mirror of https://git.ffmpeg.org/ffmpeg.git
1452 lines
44 KiB
C
1452 lines
44 KiB
C
/*
|
|
* OpenEXR (.exr) image decoder
|
|
* Copyright (c) 2009 Jimmy Christensen
|
|
*
|
|
* This file is part of Libav
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* OpenEXR decoder
|
|
* @author Jimmy Christensen
|
|
*
|
|
* For more information on the OpenEXR format, visit:
|
|
* http://openexr.com/
|
|
*
|
|
* exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
|
|
* exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
|
|
*/
|
|
|
|
#include <float.h>
|
|
#include <zlib.h>
|
|
|
|
#include "libavutil/imgutils.h"
|
|
#include "libavutil/intfloat.h"
|
|
#include "libavutil/opt.h"
|
|
|
|
#include "avcodec.h"
|
|
#include "bytestream.h"
|
|
#include "get_bits.h"
|
|
#include "internal.h"
|
|
#include "mathops.h"
|
|
#include "thread.h"
|
|
|
|
enum ExrCompr {
|
|
EXR_RAW,
|
|
EXR_RLE,
|
|
EXR_ZIP1,
|
|
EXR_ZIP16,
|
|
EXR_PIZ,
|
|
EXR_PXR24,
|
|
EXR_B44,
|
|
EXR_B44A,
|
|
EXR_UNKN,
|
|
};
|
|
|
|
enum ExrPixelType {
|
|
EXR_UINT,
|
|
EXR_HALF,
|
|
EXR_FLOAT,
|
|
EXR_UNKNOWN,
|
|
};
|
|
|
|
typedef struct EXRChannel {
|
|
int xsub, ysub;
|
|
enum ExrPixelType pixel_type;
|
|
} EXRChannel;
|
|
|
|
typedef struct EXRThreadData {
|
|
uint8_t *uncompressed_data;
|
|
int uncompressed_size;
|
|
|
|
uint8_t *tmp;
|
|
int tmp_size;
|
|
|
|
uint8_t *bitmap;
|
|
uint16_t *lut;
|
|
} EXRThreadData;
|
|
|
|
typedef struct EXRContext {
|
|
AVClass *class;
|
|
AVFrame *picture;
|
|
AVCodecContext *avctx;
|
|
|
|
enum ExrCompr compression;
|
|
enum ExrPixelType pixel_type;
|
|
int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
|
|
const AVPixFmtDescriptor *desc;
|
|
|
|
int w, h;
|
|
uint32_t xmax, xmin;
|
|
uint32_t ymax, ymin;
|
|
uint32_t xdelta, ydelta;
|
|
int ysize;
|
|
|
|
uint64_t scan_line_size;
|
|
int scan_lines_per_block;
|
|
|
|
GetByteContext gb;
|
|
const uint8_t *buf;
|
|
int buf_size;
|
|
|
|
EXRChannel *channels;
|
|
int nb_channels;
|
|
|
|
EXRThreadData *thread_data;
|
|
|
|
const char *layer;
|
|
|
|
float gamma;
|
|
uint16_t gamma_table[65536];
|
|
} EXRContext;
|
|
|
|
/* -15 stored using a single precision bias of 127 */
|
|
#define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
|
|
|
|
/* max exponent value in single precision that will be converted
|
|
* to Inf or Nan when stored as a half-float */
|
|
#define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
|
|
|
|
/* 255 is the max exponent biased value */
|
|
#define FLOAT_MAX_BIASED_EXP (0xFF << 23)
|
|
|
|
#define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
|
|
|
|
/**
|
|
* Convert a half float as a uint16_t into a full float.
