP8Macroblock *mb,
uint8_t t_nnz[9], uint8_t l_nnz[9])
{
int i, x, y, luma_start = 0, luma_ctx = 3;
int nnz_pred, nnz, nnz_total = 0;
int segment = mb->segment;
int block_dc = 0;
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
nnz_pred = t_nnz[8] + l_nnz[8];
// decode DC values and do hadamard
nnz = decode_block_coeffs(c, td->block_dc, s->prob->token[1], 0, nnz_pred,
s->qmat[segment].luma_dc_qmul);
l_nnz[8] = t_nnz[8] = !!nnz;
if (nnz) {
nnz_total += nnz;
block_dc = 1;
if (nnz == 1)
s->vp8dsp.vp8_luma_dc_wht_dc(td->block, td->block_dc);
else
s->vp8dsp.vp8_luma_dc_wht(td->block, td->block_dc);
}
luma_start = 1;
luma_ctx = 0;
}
// luma blocks
for (y = 0; y < 4; y++)
for (x = 0; x < 4; x++) {
nnz_pred = l_nnz[y] + t_nnz[x];
nnz = decode_block_coeffs(c, td->block[y][x], s->prob->token[luma_ctx], luma_start,
nnz_pred, s->qmat[segment].luma_qmul);
// nnz+block_dc may be one more than the actual last index, but we don't care
td->non_zero_count_cache[y][x] = nnz + block_dc;
t_nnz[x] = l_nnz[y] = !!nnz;
nnz_total += nnz;
}
// chroma blocks
// TODO: what to do about dimensions? 2nd dim for luma is x,
// but for chroma it's (y<<1)|x
for (i = 4; i < 6; i++)
for (y = 0; y < 2; y++)
for (x = 0; x < 2; x++) {
nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
nnz = decode_block_coeffs(c, td->block[i][(y<<1)+x], s->prob->token[2], 0,
nnz_pred, s->qmat[segment].chroma_qmul);
td->non_zero_count_cache[i][(y<<1)+x] = nnz;
t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
nnz_total += nnz;
}
// if there were no coded coeffs despite the macroblock not being marked skip,
// we MUST not do the inner loop filter and should not do IDCT
// Since skip isn't used for bitstream prediction, just manually set it.
if (!nnz_total)
mb->skip = 1;
}
static av_always_inline
void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize, int simple)
{
AV_COPY128(top_border, src_y + 15*linesize);
if (!simple) {
AV_COPY64(top_border+16, src_cb + 7*uvlinesize);
AV_COPY64(top_border+24, src_cr + 7*uvlinesize);
}
}
static av_always_inline
void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width,
int simple, int xchg)
{
uint8_t *top_border_m1 = top_border-32; // for TL prediction
src_y -= linesize;
src_cb -= uvlinesize;
src_cr -= uvlinesize;
#define XCHG(a,b,xchg) do { \
if (xchg) AV_SWAP64(b,a); \
else AV_COPY64(b,a); \
} while (0)
XCHG(top_border_m1+8, src_y-8, xchg);
XCHG(top_border, src_y, xchg);
XCHG(top_border+8, src_y+8, 1);
if (mb_x < mb_width-1)
XCHG(top_border+32, src_y+16, 1);
// only copy chroma for normal loop filter
// or to initialize the top row to 127
if (!simple || !mb_y) {
XCHG(top_border_m1+16, src_cb-8, xchg);
XCHG(top_border_m1+24, src_cr-8, xchg);
XCHG(top_border+16, src_cb, 1);
XCHG(top_border+24, src_cr, 1);
}
}
static av_always_inline
int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y)
{
if (!mb_x) {
return mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8;
} else {
return mb_y ? mode : LEFT_DC_PRED8x8;
}
}
static av_always_inline
int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y)
{
if (!mb_x) {
return mb_y ? VERT_PRED8x8 : DC_129_PRED8x8;
} else {
return mb_y ? mode : HOR_PRED8x8;
}
}
static av_always_inline
int check_intra_pred8x8_mode(int mode, int mb_x, int mb_y)
{
if (mode == DC_PRED8x8) {
return check_dc_pred8x8_mode(mode, mb_x, mb_y);
} else {
return mode;
}
}
static av_always_inline
int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y)
{
switch (mode) {
case DC_PRED8x8:
return check_dc_pred8x8_mode(mode, mb_x, mb_y);
case VERT_PRED8x8:
return !mb_y ? DC_127_PRED8x8 : mode;
case HOR_PRED8x8:
return !mb_x ? DC_129_PRED8x8 : mode;
case PLANE_PRED8x8 /*TM*/:
return check_tm_pred8x8_mode(mode, mb_x, mb_y);
}
return mode;
}
static av_always_inline
int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y)
{
if (!mb_x) {
return mb_y ? VERT_VP8_PRED : DC_129_PRED;
} else {
return mb_y ? mode : HOR_VP8_PRED;
}
}
static av_always_inline
int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y, int *copy_buf)
{
switch (mode) {
case VERT_PRED:
if (!mb_x && mb_y) {
*copy_buf = 1;
return mode;
}
/* fall-through */
case DIAG_DOWN_LEFT_PRED:
case VERT_LEFT_PRED:
return !mb_y ? DC_127_PRED : mode;
case HOR_PRED:
if (!mb_y) {
*copy_buf = 1;
return mode;
}
/* fall-through */
case HOR_UP_PRED:
return !mb_x ? DC_129_PRED : mode;
