ffmpeg/libavcodec/h264_mvpred.h

837 lines
35 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... motion vector prediction
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG-4 part10 motion vector prediction.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#ifndef AVCODEC_H264_MVPRED_H
#define AVCODEC_H264_MVPRED_H
#include "internal.h"
#include "avcodec.h"
#include "h264.h"
#include "mpegutils.h"
#include <assert.h>
static av_always_inline int fetch_diagonal_mv(const H264Context *h, H264SliceContext *sl,
const int16_t **C,
int i, int list, int part_width)
{
const int topright_ref = sl->ref_cache[list][i - 8 + part_width];
/* there is no consistent mapping of mvs to neighboring locations that will
* make mbaff happy, so we can't move all this logic to fill_caches */
if (FRAME_MBAFF(h)) {
#define SET_DIAG_MV(MV_OP, REF_OP, XY, Y4) \
const int xy = XY, y4 = Y4; \
const int mb_type = mb_types[xy + (y4 >> 2) * h->mb_stride]; \
if (!USES_LIST(mb_type, list)) \
return LIST_NOT_USED; \
mv = h->cur_pic_ptr->motion_val[list][h->mb2b_xy[xy] + 3 + y4 * h->b_stride]; \
sl->mv_cache[list][scan8[0] - 2][0] = mv[0]; \
sl->mv_cache[list][scan8[0] - 2][1] = mv[1] MV_OP; \
return h->cur_pic_ptr->ref_index[list][4 * xy + 1 + (y4 & ~1)] REF_OP;
if (topright_ref == PART_NOT_AVAILABLE
&& i >= scan8[0] + 8 && (i & 7) == 4
&& sl->ref_cache[list][scan8[0] - 1] != PART_NOT_AVAILABLE) {
const uint32_t *mb_types = h->cur_pic_ptr->mb_type;
const int16_t *mv;
AV_ZERO32(sl->mv_cache[list][scan8[0] - 2]);
*C = sl->mv_cache[list][scan8[0] - 2];
if (!MB_FIELD(sl) && IS_INTERLACED(sl->left_type[0])) {
SET_DIAG_MV(* 2, >> 1, sl->left_mb_xy[0] + h->mb_stride,
(sl->mb_y & 1) * 2 + (i >> 5));
}
if (MB_FIELD(sl) && !IS_INTERLACED(sl->left_type[0])) {
// left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
SET_DIAG_MV(/ 2, << 1, sl->left_mb_xy[i >= 36], ((i >> 2)) & 3);
}
}
#undef SET_DIAG_MV
}
if (topright_ref != PART_NOT_AVAILABLE) {
*C = sl->mv_cache[list][i - 8 + part_width];
return topright_ref;
} else {
ff_tlog(h->avctx, "topright MV not available\n");
*C = sl->mv_cache[list][i - 8 - 1];
return sl->ref_cache[list][i - 8 - 1];
}
}
/**
* Get the predicted MV.
* @param n the block index
* @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static av_always_inline void pred_motion(const H264Context *const h,
H264SliceContext *sl,
int n,
int part_width, int list, int ref,
int *const mx, int *const my)
{
const int index8 = scan8[n];
const int top_ref = sl->ref_cache[list][index8 - 8];
const int left_ref = sl->ref_cache[list][index8 - 1];
const int16_t *const A = sl->mv_cache[list][index8 - 1];
const int16_t *const B = sl->mv_cache[list][index8 - 8];
const int16_t *C;
int diagonal_ref, match_count;
assert(part_width == 1 || part_width == 2 || part_width == 4);
/* mv_cache
* B . . A T T T T
* U . . L . . , .
* U . . L . . . .
* U . . L . . , .
* . . . L . . . .