|
|
*
|
|
* @param hf half float as uint16_t
|
|
*
|
|
* @return float value
|
|
*/
|
|
static union av_intfloat32 exr_half2float(uint16_t hf)
|
|
{
|
|
unsigned int sign = (unsigned int) (hf >> 15);
|
|
unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
|
|
unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
|
|
union av_intfloat32 f;
|
|
|
|
if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
|
|
// we have a half-float NaN or Inf
|
|
// half-float NaNs will be converted to a single precision NaN
|
|
// half-float Infs will be converted to a single precision Inf
|
|
exp = FLOAT_MAX_BIASED_EXP;
|
|
if (mantissa)
|
|
mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
|
|
} else if (exp == 0x0) {
|
|
// convert half-float zero/denorm to single precision value
|
|
if (mantissa) {
|
|
mantissa <<= 1;
|
|
exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
|
|
// check for leading 1 in denorm mantissa
|
|
while ((mantissa & (1 << 10))) {
|
|
// for every leading 0, decrement single precision exponent by 1
|
|
// and shift half-float mantissa value to the left
|
|
mantissa <<= 1;
|
|
exp -= (1 << 23);
|
|
}
|
|
// clamp the mantissa to 10 bits
|
|
mantissa &= ((1 << 10) - 1);
|
|
// shift left to generate single-precision mantissa of 23 bits
|
|
mantissa <<= 13;
|
|
}
|
|
} else {
|
|
// shift left to generate single-precision mantissa of 23 bits
|
|
mantissa <<= 13;
|
|
// generate single precision biased exponent value
|
|
exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
|
|
}
|
|
|
|
f.i = (sign << 31) | exp | mantissa;
|
|
|
|
return f;
|
|
}
|
|
|
|
|
|
/**
|
|
* Convert from 32-bit float as uint32_t to uint16_t.
|
|
*
|
|
* @param v 32-bit float
|
|
*
|
|
* @return normalized 16-bit unsigned int
|
|
*/
|
|
static inline uint16_t exr_flt2uint(uint32_t v)
|
|
{
|
|
unsigned int exp = v >> 23;
|
|
// "HACK": negative values result in exp< 0, so clipping them to 0
|
|
// is also handled by this condition, avoids explicit check for sign bit.
|
|
if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
|
|
return 0;
|
|
if (exp >= 127)
|
|
return 0xffff;
|
|
v &= 0x007fffff;
|
|
return (v + (1 << 23)) >> (127 + 7 - exp);
|
|
}
|
|
|
|
/**
|
|
* Convert from 16-bit float as uint16_t to uint16_t.
|
|
*
|
|
* @param v 16-bit float
|
|
*
|
|
* @return normalized 16-bit unsigned int
|
|
*/
|
|
static inline uint16_t exr_halflt2uint(uint16_t v)
|
|
{
|
|
unsigned exp = 14 - (v >> 10);
|
|
if (exp >= 14) {
|
|
if (exp == 14)
|
|
return (v >> 9) & 1;
|
|
else
|
|
return (v & 0x8000) ? 0 : 0xffff;
|
|
}
|
|
v <<= 6;
|
|
return (v + (1 << 16)) >> (exp + 1);
|
|
}
|
|
|
|
static void predictor(uint8_t *src, int size)
|
|
{
|
|
uint8_t *t = src + 1;
|
|
uint8_t *stop = src + size;
|
|
|
|
while (t < stop) {
|
|
int d = (int) t[-1] + (int) t[0] - 128;
|
|
t[0] = d;
|
|
++t;
|
|
}
|
|
}
|
|
|
|
static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
|
|
{
|
|
const int8_t *t1 = src;
|
|
const int8_t *t2 = src + (size + 1) / 2;
|
|
int8_t *s = dst;
|
|
int8_t *stop = s + size;
|
|
|
|
while (1) {
|
|
if (s < stop)
|
|
*(s++) = *(t1++);
|
|
else
|
|
break;
|
|
|
|
if (s < stop)
|
|
*(s++) = *(t2++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int zip_uncompress(const uint8_t *src, int compressed_size,
|
|