case TM_VP8_PRED:
return check_tm_pred4x4_mode(mode, mb_x, mb_y);
case DC_PRED: // 4x4 DC doesn't use the same "H.264-style" exceptions as 16x16/8x8 DC
case DIAG_DOWN_RIGHT_PRED:
case VERT_RIGHT_PRED:
case HOR_DOWN_PRED:
if (!mb_y || !mb_x)
*copy_buf = 1;
return mode;
}
return mode;
}
static av_always_inline
void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3],
VP8Macroblock *mb, int mb_x, int mb_y)
{
AVCodecContext *avctx = s->avctx;
int x, y, mode, nnz;
uint32_t tr;
// for the first row, we need to run xchg_mb_border to init the top edge to 127
// otherwise, skip it if we aren't going to deblock
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE && !mb_y) && (s->deblock_filter || !mb_y) && td->thread_nr == 0)
xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
s->filter.simple, 1);
if (mb->mode < MODE_I4x4) {
if (avctx->flags & CODEC_FLAG_EMU_EDGE) { // tested
mode = check_intra_pred8x8_mode_emuedge(mb->mode, mb_x, mb_y);
} else {
mode = check_intra_pred8x8_mode(mb->mode, mb_x, mb_y);
}
s->hpc.pred16x16[mode](dst[0], s->linesize);
} else {
uint8_t *ptr = dst[0];
uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb;
uint8_t tr_top[4] = { 127, 127, 127, 127 };
// all blocks on the right edge of the macroblock use bottom edge
// the top macroblock for their topright edge
uint8_t *tr_right = ptr - s->linesize + 16;
// if we're on the right edge of the frame, said edge is extended
// from the top macroblock
if (!(!mb_y && avctx->flags & CODEC_FLAG_EMU_EDGE) &&
mb_x == s->mb_width-1) {
tr = tr_right[-1]*0x01010101u;
tr_right = (uint8_t *)&tr;
}
if (mb->skip)
AV_ZERO128(td->non_zero_count_cache);
for (y = 0; y < 4; y++) {
uint8_t *topright = ptr + 4 - s->linesize;
for (x = 0; x < 4; x++) {
int copy = 0, linesize = s->linesize;
uint8_t *dst = ptr+4*x;
DECLARE_ALIGNED(4, uint8_t, copy_dst)[5*8];
if ((y == 0 || x == 3) && mb_y == 0 && avctx->flags & CODEC_FLAG_EMU_EDGE) {
topright = tr_top;
} else if (x == 3)
topright = tr_right;
if (avctx->flags & CODEC_FLAG_EMU_EDGE) { // mb_x+x or mb_y+y is a hack but works
mode = check_intra_pred4x4_mode_emuedge(intra4x4[x], mb_x + x, mb_y + y, &copy);
if (copy) {
dst = copy_dst + 12;
linesize = 8;
if (!(mb_y + y)) {
copy_dst[3] = 127U;
AV_WN32A(copy_dst+4, 127U * 0x01010101U);
} else {
AV_COPY32(copy_dst+4, ptr+4*x-s->linesize);
if (!(mb_x + x)) {
copy_dst[3] = 129U;
} else {
copy_dst[3] = ptr[4*x-s->linesize-1];
}
}
if (!(mb_x + x)) {
copy_dst[11] =
copy_dst[19] =
copy_dst[27] =
copy_dst[35] = 129U;
} else {
copy_dst[11] = ptr[4*x -1];
copy_dst[19] = ptr[4*x+s->linesize -1];
copy_dst[27] = ptr[4*x+s->linesize*2-1];
copy_dst[35] = ptr[4*x+s->linesize*3-1];
}
}
} else {
mode = intra4x4[x];
}
s->hpc.pred4x4[mode](dst, topright, linesize);
if (copy) {
AV_COPY32(ptr+4*x , copy_dst+12);
AV_COPY32(ptr+4*x+s->linesize , copy_dst+20);
AV_COPY32(ptr+4*x+s->linesize*2, copy_dst+28);
AV_COPY32(ptr+4*x+s->linesize*3, copy_dst+36);
}
nnz = td->non_zero_count_cache[y][x];
if (nnz) {
if (nnz == 1)
s->vp8dsp.vp8_idct_dc_add(ptr+4*x, td->block[y][x], s->linesize);
else
s->vp8dsp.vp8_idct_add(ptr+4*x, td->block[y][x], s->linesize);
}
topright += 4;
}
ptr += 4*s->linesize;
intra4x4 += 4;
}
}
if (avctx->flags & CODEC_FLAG_EMU_EDGE) {
mode = check_intra_pred8x8_mode_emuedge(mb->chroma_pred_mode, mb_x, mb_y);
} else {
mode = check_intra_pred8x8_mode(mb->chroma_pred_mode, mb_x, mb_y);
}
s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE && !mb_y) && (s->deblock_filter || !mb_y) && td->thread_nr == 0)
xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
s->filter.simple, 0);
}
static const uint8_t subpel_idx[3][8] = {
{ 0, 1, 2, 1, 2, 1, 2, 1 }, // nr. of left extra pixels,
// also function pointer index
{ 0, 3, 5, 3, 5, 3, 5, 3 }, // nr. of extra pixels required
{ 0, 2, 3, 2, 3, 2, 3, 2 }, // nr. of right extra pixels
};
/**
* luma MC function
*
* @param s VP8 decoding context
* @param dst target buffer for block data at block position
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block (16, 8 or 4)
* @param block_h height of block (always same as block_w)
* @param width width of src/dst plane data
* @param height height of src/dst plane data
* @param linesize size of a single line of plane data, including padding
* @param mc_func motion compensation function pointers (bilinear or sixtap MC)
*/