*/
diagonal_ref = fetch_diagonal_mv(h, sl, &C, index8, list, part_width);
match_count = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref);
ff_tlog(h->avctx, "pred_motion match_count=%d\n", match_count);
if (match_count > 1) { //most common
*mx = mid_pred(A[0], B[0], C[0]);
*my = mid_pred(A[1], B[1], C[1]);
} else if (match_count == 1) {
if (left_ref == ref) {
*mx = A[0];
*my = A[1];
} else if (top_ref == ref) {
*mx = B[0];
*my = B[1];
} else {
*mx = C[0];
*my = C[1];
}
} else {
if (top_ref == PART_NOT_AVAILABLE &&
diagonal_ref == PART_NOT_AVAILABLE &&
left_ref != PART_NOT_AVAILABLE) {
*mx = A[0];
*my = A[1];
} else {
*mx = mid_pred(A[0], B[0], C[0]);
*my = mid_pred(A[1], B[1], C[1]);
}
}
ff_tlog(h->avctx,
"pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n",
top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref,
A[0], A[1], ref, *mx, *my, sl->mb_x, sl->mb_y, n, list);
}
/**
* Get the directionally predicted 16x8 MV.
* @param n the block index
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static av_always_inline void pred_16x8_motion(const H264Context *const h,
H264SliceContext *sl,
int n, int list, int ref,
int *const mx, int *const my)
{
if (n == 0) {
const int top_ref = sl->ref_cache[list][scan8[0] - 8];
const int16_t *const B = sl->mv_cache[list][scan8[0] - 8];
ff_tlog(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
top_ref, B[0], B[1], sl->mb_x, sl->mb_y, n, list);
if (top_ref == ref) {
*mx = B[0];
*my = B[1];
return;
}
} else {
const int left_ref = sl->ref_cache[list][scan8[8] - 1];
const int16_t *const A = sl->mv_cache[list][scan8[8] - 1];
ff_tlog(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
left_ref, A[0], A[1], sl->mb_x, sl->mb_y, n, list);
if (left_ref == ref) {
*mx = A[0];
*my = A[1];
return;
}
}
//RARE
pred_motion(h, sl, n, 4, list, ref, mx, my);
}
/**
* Get the directionally predicted 8x16 MV.
* @param n the block index
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static av_always_inline void pred_8x16_motion(const H264Context *const h,
H264SliceContext *sl,
int n, int list, int ref,
int *const mx, int *const my)
{
if (n == 0) {
const int left_ref = sl->ref_cache[list][scan8[0] - 1];
const int16_t *const A = sl->mv_cache[list][scan8[0] - 1];
ff_tlog(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
left_ref, A[0], A[1], sl->mb_x, sl->mb_y, n, list);
if (left_ref == ref) {
*mx = A[0];
*my = A[1];
return;
}
} else {
const int16_t *C;
int diagonal_ref;
diagonal_ref = fetch_diagonal_mv(h, sl, &C, scan8[4], list, 2);
ff_tlog(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
diagonal_ref, C[0], C[1], sl->mb_x, sl->mb_y, n, list);
if (diagonal_ref == ref) {
*mx = C[0];
*my = C[1];
return;
}
}
//RARE
pred_motion(h, sl, n, 2, list, ref, mx, my);
}
#define FIX_MV_MBAFF(type, refn, mvn, idx) \
if (FRAME_MBAFF(h)) { \
if (MB_FIELD(sl)) { \
if (!IS_INTERLACED(type)) { \
refn <<= 1; \
AV_COPY32(mvbuf[idx], mvn); \
mvbuf[idx][1] /= 2; \
mvn = mvbuf[idx]; \
} \
} else { \
if (IS_INTERLACED(type)) { \
refn >>= 1; \
AV_COPY32(mvbuf[idx], mvn); \
mvbuf[idx][1] <<= 1; \
mvn = mvbuf[idx]; \
} \
} \
}
static av_always_inline void pred_pskip_motion(const H264Context *const h,
H264SliceContext *sl)
{
DECLARE_ALIGNED(4, static const int16_t, zeromv)[2] = { 0 };
DECLARE_ALIGNED(4, int16_t, mvbuf)[3][2];
int8_t *ref = h->cur_pic.ref_index[0];
int16_t(*mv)[2] = h->cur_pic.motion_val[0];
int top_ref, left_ref, diagonal_ref, match_count, mx, my;
const int16_t *A, *B, *C;
int b_stride = h->b_stride;
fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
/* To avoid doing an entire fill_decode_caches, we inline the relevant
* parts here.