int uncompressed_size, EXRThreadData *td)
|
|
{
|
|
unsigned long dest_len = uncompressed_size;
|
|
|
|
if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
|
|
dest_len != uncompressed_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
predictor(td->tmp, uncompressed_size);
|
|
reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rle_uncompress(const uint8_t *src, int compressed_size,
|
|
int uncompressed_size, EXRThreadData *td)
|
|
{
|
|
uint8_t *d = td->tmp;
|
|
const int8_t *s = src;
|
|
int ssize = compressed_size;
|
|
int dsize = uncompressed_size;
|
|
uint8_t *dend = d + dsize;
|
|
int count;
|
|
|
|
while (ssize > 0) {
|
|
count = *s++;
|
|
|
|
if (count < 0) {
|
|
count = -count;
|
|
|
|
if ((dsize -= count) < 0 ||
|
|
(ssize -= count + 1) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
while (count--)
|
|
*d++ = *s++;
|
|
} else {
|
|
count++;
|
|
|
|
if ((dsize -= count) < 0 ||
|
|
(ssize -= 2) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
while (count--)
|
|
*d++ = *s;
|
|
|
|
s++;
|
|
}
|
|
}
|
|
|
|
if (dend != d)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
predictor(td->tmp, uncompressed_size);
|
|
reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define USHORT_RANGE (1 << 16)
|
|
#define BITMAP_SIZE (1 << 13)
|
|
|
|
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
|
|
{
|
|
int i, k = 0;
|
|
|
|
for (i = 0; i < USHORT_RANGE; i++)
|
|
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
|
|
lut[k++] = i;
|
|
|
|
i = k - 1;
|
|
|
|
memset(lut + k, 0, (USHORT_RANGE - k) * 2);
|
|
|
|
return i;
|
|
}
|
|
|
|
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dsize; ++i)
|
|
dst[i] = lut[dst[i]];
|
|
}
|
|
|
|
#define HUF_ENCBITS 16 // literal (value) bit length
|
|
#define HUF_DECBITS 14 // decoding bit size (>= 8)
|
|
|
|
#define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
|
|
#define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
|
|
#define HUF_DECMASK (HUF_DECSIZE - 1)
|
|
|
|
typedef struct HufDec {
|
|
int len;
|
|
int lit;
|
|
int *p;
|
|
} HufDec;
|
|
|
|
static void huf_canonical_code_table(uint64_t *hcode)
|
|
{
|
|
uint64_t c, n[59] = { 0 };
|
|
int i;
|
|
|
|
for (i = 0; i < HUF_ENCSIZE; ++i)
|
|
n[hcode[i]] += 1;
|
|
|
|
c = 0;
|
|
for (i = 58; i > 0; --i) {
|
|
uint64_t nc = ((c + n[i]) >> 1);
|
|
n[i] = c;
|
|
c = nc;
|
|
}
|
|
|
|
for (i = 0; i < HUF_ENCSIZE; ++i) {
|
|
int l = hcode[i];
|
|
|
|
if (l > 0)
|
|
hcode[i] = l | (n[l]++ << 6);
|
|
}
|
|
}
|
|
|
|
#define SHORT_ZEROCODE_RUN 59
|
|
#define LONG_ZEROCODE_RUN 63
|
|
#define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
|
|
#define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
|
|
|
|
static int huf_unpack_enc_table(GetByteContext *gb,
|
|
int32_t im, int32_t iM, uint64_t *hcode)
|
|
{
|
|
GetBitContext gbit;
|
|
int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (; im <= iM; im++) {
|
|
uint64_t l = hcode[im] = get_bits(&gbit, 6);
|
|
|
|
if (l == LONG_ZEROCODE_RUN) {
|
|
int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
|
|
|
|
if (im + zerun > iM + 1)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
while (zerun--)
|
|
hcode[im++] = 0;
|
|
|
|
im--;
|
|
} else if (l >= SHORT_ZEROCODE_RUN) {
|
|
int zerun = l - SHORT_ZEROCODE_RUN + 2;
|
|
|
|
if (im + zerun > iM + 1)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