static av_always_inline
void vp8_mc_luma(VP8Context *s, VP8ThreadData *td, uint8_t *dst,
AVFrame *ref, const VP56mv *mv,
int x_off, int y_off, int block_w, int block_h,
int width, int height, int linesize,
vp8_mc_func mc_func[3][3])
{
uint8_t *src = ref->data[0];
if (AV_RN32A(mv)) {
int mx = (mv->x << 1)&7, mx_idx = subpel_idx[0][mx];
int my = (mv->y << 1)&7, my_idx = subpel_idx[0][my];
x_off += mv->x >> 2;
y_off += mv->y >> 2;
// edge emulation
ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 4, 0);
src += y_off * linesize + x_off;
if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] ||
y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) {
s->dsp.emulated_edge_mc(td->edge_emu_buffer, src - my_idx * linesize - mx_idx, linesize,
block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my],
x_off - mx_idx, y_off - my_idx, width, height);
src = td->edge_emu_buffer + mx_idx + linesize * my_idx;
}
mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
} else {
ff_thread_await_progress(ref, (3 + y_off + block_h) >> 4, 0);
mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0);
}
}
/**
* chroma MC function
*
* @param s VP8 decoding context
* @param dst1 target buffer for block data at block position (U plane)
* @param dst2 target buffer for block data at block position (V plane)
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block (16, 8 or 4)
* @param block_h height of block (always same as block_w)
* @param width width of src/dst plane data
* @param height height of src/dst plane data
* @param linesize size of a single line of plane data, including padding
* @param mc_func motion compensation function pointers (bilinear or sixtap MC)
*/
static av_always_inline
void vp8_mc_chroma(VP8Context *s, VP8ThreadData *td, uint8_t *dst1, uint8_t *dst2,
AVFrame *ref, const VP56mv *mv, int x_off, int y_off,
int block_w, int block_h, int width, int height, int linesize,
vp8_mc_func mc_func[3][3])
{
uint8_t *src1 = ref->data[1], *src2 = ref->data[2];
if (AV_RN32A(mv)) {
int mx = mv->x&7, mx_idx = subpel_idx[0][mx];
int my = mv->y&7, my_idx = subpel_idx[0][my];
x_off += mv->x >> 3;
y_off += mv->y >> 3;
// edge emulation
src1 += y_off * linesize + x_off;
src2 += y_off * linesize + x_off;
ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 3, 0);
if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] ||
y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) {
s->dsp.emulated_edge_mc(td->edge_emu_buffer, src1 - my_idx * linesize - mx_idx, linesize,
block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my],
x_off - mx_idx, y_off - my_idx, width, height);
src1 = td->edge_emu_buffer + mx_idx + linesize * my_idx;
mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my);
s->dsp.emulated_edge_mc(td->edge_emu_buffer, src2 - my_idx * linesize - mx_idx, linesize,
block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my],
x_off - mx_idx, y_off - my_idx, width, height);
src2 = td->edge_emu_buffer + mx_idx + linesize * my_idx;
mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my);
} else {
mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my);
mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my);
}
} else {
ff_thread_await_progress(ref, (3 + y_off + block_h) >> 3, 0);
mc_func[0][0](dst1, linesize, src1 + y_off * linesize + x_off, linesize, block_h, 0, 0);
mc_func[0][0](dst2, linesize, src2 + y_off * linesize + x_off, linesize, block_h, 0, 0);
}
}
static av_always_inline
void vp8_mc_part(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3],
AVFrame *ref_frame, int x_off, int y_off,
int bx_off, int by_off,
int block_w, int block_h,
int width, int height, VP56mv *mv)
{
VP56mv uvmv = *mv;
/* Y */
vp8_mc_luma(s, td, dst[0] + by_off * s->linesize + bx_off,
ref_frame, mv, x_off + bx_off, y_off + by_off,
block_w, block_h, width, height, s->linesize,
s->put_pixels_tab[block_w == 8]);
/* U/V */
if (s->profile == 3) {
uvmv.x &= ~7;
uvmv.y &= ~7;
}
x_off >>= 1; y_off >>= 1;
bx_off >>= 1; by_off >>= 1;
width >>= 1; height >>= 1;
block_w >>= 1; block_h >>= 1;
vp8_mc_chroma(s, td, dst[1] + by_off * s->uvlinesize + bx_off,
dst[2] + by_off * s->uvlinesize + bx_off, ref_frame,
&uvmv, x_off + bx_off, y_off + by_off,
block_w, block_h, width, height, s->uvlinesize,
s->put_pixels_tab[1 + (block_w == 4)]);
}
/* Fetch pixels for estimated mv 4 macroblocks ahead.
* Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref)
{
/* Don't prefetch refs that haven't been used very often this frame. */
if (s->ref_count[ref-1] > (mb_xy >> 5)) {
int x_off = mb_x << 4, y_off = mb_y << 4;
int mx = (mb->mv.x>>2) + x_off + 8;
int my = (mb->mv.y>>2) + y_off;
uint8_t **src= s->framep[ref]->data;
int off= mx + (my + (mb_x&3)*4)*s->linesize + 64;
/* For threading, a ff_thread_await_progress here might be useful, but
* it actually slows down the decoder. Since a bad prefetch doesn't
* generate bad decoder output, we don't run it here. */
s->dsp.prefetch(src[0]+off, s->linesize, 4);
off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64;
s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
}
}
/**
* Apply motion vectors to prediction buffer, chapter 18.
*/
static av_always_inline
void inter_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3],
VP8Macroblock *mb, int mb_x, int mb_y)
{
int x_off = mb_x << 4, y_off = mb_y << 4;
int width = 16*s->mb_width, height = 16*s->mb_height;
AVFrame *ref = s->framep[mb->ref_frame];
VP56mv *bmv = mb->bmv;
switch (mb->partitioning) {
case VP8_SPLITMVMODE_NONE:
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 0, 16, 16, width, height, &mb->mv);
break;
case VP8_SPLITMVMODE_4x4: {
int x, y;
VP56mv uvmv;
/* Y */
for (y = 0; y < 4; y++) {
for (x = 0; x < 4; x++) {
vp8_mc_luma(s, td, dst[0] + 4*y*s->linesize + x*4,
ref, &bmv[4*y + x],
4*x + x_off, 4*y + y_off, 4, 4,
width, height, s->linesize,
s->put_pixels_tab[2]);
}
}
/* U/V */
x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
for (y = 0; y < 2; y++) {
for (x = 0; x < 2; x++) {
uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x +
mb->bmv[ 2*y * 4 + 2*x+1].x +
mb->bmv[(2*y+1) * 4 + 2*x ].x +
mb->bmv[(2*y+1) * 4 + 2*x+1].x;
uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y +
mb->bmv[ 2*y * 4 + 2*x+1].y +
mb->bmv[(2*y+1) * 4 + 2*x ].y +
mb->bmv[(2*y+1) * 4 + 2*x+1].y;
uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
if (s->profile == 3) {
uvmv.x &= ~7;
uvmv.y &= ~7;
}
vp8_mc_chroma(s, td, dst[1] + 4*y*s->uvlinesize + x*4,
dst[2] + 4*y*s->uvlinesize + x*4, ref, &uvmv,
4*x + x_off, 4*y + y_off, 4, 4,
width, height, s->uvlinesize,
s->put_pixels_tab[2]);
}
}
break;
}
case VP8_SPLITMVMODE_16x8:
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 0, 16, 8, width, height, &bmv[0]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 8, 16, 8, width, height, &bmv[1]);
break;
case VP8_SPLITMVMODE_8x16:
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 0, 8, 16, width, height, &bmv[0]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
8, 0, 8, 16, width, height, &bmv[1]);
break;
case VP8_SPLITMVMODE_8x8:
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 0, 8, 8, width, height, &bmv[0]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
8, 0, 8, 8, width, height, &bmv[1]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 8, 8, 8, width, height, &bmv[2]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
8, 8, 8, 8, width, height, &bmv[3]);
break;
}
}
static av_always_inline void idct_mb(VP8Context *s, VP8ThreadData *td,
uint8_t *dst[3], VP8Macroblock *mb)
{
int x, y, ch;
if (mb->mode != MODE_I4x4) {
uint8_t *y_dst = dst[0];
for (y = 0; y < 4; y++) {
uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[y]);
if (nnz4) {
if (nnz4&~0x01010101) {
for (x = 0; x < 4; x++) {
if ((uint8_t)nnz4 == 1)
s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, td->block[y][x], s->linesize);
else if((uint8_t)nnz4 > 1)
s->vp8dsp.vp8_idct_add(y_dst+4*x, td->block[y][x], s->linesize);
nnz4 >>= 8;
if (!nnz4)
break;
}
} else {
s->vp8dsp.vp8_idct_dc_add4y(y_dst, td->block[y], s->linesize);
}
}
y_dst += 4*s->linesize;
}
}
for (ch = 0; ch < 2; ch++) {
uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[4+ch]);
if (nnz4) {
uint8_t *ch_dst = dst[1+ch];
if (nnz4&~0x01010101) {
for (y = 0; y < 2; y++) {
for (x = 0; x < 2; x++) {
if ((uint8_t)nnz4 == 1)
s->vp8dsp.vp8_idct_dc_add(ch_dst+4*x, td->block[4+ch][(y<<1)+x], s->uvlinesize);
else if((uint8_t)nnz4 > 1)
s->vp8dsp.vp8_idct_add(ch_dst+4*x, td->block[4+ch][(y<<1)+x], s->uvlinesize);
nnz4 >>= 8;
if (!nnz4)
goto chroma_idct_end;
}
ch_dst += 4*s->uvlinesize;
}
} else {