* FIXME: this is a partial duplicate of the logic in fill_decode_caches,
* but it's faster this way. Is there a way to avoid this duplication?
*/
if (USES_LIST(sl->left_type[LTOP], 0)) {
left_ref = ref[4 * sl->left_mb_xy[LTOP] + 1 + (sl->left_block[0] & ~1)];
A = mv[h->mb2b_xy[sl->left_mb_xy[LTOP]] + 3 + b_stride * sl->left_block[0]];
FIX_MV_MBAFF(sl->left_type[LTOP], left_ref, A, 0);
if (!(left_ref | AV_RN32A(A)))
goto zeromv;
} else if (sl->left_type[LTOP]) {
left_ref = LIST_NOT_USED;
A = zeromv;
} else {
goto zeromv;
}
if (USES_LIST(sl->top_type, 0)) {
top_ref = ref[4 * sl->top_mb_xy + 2];
B = mv[h->mb2b_xy[sl->top_mb_xy] + 3 * b_stride];
FIX_MV_MBAFF(sl->top_type, top_ref, B, 1);
if (!(top_ref | AV_RN32A(B)))
goto zeromv;
} else if (sl->top_type) {
top_ref = LIST_NOT_USED;
B = zeromv;
} else {
goto zeromv;
}
ff_tlog(h->avctx, "pred_pskip: (%d) (%d) at %2d %2d\n",
top_ref, left_ref, sl->mb_x, sl->mb_y);
if (USES_LIST(sl->topright_type, 0)) {
diagonal_ref = ref[4 * sl->topright_mb_xy + 2];
C = mv[h->mb2b_xy[sl->topright_mb_xy] + 3 * b_stride];
FIX_MV_MBAFF(sl->topright_type, diagonal_ref, C, 2);
} else if (sl->topright_type) {
diagonal_ref = LIST_NOT_USED;
C = zeromv;
} else {
if (USES_LIST(sl->topleft_type, 0)) {
diagonal_ref = ref[4 * sl->topleft_mb_xy + 1 +
(sl->topleft_partition & 2)];
C = mv[h->mb2b_xy[sl->topleft_mb_xy] + 3 + b_stride +
(sl->topleft_partition & 2 * b_stride)];
FIX_MV_MBAFF(sl->topleft_type, diagonal_ref, C, 2);
} else if (sl->topleft_type) {
diagonal_ref = LIST_NOT_USED;
C = zeromv;
} else {
diagonal_ref = PART_NOT_AVAILABLE;
C = zeromv;
}
}
match_count = !diagonal_ref + !top_ref + !left_ref;
ff_tlog(h->avctx, "pred_pskip_motion match_count=%d\n", match_count);
if (match_count > 1) {
mx = mid_pred(A[0], B[0], C[0]);
my = mid_pred(A[1], B[1], C[1]);
} else if (match_count == 1) {
if (!left_ref) {
mx = A[0];
my = A[1];
} else if (!top_ref) {
mx = B[0];
my = B[1];
} else {
mx = C[0];
my = C[1];
}
} else {
mx = mid_pred(A[0], B[0], C[0]);
my = mid_pred(A[1], B[1], C[1]);
}
fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx, my), 4);
return;
zeromv:
fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
return;
}
static void fill_decode_neighbors(const H264Context *h, H264SliceContext *sl, int mb_type)
{
const int mb_xy = sl->mb_xy;
int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
static const uint8_t left_block_options[4][32] = {
{ 0, 1, 2, 3, 7, 10, 8, 11, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 5 * 4, 1 + 9 * 4 },
{ 2, 2, 3, 3, 8, 11, 8, 11, 3 + 2 * 4, 3 + 2 * 4, 3 + 3 * 4, 3 + 3 * 4, 1 + 5 * 4, 1 + 9 * 4, 1 + 5 * 4, 1 + 9 * 4 },
{ 0, 0, 1, 1, 7, 10, 7, 10, 3 + 0 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 1 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 },
{ 0, 2, 0, 2, 7, 10, 7, 10, 3 + 0 * 4, 3 + 2 * 4, 3 + 0 * 4, 3 + 2 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 }
};
sl->topleft_partition = -1;
top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