while (zerun--)
|
|
hcode[im++] = 0;
|
|
|
|
im--;
|
|
}
|
|
}
|
|
|
|
bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
|
|
huf_canonical_code_table(hcode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int huf_build_dec_table(const uint64_t *hcode, int im,
|
|
int iM, HufDec *hdecod)
|
|
{
|
|
for (; im <= iM; im++) {
|
|
uint64_t c = hcode[im] >> 6;
|
|
int i, l = hcode[im] & 63;
|
|
|
|
if (c >> l)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if (l > HUF_DECBITS) {
|
|
HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
|
|
if (pl->len)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
pl->lit++;
|
|
|
|
pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
|
|
if (!pl->p)
|
|
return AVERROR(ENOMEM);
|
|
|
|
pl->p[pl->lit - 1] = im;
|
|
} else if (l) {
|
|
HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
|
|
|
|
for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
|
|
if (pl->len || pl->p)
|
|
return AVERROR_INVALIDDATA;
|
|
pl->len = l;
|
|
pl->lit = im;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define get_char(c, lc, gb) \
|
|
{ \
|
|
c = (c << 8) | bytestream2_get_byte(gb); \
|
|
lc += 8; \
|
|
}
|
|
|
|
#define get_code(po, rlc, c, lc, gb, out, oe, outb) \
|
|
{ \
|
|
if (po == rlc) { \
|
|
if (lc < 8) \
|
|
get_char(c, lc, gb); \
|
|
lc -= 8; \
|
|
\
|
|
cs = c >> lc; \
|
|
\
|
|
if (out + cs > oe || out == outb) \
|
|
return AVERROR_INVALIDDATA; \
|
|
\
|
|
s = out[-1]; \
|
|
\
|
|
while (cs-- > 0) \
|
|
*out++ = s; \
|
|
} else if (out < oe) { \
|
|
*out++ = po; \
|
|
} else { \
|
|
return AVERROR_INVALIDDATA; \
|
|
} \
|
|
}
|
|
|
|
static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
|
|
GetByteContext *gb, int nbits,
|
|
int rlc, int no, uint16_t *out)
|
|
{
|
|
uint64_t c = 0;
|
|
uint16_t *outb = out;
|
|
uint16_t *oe = out + no;
|
|
const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
|
|
uint8_t cs, s;
|
|
int i, lc = 0;
|
|
|
|
while (gb->buffer < ie) {
|
|
get_char(c, lc, gb);
|
|
|
|
while (lc >= HUF_DECBITS) {
|
|
const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
|
|
|
|
if (pl.len) {
|
|
lc -= pl.len;
|
|
get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
|
|
} else {
|
|
int j;
|
|
|
|
if (!pl.p)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
for (j = 0; j < pl.lit; j++) {
|
|
int l = hcode[pl.p[j]] & 63;
|
|
|
|
while (lc < l && bytestream2_get_bytes_left(gb) > 0)
|
|
get_char(c, lc, gb);
|
|
|
|
if (lc >= l) {
|
|
if ((hcode[pl.p[j]] >> 6) ==
|
|
((c >> (lc - l)) & ((1LL << l) - 1))) {
|
|
lc -= l;
|
|
get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (j == pl.lit)
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
}
|
|
|
|
i = (8 - nbits) & 7;
|
|
c >>= i;
|
|
lc -= i;
|
|
|
|
while (lc > 0) {
|
|
const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
|
|
|
|
if (pl.len) {
|
|
lc -= pl.len;
|
|
get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
|
|
} else {
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
|
|
if (out - outb != no)
|
|
return AVERROR_INVALIDDATA;
|
|
return 0;
|
|
}
|
|
|
|
static int huf_uncompress(GetByteContext *gb,
|
|
uint16_t *dst, int dst_size)
|
|
{
|
|
int32_t src_size, im, iM;
|
|
uint32_t nBits;
|
|
uint64_t *freq;
|
|
HufDec *hdec;
|
|
int ret, i;
|
|
|
|