s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, td->block[4+ch], s->uvlinesize);
}
}
chroma_idct_end: ;
}
}
static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f )
{
int interior_limit, filter_level;
if (s->segmentation.enabled) {
filter_level = s->segmentation.filter_level[mb->segment];
if (!s->segmentation.absolute_vals)
filter_level += s->filter.level;
} else
filter_level = s->filter.level;
if (s->lf_delta.enabled) {
filter_level += s->lf_delta.ref[mb->ref_frame];
filter_level += s->lf_delta.mode[mb->mode];
}
filter_level = av_clip_uintp2(filter_level, 6);
interior_limit = filter_level;
if (s->filter.sharpness) {
interior_limit >>= (s->filter.sharpness + 3) >> 2;
interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
}
interior_limit = FFMAX(interior_limit, 1);
f->filter_level = filter_level;
f->inner_limit = interior_limit;
f->inner_filter = !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT;
}
static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y)
{
int mbedge_lim, bedge_lim, hev_thresh;
int filter_level = f->filter_level;
int inner_limit = f->inner_limit;
int inner_filter = f->inner_filter;
int linesize = s->linesize;
int uvlinesize = s->uvlinesize;
static const uint8_t hev_thresh_lut[2][64] = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2 }
};
if (!filter_level)
return;
bedge_lim = 2*filter_level + inner_limit;
mbedge_lim = bedge_lim + 4;
hev_thresh = hev_thresh_lut[s->keyframe][filter_level];
if (mb_x) {
s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
mbedge_lim, inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize,
mbedge_lim, inner_limit, hev_thresh);
}
if (inner_filter) {
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, linesize, bedge_lim,
inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, linesize, bedge_lim,
inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, linesize, bedge_lim,
inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4,
uvlinesize, bedge_lim,
inner_limit, hev_thresh);
}
if (mb_y) {
s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
mbedge_lim, inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize,
mbedge_lim, inner_limit, hev_thresh);
}
if (inner_filter) {
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*linesize,
linesize, bedge_lim,
inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*linesize,
linesize, bedge_lim,
inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*linesize,
linesize, bedge_lim,
inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
dst[2] + 4 * uvlinesize,
uvlinesize, bedge_lim,
inner_limit, hev_thresh);
}
}
static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y)
{
int mbedge_lim, bedge_lim;
int filter_level = f->filter_level;
int inner_limit = f->inner_limit;
int inner_filter = f->inner_filter;
int linesize = s->linesize;
if (!filter_level)
return;
bedge_lim = 2*filter_level + inner_limit;
mbedge_lim = bedge_lim + 4;
if (mb_x)
s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
if (inner_filter) {
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, linesize, bedge_lim);
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, linesize, bedge_lim);
s->vp8dsp.vp8_h_loop_filter_simple(dst+12, linesize, bedge_lim);
}
if (mb_y)
s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
if (inner_filter) {
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*linesize, linesize, bedge_lim);
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*linesize, linesize, bedge_lim);
s->vp8dsp.vp8_v_loop_filter_simple(dst+12*linesize, linesize, bedge_lim);
}
}
static void release_queued_segmaps(VP8Context *s, int is_close)
{
int leave_behind = is_close ? 0 : !s->maps_are_invalid;
while (s->num_maps_to_be_freed > leave_behind)
av_freep(&s->segmentation_maps[--s->num_maps_to_be_freed]);
s->maps_are_invalid = 0;
}
#define MARGIN (16 << 2)
static void vp8_decode_mv_mb_modes(AVCodecContext *avctx, AVFrame *curframe,
AVFrame *prev_frame)
{
VP8Context *s = avctx->priv_data;
int mb_x, mb_y;
s->mv_min.y = -MARGIN;
s->mv_max.y = ((s->mb_height - 1) << 6) + MARGIN;
for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
VP8Macroblock *mb = s->macroblocks_base + ((s->mb_width+1)*(mb_y + 1) + 1);
int mb_xy = mb_y*s->mb_width;
AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED*0x01010101);
s->mv_min.x = -MARGIN;
s->mv_max.x = ((s->mb_width - 1) << 6) + MARGIN;
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
if (mb_y == 0)
AV_WN32A((mb-s->mb_width-1)->intra4x4_pred_mode_top, DC_PRED*0x01010101);
decode_mb_mode(s, mb, mb_x, mb_y, curframe->ref_index[0] + mb_xy,
prev_frame && prev_frame->ref_index[0] ? prev_frame->ref_index[0] + mb_xy : NULL, 1);
s->mv_min.x -= 64;
s->mv_max.x -= 64;
}
s->mv_min.y -= 64;
s->mv_max.y -= 64;
}
}
#if HAVE_THREADS
#define check_thread_pos(td, otd, mb_x_check, mb_y_check)\
do {\
int tmp = (mb_y_check << 16) | (mb_x_check & 0xFFFF);\
if (otd->thread_mb_pos < tmp) {\
pthread_mutex_lock(&otd->lock);\
td->wait_mb_pos = tmp;\
do {\
if (otd->thread_mb_pos >= tmp)\
break;\
pthread_cond_wait(&otd->cond, &otd->lock);\
} while (1);\
td->wait_mb_pos = INT_MAX;\
pthread_mutex_unlock(&otd->lock);\
}\
} while(0);
#define update_pos(td, mb_y, mb_x)\
do {\
int pos = (mb_y << 16) | (mb_x & 0xFFFF);\
int sliced_threading = (avctx->active_thread_type == FF_THREAD_SLICE) && (num_jobs > 1);\
int is_null = (next_td == NULL) || (prev_td == NULL);\
int pos_check = (is_null) ? 1 :\
(next_td != td && pos >= next_td->wait_mb_pos) ||\
(prev_td != td && pos >= prev_td->wait_mb_pos);\
td->thread_mb_pos = pos;\
if (sliced_threading && pos_check) {\
pthread_mutex_lock(&td->lock);\
pthread_cond_broadcast(&td->cond);\
pthread_mutex_unlock(&td->lock);\
}\
} while(0);
#else
#define check_thread_pos(td, otd, mb_x_check, mb_y_check)
#define update_pos(td, mb_y, mb_x)
#endif
static void vp8_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr)
{
VP8Context *s = avctx->priv_data;
VP8ThreadData *prev_td, *next_td, *td = &s->thread_data[threadnr];
int mb_y = td->thread_mb_pos>>16;
int i, y, mb_x, mb_xy = mb_y*s->mb_width;
int num_jobs = s->num_jobs;
AVFrame *curframe = s->curframe, *prev_frame = s->prev_frame;
VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
VP8Macroblock *mb;
uint8_t *dst[3] = {
curframe->data[0] + 16*mb_y*s->linesize,
curframe->data[1] + 8*mb_y*s->uvlinesize,
curframe->data[2] + 8*mb_y*s->uvlinesize
};
if (mb_y == 0) prev_td = td;
else prev_td = &s->thread_data[(jobnr + num_jobs - 1)%num_jobs];
if (mb_y == s->mb_height-1) next_td = td;
else next_td = &s->thread_data[(jobnr + 1)%num_jobs];
if (s->mb_layout == 1)
mb = s->macroblocks_base + ((s->mb_width+1)*(mb_y + 1) + 1);
else {
mb = s->macroblocks + (s->mb_height - mb_y - 1)*2;
memset(mb - 1, 0, sizeof(*mb)); // zero left macroblock
AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED*0x01010101);
}
memset(td->left_nnz, 0, sizeof(td->left_nnz));
// left edge of 129 for intra prediction
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) {
for (i = 0; i < 3; i++)
for (y = 0; y < 16>>!!i; y++)
dst[i][y*curframe->linesize[i]-1] = 129;
if (mb_y == 1) {
s->top_border[0][15] = s->top_border[0][23] = s->top_border[0][31] = 129;
}
}
s->mv_min.x = -MARGIN;
s->mv_max.x = ((s->mb_width - 1) << 6) + MARGIN;
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
// Wait for previous thread to read mb_x+2, and reach mb_y-1.
if (prev_td != td) {
if (threadnr != 0) {
check_thread_pos(td, prev_td, mb_x+1, mb_y-1);
} else {
check_thread_pos(td, prev_td, (s->mb_width+3) + (mb_x+1), mb_y-1);
}
}
s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4);
s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2);
if (!s->mb_layout)
decode_mb_mode(s, mb, mb_x, mb_y, curframe->ref_index[0] + mb_xy,
prev_frame && prev_frame->ref_index[0] ? prev_frame->ref_index[0] + mb_xy : NULL, 0);
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS);
if (!mb->skip)
decode_mb_coeffs(s, td, c, mb, s->top_nnz[mb_x], td->left_nnz);
if (mb->mode <= MODE_I4x4)
intra_predict(s, td, dst, mb, mb_x, mb_y);
else
inter_predict(s, td, dst, mb, mb_x, mb_y);
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN);
if (!mb->skip) {
idct_mb(s, td, dst, mb);
} else {
AV_ZERO64(td->left_nnz);
AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned
// Reset DC block predictors if they would exist if the mb had coefficients
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
td->left_nnz[8] = 0;
s->top_nnz[mb_x][8] = 0;
}
}
if (s->deblock_filter)
filter_level_for_mb(s, mb, &td->filter_strength[mb_x]);