/* Wow, what a mess, why didn't they simplify the interlacing & intra
* stuff, I can't imagine that these complex rules are worth it. */
topleft_xy = top_xy - 1;
topright_xy = top_xy + 1;
left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
sl->left_block = left_block_options[0];
if (FRAME_MBAFF(h)) {
const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
if (sl->mb_y & 1) {
if (left_mb_field_flag != curr_mb_field_flag) {
left_xy[LBOT] = left_xy[LTOP] = mb_xy - h->mb_stride - 1;
if (curr_mb_field_flag) {
left_xy[LBOT] += h->mb_stride;
sl->left_block = left_block_options[3];
} else {
topleft_xy += h->mb_stride;
/* take top left mv from the middle of the mb, as opposed
* to all other modes which use the bottom right partition */
sl->topleft_partition = 0;
sl->left_block = left_block_options[1];
}
}
} else {
if (curr_mb_field_flag) {
topleft_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy - 1] >> 7) & 1) - 1);
topright_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy + 1] >> 7) & 1) - 1);
top_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
}
if (left_mb_field_flag != curr_mb_field_flag) {
if (curr_mb_field_flag) {
left_xy[LBOT] += h->mb_stride;
sl->left_block = left_block_options[3];
} else {
sl->left_block = left_block_options[2];
}
}
}
}
sl->topleft_mb_xy = topleft_xy;
sl->top_mb_xy = top_xy;
sl->topright_mb_xy = topright_xy;
sl->left_mb_xy[LTOP] = left_xy[LTOP];
sl->left_mb_xy[LBOT] = left_xy[LBOT];
//FIXME do we need all in the context?
sl->topleft_type = h->cur_pic.mb_type[topleft_xy];
sl->top_type = h->cur_pic.mb_type[top_xy];
sl->topright_type = h->cur_pic.mb_type[topright_xy];
sl->left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
sl->left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
if (FMO) {
if (h->slice_table[topleft_xy] != sl->slice_num)
sl->topleft_type = 0;
if (h->slice_table[top_xy] != sl->slice_num)
sl->top_type = 0;
if (h->slice_table[left_xy[LTOP]] != sl->slice_num)
sl->left_type[LTOP] = sl->left_type[LBOT] = 0;
} else {
if (h->slice_table[topleft_xy] != sl->slice_num) {
sl->topleft_type = 0;
if (h->slice_table[top_xy] != sl->slice_num)
sl->top_type = 0;
if (h->slice_table[left_xy[LTOP]] != sl->slice_num)
sl->left_type[LTOP] = sl->left_type[LBOT] = 0;
}
}
if (h->slice_table[topright_xy] != sl->slice_num)
sl->topright_type = 0;
}
static void fill_decode_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
{
int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
int topleft_type, top_type, topright_type, left_type[LEFT_MBS];
const uint8_t *left_block = sl->left_block;
int i;
uint8_t *nnz;
uint8_t *nnz_cache;
topleft_xy = sl->topleft_mb_xy;
top_xy = sl->top_mb_xy;
topright_xy = sl->topright_mb_xy;
left_xy[LTOP] = sl->left_mb_xy[LTOP];
left_xy[LBOT] = sl->left_mb_xy[LBOT];
topleft_type = sl->topleft_type;
top_type = sl->top_type;
topright_type = sl->topright_type;
left_type[LTOP] = sl->left_type[LTOP];
left_type[LBOT] = sl->left_type[LBOT];