src_size = bytestream2_get_le32(gb);
|
|
im = bytestream2_get_le32(gb);
|
|
iM = bytestream2_get_le32(gb);
|
|
bytestream2_skip(gb, 4);
|
|
nBits = bytestream2_get_le32(gb);
|
|
if (im < 0 || im >= HUF_ENCSIZE ||
|
|
iM < 0 || iM >= HUF_ENCSIZE ||
|
|
src_size < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
bytestream2_skip(gb, 4);
|
|
|
|
freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
|
|
hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
|
|
if (!freq || !hdec) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto fail;
|
|
}
|
|
|
|
if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
|
|
goto fail;
|
|
|
|
if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
|
|
ret = AVERROR_INVALIDDATA;
|
|
goto fail;
|
|
}
|
|
|
|
if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
|
|
goto fail;
|
|
ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
|
|
|
|
fail:
|
|
for (i = 0; i < HUF_DECSIZE; i++)
|
|
if (hdec)
|
|
av_freep(&hdec[i].p);
|
|
|
|
av_free(freq);
|
|
av_free(hdec);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
|
|
{
|
|
int16_t ls = l;
|
|
int16_t hs = h;
|
|
int hi = hs;
|
|
int ai = ls + (hi & 1) + (hi >> 1);
|
|
int16_t as = ai;
|
|
int16_t bs = ai - hi;
|
|
|
|
*a = as;
|
|
*b = bs;
|
|
}
|
|
|
|
#define NBITS 16
|
|
#define A_OFFSET (1 << (NBITS - 1))
|
|
#define MOD_MASK ((1 << NBITS) - 1)
|
|
|
|
static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
|
|
{
|
|
int m = l;
|
|
int d = h;
|
|
int bb = (m - (d >> 1)) & MOD_MASK;
|
|
int aa = (d + bb - A_OFFSET) & MOD_MASK;
|
|
*b = bb;
|
|
*a = aa;
|
|
}
|
|
|
|
static void wav_decode(uint16_t *in, int nx, int ox,
|
|
int ny, int oy, uint16_t mx)
|
|
{
|
|
int w14 = (mx < (1 << 14));
|
|
int n = (nx > ny) ? ny : nx;
|
|
int p = 1;
|
|
int p2;
|
|
|
|
while (p <= n)
|
|
p <<= 1;
|
|
|
|
p >>= 1;
|
|
p2 = p;
|
|
p >>= 1;
|
|
|
|
while (p >= 1) {
|
|
uint16_t *py = in;
|
|
uint16_t *ey = in + oy * (ny - p2);
|
|
uint16_t i00, i01, i10, i11;
|
|
int oy1 = oy * p;
|
|
int oy2 = oy * p2;
|
|
int ox1 = ox * p;
|
|
int ox2 = ox * p2;
|
|
|
|
for (; py <= ey; py += oy2) {
|
|
uint16_t *px = py;
|
|
uint16_t *ex = py + ox * (nx - p2);
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
uint16_t *p01 = px + ox1;
|
|
uint16_t *p10 = px + oy1;
|
|
uint16_t *p11 = p10 + ox1;
|
|
|
|
if (w14) {
|
|
wdec14(*px, *p10, &i00, &i10);
|
|
wdec14(*p01, *p11, &i01, &i11);
|
|
wdec14(i00, i01, px, p01);
|
|
wdec14(i10, i11, p10, p11);
|
|
} else {
|
|
wdec16(*px, *p10, &i00, &i10);
|
|
wdec16(*p01, *p11, &i01, &i11);
|
|
wdec16(i00, i01, px, p01);
|
|
wdec16(i10, i11, p10, p11);
|
|
}
|
|
}
|
|
|
|
if (nx & p) {
|
|
uint16_t *p10 = px + oy1;
|
|
|
|
if (w14)
|
|
wdec14(*px, *p10, &i00, p10);
|
|
else
|
|
wdec16(*px, *p10, &i00, p10);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
if (ny & p) {
|
|
uint16_t *px = py;
|
|
uint16_t *ex = py + ox * (nx - p2);
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
uint16_t *p01 = px + ox1;
|
|
|
|
if (w14)
|
|
wdec14(*px, *p01, &i00, p01);
|
|
else
|
|
wdec16(*px, *p01, &i00, p01);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
p2 = p;
|
|
p >>= 1;
|
|
}
|
|
}
|
|
|
|
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
|
|
int dsize, EXRThreadData *td)
|
|
{
|
|
GetByteContext gb;
|
|