if (s->deblock_filter && num_jobs != 1 && threadnr == num_jobs-1) {
if (s->filter.simple)
backup_mb_border(s->top_border[mb_x+1], dst[0], NULL, NULL, s->linesize, 0, 1);
else
backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
}
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN2);
dst[0] += 16;
dst[1] += 8;
dst[2] += 8;
s->mv_min.x -= 64;
s->mv_max.x -= 64;
if (mb_x == s->mb_width+1) {
update_pos(td, mb_y, s->mb_width+3);
} else {
update_pos(td, mb_y, mb_x);
}
}
}
static void vp8_filter_mb_row(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr)
{
VP8Context *s = avctx->priv_data;
VP8ThreadData *td = &s->thread_data[threadnr];
int mb_x, mb_y = td->thread_mb_pos>>16, num_jobs = s->num_jobs;
AVFrame *curframe = s->curframe;
VP8Macroblock *mb;
VP8ThreadData *prev_td, *next_td;
uint8_t *dst[3] = {
curframe->data[0] + 16*mb_y*s->linesize,
curframe->data[1] + 8*mb_y*s->uvlinesize,
curframe->data[2] + 8*mb_y*s->uvlinesize
};
if (s->mb_layout == 1)
mb = s->macroblocks_base + ((s->mb_width+1)*(mb_y + 1) + 1);
else
mb = s->macroblocks + (s->mb_height - mb_y - 1)*2;
if (mb_y == 0) prev_td = td;
else prev_td = &s->thread_data[(jobnr + num_jobs - 1)%num_jobs];
if (mb_y == s->mb_height-1) next_td = td;
else next_td = &s->thread_data[(jobnr + 1)%num_jobs];
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb++) {
VP8FilterStrength *f = &td->filter_strength[mb_x];
if (prev_td != td) {
check_thread_pos(td, prev_td, (mb_x+1) + (s->mb_width+3), mb_y-1);
}
if (next_td != td)
if (next_td != &s->thread_data[0]) {
check_thread_pos(td, next_td, mb_x+1, mb_y+1);
}
if (num_jobs == 1) {
if (s->filter.simple)
backup_mb_border(s->top_border[mb_x+1], dst[0], NULL, NULL, s->linesize, 0, 1);
else
backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
}
if (s->filter.simple)
filter_mb_simple(s, dst[0], f, mb_x, mb_y);
else
filter_mb(s, dst, f, mb_x, mb_y);
dst[0] += 16;
dst[1] += 8;
dst[2] += 8;
update_pos(td, mb_y, (s->mb_width+3) + mb_x);
}
}
static int vp8_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr)
{
VP8Context *s = avctx->priv_data;
VP8ThreadData *td = &s->thread_data[jobnr];
VP8ThreadData *next_td = NULL, *prev_td = NULL;
AVFrame *curframe = s->curframe;
int mb_y, num_jobs = s->num_jobs;
td->thread_nr = threadnr;
for (mb_y = jobnr; mb_y < s->mb_height; mb_y += num_jobs) {
if (mb_y >= s->mb_height) break;
td->thread_mb_pos = mb_y<<16;
vp8_decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr);
if (s->deblock_filter)
vp8_filter_mb_row(avctx, tdata, jobnr, threadnr);
update_pos(td, mb_y, INT_MAX & 0xFFFF);
s->mv_min.y -= 64;
s->mv_max.y -= 64;
if (avctx->active_thread_type == FF_THREAD_FRAME)
ff_thread_report_progress(curframe, mb_y, 0);
}
return 0;
}
static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
AVPacket *avpkt)
{
VP8Context *s = avctx->priv_data;
int ret, i, referenced, num_jobs;
enum AVDiscard skip_thresh;
AVFrame *av_uninit(curframe), *prev_frame;
release_queued_segmaps(s, 0);
if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
goto err;
prev_frame = s->framep[VP56_FRAME_CURRENT];
referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
|| s->update_altref == VP56_FRAME_CURRENT;
skip_thresh = !referenced ? AVDISCARD_NONREF :
!s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
if (avctx->skip_frame >= skip_thresh) {
s->invisible = 1;
memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4);
goto skip_decode;
}
s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
// release no longer referenced frames
for (i = 0; i < 5; i++)
if (s->frames[i].data[0] &&
&s->frames[i] != prev_frame &&
&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
vp8_release_frame(s, &s->frames[i], 1, 0);
// find a free buffer
for (i = 0; i < 5; i++)
if (&s->frames[i] != prev_frame &&
&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
break;
}
if (i == 5) {
av_log(avctx, AV_LOG_FATAL, "Ran out of free frames!\n");
abort();
}
if (curframe->data[0])
vp8_release_frame(s, curframe, 1, 0);
// Given that arithmetic probabilities are updated every frame, it's quite likely
// that the values we have on a random interframe are complete junk if we didn't
// start decode on a keyframe. So just don't display anything rather than junk.