if (!IS_SKIP(mb_type)) {
if (IS_INTRA(mb_type)) {
int type_mask = h->ps.pps->constrained_intra_pred ? IS_INTRA(-1) : -1;
sl->topleft_samples_available =
sl->top_samples_available =
sl->left_samples_available = 0xFFFF;
sl->topright_samples_available = 0xEEEA;
if (!(top_type & type_mask)) {
sl->topleft_samples_available = 0xB3FF;
sl->top_samples_available = 0x33FF;
sl->topright_samples_available = 0x26EA;
}
if (IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[LTOP])) {
if (IS_INTERLACED(mb_type)) {
if (!(left_type[LTOP] & type_mask)) {
sl->topleft_samples_available &= 0xDFFF;
sl->left_samples_available &= 0x5FFF;
}
if (!(left_type[LBOT] & type_mask)) {
sl->topleft_samples_available &= 0xFF5F;
sl->left_samples_available &= 0xFF5F;
}
} else {
int left_typei = h->cur_pic.mb_type[left_xy[LTOP] + h->mb_stride];
assert(left_xy[LTOP] == left_xy[LBOT]);
if (!((left_typei & type_mask) && (left_type[LTOP] & type_mask))) {
sl->topleft_samples_available &= 0xDF5F;
sl->left_samples_available &= 0x5F5F;
}
}
} else {
if (!(left_type[LTOP] & type_mask)) {
sl->topleft_samples_available &= 0xDF5F;
sl->left_samples_available &= 0x5F5F;
}
}
if (!(topleft_type & type_mask))
sl->topleft_samples_available &= 0x7FFF;
if (!(topright_type & type_mask))
sl->topright_samples_available &= 0xFBFF;
if (IS_INTRA4x4(mb_type)) {
if (IS_INTRA4x4(top_type)) {
AV_COPY32(sl->intra4x4_pred_mode_cache + 4 + 8 * 0, sl->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
} else {
sl->intra4x4_pred_mode_cache[4 + 8 * 0] =
sl->intra4x4_pred_mode_cache[5 + 8 * 0] =
sl->intra4x4_pred_mode_cache[6 + 8 * 0] =
sl->intra4x4_pred_mode_cache[7 + 8 * 0] = 2 - 3 * !(top_type & type_mask);
}
for (i = 0; i < 2; i++) {
if (IS_INTRA4x4(left_type[LEFT(i)])) {
int8_t *mode = sl->intra4x4_pred_mode + h->mb2br_xy[left_xy[LEFT(i)]];
sl->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] = mode[6 - left_block[0 + 2 * i]];
sl->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = mode[6 - left_block[1 + 2 * i]];
} else {
sl->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] =
sl->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = 2 - 3 * !(left_type[LEFT(i)] & type_mask);
}
}
}
}
/*
* 0 . T T. T T T T
* 1 L . .L . . . .
* 2 L . .L . . . .
* 3 . T TL . . . .
* 4 L . .L . . . .
* 5 L . .. . . . .
*/
/* FIXME: constraint_intra_pred & partitioning & nnz
* (let us hope this is just a typo in the spec) */
nnz_cache = sl->non_zero_count_cache;
if (top_type) {
nnz = h->non_zero_count[top_xy];
AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[4 * 3]);
if (!h->chroma_y_shift) {
AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 7]);
AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 11]);
} else {
AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 5]);
AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 9]);
}
} else {
uint32_t top_empty = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 0x40404040;
AV_WN32A(&nnz_cache[4 + 8 * 0], top_empty);