uint16_t maxval, min_non_zero, max_non_zero;
|
|
uint16_t *ptr;
|
|
uint16_t *tmp = (uint16_t *)td->tmp;
|
|
uint8_t *out;
|
|
int ret, i, j;
|
|
|
|
if (!td->bitmap)
|
|
td->bitmap = av_malloc(BITMAP_SIZE);
|
|
if (!td->lut)
|
|
td->lut = av_malloc(1 << 17);
|
|
if (!td->bitmap || !td->lut) {
|
|
av_free(td->bitmap);
|
|
av_free(td->lut);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
bytestream2_init(&gb, src, ssize);
|
|
min_non_zero = bytestream2_get_le16(&gb);
|
|
max_non_zero = bytestream2_get_le16(&gb);
|
|
|
|
if (max_non_zero >= BITMAP_SIZE)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
|
|
if (min_non_zero <= max_non_zero)
|
|
bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
|
|
max_non_zero - min_non_zero + 1);
|
|
memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
|
|
|
|
maxval = reverse_lut(td->bitmap, td->lut);
|
|
|
|
ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ptr = tmp;
|
|
for (i = 0; i < s->nb_channels; i++) {
|
|
EXRChannel *channel = &s->channels[i];
|
|
int size = channel->pixel_type;
|
|
|
|
for (j = 0; j < size; j++)
|
|
wav_decode(ptr + j, s->xdelta, size, s->ysize,
|
|
s->xdelta * size, maxval);
|
|
ptr += s->xdelta * s->ysize * size;
|
|
}
|
|
|
|
apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
|
|
|
|
out = td->uncompressed_data;
|
|
for (i = 0; i < s->ysize; i++)
|
|
for (j = 0; j < s->nb_channels; j++) {
|
|
uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
|
|
memcpy(out, in, s->xdelta * 2);
|
|
out += s->xdelta * 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
|
|
int compressed_size, int uncompressed_size,
|
|
EXRThreadData *td)
|
|
{
|
|
unsigned long dest_len = uncompressed_size;
|
|
const uint8_t *in = td->tmp;
|
|
uint8_t *out;
|
|
int c, i, j;
|
|
|
|
if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
|
|
dest_len != uncompressed_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
out = td->uncompressed_data;
|
|
for (i = 0; i < s->ysize; i++)
|
|
for (c = 0; c < s->nb_channels; c++) {
|
|
EXRChannel *channel = &s->channels[c];
|
|
const uint8_t *ptr[4];
|
|
uint32_t pixel = 0;
|
|
|
|
switch (channel->pixel_type) {
|
|
case EXR_FLOAT:
|
|
ptr[0] = in;
|
|
ptr[1] = ptr[0] + s->xdelta;
|
|
ptr[2] = ptr[1] + s->xdelta;
|
|
in = ptr[2] + s->xdelta;
|
|
|
|
for (j = 0; j < s->xdelta; ++j) {
|
|
uint32_t diff = (*(ptr[0]++) << 24) |
|
|
(*(ptr[1]++) << 16) |
|
|
(*(ptr[2]++) << 8);
|
|
pixel += diff;
|
|
bytestream_put_le32(&out, pixel);
|
|
}
|
|
break;
|
|
case EXR_HALF:
|
|
ptr[0] = in;
|
|
ptr[1] = ptr[0] + s->xdelta;
|
|
in = ptr[1] + s->xdelta;
|
|
for (j = 0; j < s->xdelta; j++) {
|
|
uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
|
|
|
|
pixel += diff;
|
|
bytestream_put_le16(&out, pixel);
|
|
}
|
|
break;
|
|
default:
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decode_block(AVCodecContext *avctx, void *tdata,
|
|
int jobnr, int threadnr)
|
|
{
|
|
EXRContext *s = avctx->priv_data;
|
|
AVFrame *const p = s->picture;
|
|
EXRThreadData *td = &s->thread_data[threadnr];
|
|
const uint8_t *channel_buffer[4] = { 0 };
|
|
const uint8_t *buf = s->buf;
|
|
uint64_t line_offset, uncompressed_size;
|
|
uint32_t xdelta = s->xdelta;
|
|
uint16_t *ptr_x;
|
|
uint8_t *ptr;
|
|
uint32_t data_size, line;
|
|
const uint8_t *src;
|
|