if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
!s->framep[VP56_FRAME_GOLDEN] ||
!s->framep[VP56_FRAME_GOLDEN2])) {
av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
ret = AVERROR_INVALIDDATA;
goto err;
}
curframe->key_frame = s->keyframe;
curframe->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
curframe->reference = referenced ? 3 : 0;
if ((ret = vp8_alloc_frame(s, curframe))) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
goto err;
}
// check if golden and altref are swapped
if (s->update_altref != VP56_FRAME_NONE) {
s->next_framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
} else {
s->next_framep[VP56_FRAME_GOLDEN2] = s->framep[VP56_FRAME_GOLDEN2];
}
if (s->update_golden != VP56_FRAME_NONE) {
s->next_framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
} else {
s->next_framep[VP56_FRAME_GOLDEN] = s->framep[VP56_FRAME_GOLDEN];
}
if (s->update_last) {
s->next_framep[VP56_FRAME_PREVIOUS] = curframe;
} else {
s->next_framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_PREVIOUS];
}
s->next_framep[VP56_FRAME_CURRENT] = curframe;
ff_thread_finish_setup(avctx);
s->linesize = curframe->linesize[0];
s->uvlinesize = curframe->linesize[1];
if (!s->thread_data[0].edge_emu_buffer)
for (i = 0; i < MAX_THREADS; i++)
s->thread_data[i].edge_emu_buffer = av_malloc(21*s->linesize);
memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
/* Zero macroblock structures for top/top-left prediction from outside the frame. */
if (!s->mb_layout)
memset(s->macroblocks + s->mb_height*2 - 1, 0, (s->mb_width+1)*sizeof(*s->macroblocks));
if (!s->mb_layout && s->keyframe)
memset(s->intra4x4_pred_mode_top, DC_PRED, s->mb_width*4);
// top edge of 127 for intra prediction
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) {
s->top_border[0][15] = s->top_border[0][23] = 127;
memset(s->top_border[1]-1, 127, s->mb_width*sizeof(*s->top_border)+1);
}
memset(s->ref_count, 0, sizeof(s->ref_count));
// Make sure the previous frame has read its segmentation map,
// if we re-use the same map.
if (prev_frame && s->segmentation.enabled && !s->segmentation.update_map)
ff_thread_await_progress(prev_frame, 1, 0);
if (s->mb_layout == 1)
vp8_decode_mv_mb_modes(avctx, curframe, prev_frame);
if (avctx->active_thread_type == FF_THREAD_FRAME)
num_jobs = 1;
else
num_jobs = FFMIN(s->num_coeff_partitions, avctx->thread_count);
s->num_jobs = num_jobs;
s->curframe = curframe;
s->prev_frame = prev_frame;
s->mv_min.y = -MARGIN;
s->mv_max.y = ((s->mb_height - 1) << 6) + MARGIN;
for (i = 0; i < MAX_THREADS; i++) {
s->thread_data[i].thread_mb_pos = 0;
s->thread_data[i].wait_mb_pos = INT_MAX;
}
avctx->execute2(avctx, vp8_decode_mb_row_sliced, s->thread_data, NULL, num_jobs);
ff_thread_report_progress(curframe, INT_MAX, 0);
memcpy(&s->framep[0], &s->next_framep[0], sizeof(s->framep[0]) * 4);
skip_decode:
// if future frames don't use the updated probabilities,
// reset them to the values we saved
if (!s->update_probabilities)
s->prob[0] = s->prob[1];
if (!s->invisible) {
*(AVFrame*)data = *curframe;
*data_size = sizeof(AVFrame);
}
return avpkt->size;
err:
memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4);
return ret;
}
static av_cold int vp8_decode_init(AVCodecContext *avctx)
{
VP8Context *s = avctx->priv_data;
s->avctx = avctx;
avctx->pix_fmt = PIX_FMT_YUV420P;
ff_dsputil_init(&s->dsp, avctx);
ff_h264_pred_init(&s->hpc, CODEC_ID_VP8, 8, 1);
ff_vp8dsp_init(&s->vp8dsp);
return 0;
}
static av_cold int vp8_decode_free(AVCodecContext *avctx)
{
vp8_decode_flush_impl(avctx, 0, 1, 1);
release_queued_segmaps(avctx->priv_data, 1);
return 0;
}
static av_cold int vp8_decode_init_thread_copy(AVCodecContext *avctx)
{
VP8Context *s = avctx->priv_data;
s->avctx = avctx;
return 0;
}
#define REBASE(pic) \
pic ? pic - &s_src->frames[0] + &s->frames[0] : NULL
static int vp8_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
VP8Context *s = dst->priv_data, *s_src = src->priv_data;
if (s->macroblocks_base &&
(s_src->mb_width != s->mb_width || s_src->mb_height != s->mb_height)) {
free_buffers(s);
s->maps_are_invalid = 1;
s->mb_width = s_src->mb_width;
s->mb_height = s_src->mb_height;
}
s->prob[0] = s_src->prob[!s_src->update_probabilities];
s->segmentation = s_src->segmentation;
s->lf_delta = s_src->lf_delta;
memcpy(s->sign_bias, s_src->sign_bias, sizeof(s->sign_bias));
memcpy(&s->frames, &s_src->frames, sizeof(s->frames));
s->framep[0] = REBASE(s_src->next_framep[0]);
s->framep[1] = REBASE(s_src->next_framep[1]);
s->framep[2] = REBASE(s_src->next_framep[2]);
s->framep[3] = REBASE(s_src->next_framep[3]);
return 0;
}
AVCodec ff_vp8_decoder = {
.name = "vp8",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_VP8,
.priv_data_size = sizeof(VP8Context),
.init = vp8_decode_init,
.close = vp8_decode_free,
.decode = vp8_decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS,
.flush = vp8_decode_flush,
.long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
.init_thread_copy = ONLY_IF_THREADS_ENABLED(vp8_decode_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(vp8_decode_update_thread_context),
};