AV_WN32A(&nnz_cache[4 + 8 * 5], top_empty);
AV_WN32A(&nnz_cache[4 + 8 * 10], top_empty);
}
for (i = 0; i < 2; i++) {
if (left_type[LEFT(i)]) {
nnz = h->non_zero_count[left_xy[LEFT(i)]];
nnz_cache[3 + 8 * 1 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i]];
nnz_cache[3 + 8 * 2 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i]];
if (CHROMA444(h)) {
nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 4 * 4];
nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 4 * 4];
nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 8 * 4];
nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 8 * 4];
} else if (CHROMA422(h)) {
nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 4 * 4];
nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 4 * 4];
nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 8 * 4];
nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 8 * 4];
} else {
nnz_cache[3 + 8 * 6 + 8 * i] = nnz[left_block[8 + 4 + 2 * i]];
nnz_cache[3 + 8 * 11 + 8 * i] = nnz[left_block[8 + 5 + 2 * i]];
}
} else {
nnz_cache[3 + 8 * 1 + 2 * 8 * i] =
nnz_cache[3 + 8 * 2 + 2 * 8 * i] =
nnz_cache[3 + 8 * 6 + 2 * 8 * i] =
nnz_cache[3 + 8 * 7 + 2 * 8 * i] =
nnz_cache[3 + 8 * 11 + 2 * 8 * i] =
nnz_cache[3 + 8 * 12 + 2 * 8 * i] = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 64;
}
}
if (CABAC(h)) {
// top_cbp
if (top_type)
sl->top_cbp = h->cbp_table[top_xy];
else
sl->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
// left_cbp
if (left_type[LTOP]) {
sl->left_cbp = (h->cbp_table[left_xy[LTOP]] & 0x7F0) |
((h->cbp_table[left_xy[LTOP]] >> (left_block[0] & (~1))) & 2) |
(((h->cbp_table[left_xy[LBOT]] >> (left_block[2] & (~1))) & 2) << 2);
} else {
sl->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
}
}
}
if (IS_INTER(mb_type) || (IS_DIRECT(mb_type) && sl->direct_spatial_mv_pred)) {
int list;
int b_stride = h->b_stride;
for (list = 0; list < sl->list_count; list++) {
int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
int8_t *ref = h->cur_pic.ref_index[list];
int16_t(*mv_cache)[2] = &sl->mv_cache[list][scan8[0]];
int16_t(*mv)[2] = h->cur_pic.motion_val[list];
if (!USES_LIST(mb_type, list))
continue;
assert(!(IS_DIRECT(mb_type) && !sl->direct_spatial_mv_pred));
if (USES_LIST(top_type, list)) {
const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
AV_COPY128(mv_cache[0 - 1 * 8], mv[b_xy + 0]);
ref_cache[0 - 1 * 8] =
ref_cache[1 - 1 * 8] = ref[4 * top_xy + 2];
ref_cache[2 - 1 * 8] =
ref_cache[3 - 1 * 8] = ref[4 * top_xy + 3];
} else {
AV_ZERO128(mv_cache[0 - 1 * 8]);
AV_WN32A(&ref_cache[0 - 1 * 8],
((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE) & 0xFF) * 0x01010101u);
}
if (mb_type & (MB_TYPE_16x8 | MB_TYPE_8x8)) {
for (i = 0; i < 2; i++) {
int cache_idx = -1 + i * 2 * 8;
if (USES_LIST(left_type[LEFT(i)], list)) {
const int b_xy = h->mb2b_xy[left_xy[LEFT(i)]] + 3;
const int b8_xy = 4 * left_xy[LEFT(i)] + 1;
AV_COPY32(mv_cache[cache_idx],
mv[b_xy + b_stride * left_block[0 + i * 2]]);
AV_COPY32(mv_cache[cache_idx + 8],
mv[b_xy + b_stride * left_block[1 + i * 2]]);
ref_cache[cache_idx] = ref[b8_xy + (left_block[0 + i * 2] & ~1)];
ref_cache[cache_idx + 8] = ref[b8_xy + (left_block[1 + i * 2] & ~1)];
} else {
AV_ZERO32(mv_cache[cache_idx]);
AV_ZERO32(mv_cache[cache_idx + 8]);
ref_cache[cache_idx] =
ref_cache[cache_idx + 8] = (left_type[LEFT(i)]) ? LIST_NOT_USED
: PART_NOT_AVAILABLE;
}
}
} else {
if (USES_LIST(left_type[LTOP], list)) {
const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
const int b8_xy = 4 * left_xy[LTOP] + 1;
AV_COPY32(mv_cache[-1], mv[b_xy + b_stride * left_block[0]]);
ref_cache[-1] = ref[b8_xy + (left_block[0] & ~1)];
} else {
AV_ZERO32(mv_cache[-1]);
ref_cache[-1] = left_type[LTOP] ? LIST_NOT_USED
: PART_NOT_AVAILABLE;
}
}
if (USES_LIST(topright_type, list)) {
const int b_xy = h->mb2b_xy[topright_xy] + 3 * b_stride;
AV_COPY32(mv_cache[4 - 1 * 8], mv[b_xy]);
ref_cache[4 - 1 * 8] = ref[4 * topright_xy + 2];
} else {
AV_ZERO32(mv_cache[4 - 1 * 8]);
ref_cache[4 - 1 * 8] = topright_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE;
}
if (ref_cache[4 - 1 * 8] < 0) {
if (USES_LIST(topleft_type, list)) {
const int b_xy = h->mb2b_xy[topleft_xy] + 3 + b_stride +
(sl->topleft_partition & 2 * b_stride);
const int b8_xy = 4 * topleft_xy + 1 + (sl->topleft_partition & 2);
AV_COPY32(mv_cache[-1 - 1 * 8], mv[b_xy]);
ref_cache[-1 - 1 * 8] = ref[b8_xy];
} else {
AV_ZERO32(mv_cache[-1 - 1 * 8]);
ref_cache[-1 - 1 * 8] = topleft_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE;
}
}
if ((mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2)) && !FRAME_MBAFF(h))
continue;
if (!(mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2))) {
uint8_t(*mvd_cache)[2] = &sl->mvd_cache[list][scan8[0]];
uint8_t(*mvd)[2] = sl->mvd_table[list];
ref_cache[2 + 8 * 0] =
ref_cache[2 + 8 * 2] = PART_NOT_AVAILABLE;
AV_ZERO32(mv_cache[2 + 8 * 0]);
AV_ZERO32(mv_cache[2 + 8 * 2]);
if (CABAC(h)) {
if (USES_LIST(top_type, list)) {
const int b_xy = h->mb2br_xy[top_xy];
AV_COPY64(mvd_cache[0 - 1 * 8], mvd[b_xy + 0]);
} else {
AV_ZERO64(mvd_cache[0 - 1 * 8]);
}
if (USES_LIST(left_type[LTOP], list)) {
const int b_xy = h->mb2br_xy[left_xy[LTOP]] + 6;
AV_COPY16(mvd_cache[-1 + 0 * 8], mvd[b_xy - left_block[0]]);
AV_COPY16(mvd_cache[-1 + 1 * 8], mvd[b_xy - left_block[1]]);
} else {
AV_ZERO16(mvd_cache[-1 + 0 * 8]);
AV_ZERO16(mvd_cache[-1 + 1 * 8]);
}
if (USES_LIST(left_type[LBOT], list)) {
const int b_xy = h->mb2br_xy[left_xy[LBOT]] + 6;
AV_COPY16(mvd_cache[-1 + 2 * 8], mvd[b_xy - left_block[2]]);
AV_COPY16(mvd_cache[-1 + 3 * 8], mvd[b_xy - left_block[3]]);
} else {
AV_ZERO16(mvd_cache[-1 + 2 * 8]);
AV_ZERO16(mvd_cache[-1 + 3 * 8]);
}
AV_ZERO16(mvd_cache[2 + 8 * 0]);
AV_ZERO16(mvd_cache[2 + 8 * 2]);
if (sl->slice_type_nos == AV_PICTURE_TYPE_B) {
uint8_t *direct_cache = &sl->direct_cache[scan8[0]];
uint8_t *direct_table = h->direct_table;
fill_rectangle(direct_cache, 4, 4, 8, MB_TYPE_16x16 >> 1, 1);
if (IS_DIRECT(top_type)) {
AV_WN32A(&direct_cache[-1 * 8],
0x01010101u * (MB_TYPE_DIRECT2 >> 1));
} else if (IS_8X8(top_type)) {
int b8_xy = 4 * top_xy;
direct_cache[0 - 1 * 8] = direct_table[b8_xy + 2];
direct_cache[2 - 1 * 8] = direct_table[b8_xy + 3];
} else {
AV_WN32A(&direct_cache[-1 * 8],
0x01010101 * (MB_TYPE_16x16 >> 1));
}
if (IS_DIRECT(left_type[LTOP]))
direct_cache[-1 + 0 * 8] = MB_TYPE_DIRECT2 >> 1;
else if (IS_8X8(left_type[LTOP]))
direct_cache[-1 + 0 * 8] = direct_table[4 * left_xy[LTOP] + 1 + (left_block[0] & ~1)];
else
direct_cache[-1 + 0 * 8] = MB_TYPE_16x16 >> 1;
if (IS_DIRECT(left_type[LBOT]))
direct_cache[-1 + 2 * 8] = MB_TYPE_DIRECT2 >> 1;
else if (IS_8X8(left_type[LBOT]))
direct_cache[-1 + 2 * 8] = direct_table[4 * left_xy[LBOT] + 1 + (left_block[2] & ~1)];
else
direct_cache[-1 + 2 * 8] = MB_TYPE_16x16 >> 1;
}
}
}
#define MAP_MVS \
MAP_F2F(scan8[0] - 1 - 1 * 8, topleft_type) \
MAP_F2F(scan8[0] + 0 - 1 * 8, top_type) \
MAP_F2F(scan8[0] + 1 - 1 * 8, top_type) \
MAP_F2F(scan8[0] + 2 - 1 * 8, top_type) \
MAP_F2F(scan8[0] + 3 - 1 * 8, top_type) \
MAP_F2F(scan8[0] + 4 - 1 * 8, topright_type) \
MAP_F2F(scan8[0] - 1 + 0 * 8, left_type[LTOP]) \
MAP_F2F(scan8[0] - 1 + 1 * 8, left_type[LTOP]) \
MAP_F2F(scan8[0] - 1 + 2 * 8, left_type[LBOT]) \
MAP_F2F(scan8[0] - 1 + 3 * 8, left_type[LBOT])
if (FRAME_MBAFF(h)) {
if (MB_FIELD(sl)) {
#define MAP_F2F(idx, mb_type) \
if (!IS_INTERLACED(mb_type) && sl->ref_cache[list][idx] >= 0) { \
sl->ref_cache[list][idx] <<= 1; \
sl->mv_cache[list][idx][1] /= 2; \
sl->mvd_cache[list][idx][1] >>= 1; \
}
MAP_MVS
} else {
#undef MAP_F2F
#define MAP_F2F(idx, mb_type) \
if (IS_INTERLACED(mb_type) && sl->ref_cache[list][idx] >= 0) { \
sl->ref_cache[list][idx] >>= 1; \
sl->mv_cache[list][idx][1] <<= 1; \
sl->mvd_cache[list][idx][1] <<= 1; \
}
MAP_MVS
#undef MAP_F2F
}
}
}
}
sl->neighbor_transform_size = !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[LTOP]);
}
/**
* decodes a P_SKIP or B_SKIP macroblock
*/
static void av_unused decode_mb_skip(const H264Context *h, H264SliceContext *sl)
{
const int mb_xy = sl->mb_xy;
int mb_type = 0;
memset(h->non_zero_count[mb_xy], 0, 48);
if (MB_FIELD(sl))
mb_type |= MB_TYPE_INTERLACED;
if (sl->slice_type_nos == AV_PICTURE_TYPE_B) {
// just for fill_caches. pred_direct_motion will set the real mb_type
mb_type |= MB_TYPE_L0L1 | MB_TYPE_DIRECT2 | MB_TYPE_SKIP;
if (sl->direct_spatial_mv_pred) {
fill_decode_neighbors(h, sl, mb_type);
fill_decode_caches(h, sl, mb_type); //FIXME check what is needed and what not ...
}
ff_h264_pred_direct_motion(h, sl, &mb_type);
mb_type |= MB_TYPE_SKIP;
} else {
mb_type |= MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P1L0 | MB_TYPE_SKIP;
fill_decode_neighbors(h, sl, mb_type);
pred_pskip_motion(h, sl);
}
write_back_motion(h, sl, mb_type);
h->cur_pic.mb_type[mb_xy] = mb_type;
h->cur_pic.qscale_table[mb_xy] = sl->qscale;
h->slice_table[mb_xy] = sl->slice_num;
sl->prev_mb_skipped = 1;
}
#endif /* AVCODEC_H264_MVPRED_H */