int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
|
|
int bxmin = s->xmin * 2 * s->desc->nb_components;
|
|
int i, x, buf_size = s->buf_size;
|
|
float one_gamma = 1.0f / s->gamma;
|
|
int ret;
|
|
|
|
line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
|
|
// Check if the buffer has the required bytes needed from the offset
|
|
if (line_offset > buf_size - 8)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
src = buf + line_offset + 8;
|
|
line = AV_RL32(src - 8);
|
|
if (line < s->ymin || line > s->ymax)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
data_size = AV_RL32(src - 4);
|
|
if (data_size <= 0 || data_size > buf_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
|
|
uncompressed_size = s->scan_line_size * s->ysize;
|
|
if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
|
|
line_offset > buf_size - uncompressed_size)) ||
|
|
(s->compression != EXR_RAW && (data_size > uncompressed_size ||
|
|
line_offset > buf_size - data_size))) {
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (data_size < uncompressed_size) {
|
|
av_fast_padded_malloc(&td->uncompressed_data,
|
|
&td->uncompressed_size, uncompressed_size);
|
|
av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
|
|
if (!td->uncompressed_data || !td->tmp)
|
|
return AVERROR(ENOMEM);
|
|
|
|
ret = AVERROR_INVALIDDATA;
|
|
switch (s->compression) {
|
|
case EXR_ZIP1:
|
|
case EXR_ZIP16:
|
|
ret = zip_uncompress(src, data_size, uncompressed_size, td);
|
|
break;
|
|
case EXR_PIZ:
|
|
ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
|
|
break;
|
|
case EXR_PXR24:
|
|
ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
|
|
break;
|
|
case EXR_RLE:
|
|
ret = rle_uncompress(src, data_size, uncompressed_size, td);
|
|
}
|
|
if (ret < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
|
|
return ret;
|
|
}
|
|
src = td->uncompressed_data;
|
|
}
|
|
|
|
channel_buffer[0] = src + xdelta * s->channel_offsets[0];
|
|
channel_buffer[1] = src + xdelta * s->channel_offsets[1];
|
|
channel_buffer[2] = src + xdelta * s->channel_offsets[2];
|
|
if (s->channel_offsets[3] >= 0)
|
|
channel_buffer[3] = src + xdelta * s->channel_offsets[3];
|
|
|
|
ptr = p->data[0] + line * p->linesize[0];
|
|
for (i = 0;
|
|
i < s->scan_lines_per_block && line + i <= s->ymax;
|
|
i++, ptr += p->linesize[0]) {
|
|
const uint8_t *r, *g, *b, *a;
|
|
|
|
r = channel_buffer[0];
|
|
g = channel_buffer[1];
|
|
b = channel_buffer[2];
|
|
if (channel_buffer[3])
|
|
a = channel_buffer[3];
|
|
|
|
ptr_x = (uint16_t *) ptr;
|
|
|
|
// Zero out the start if xmin is not 0
|
|
memset(ptr_x, 0, bxmin);
|
|
ptr_x += s->xmin * s->desc->nb_components;
|
|
if (s->pixel_type == EXR_FLOAT) {
|
|
// 32-bit
|
|
for (x = 0; x < xdelta; x++) {
|
|
union av_intfloat32 t;
|
|
t.i = bytestream_get_le32(&r);
|
|
if (t.f > 0.0f) /* avoid negative values */
|
|
t.f = powf(t.f, one_gamma);
|
|
*ptr_x++ = exr_flt2uint(t.i);
|
|
|
|
t.i = bytestream_get_le32(&g);
|
|
if (t.f > 0.0f)
|
|
t.f = powf(t.f, one_gamma);
|
|
*ptr_x++ = exr_flt2uint(t.i);
|
|
|
|
t.i = bytestream_get_le32(&b);
|
|
if (t.f > 0.0f)
|
|
t.f = powf(t.f, one_gamma);
|
|
*ptr_x++ = exr_flt2uint(t.i);
|
|
if (channel_buffer[3])
|
|
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
|
|
}
|
|
} else {
|
|
// 16-bit
|
|
for (x = 0; x < xdelta; x++) {
|
|
*ptr_x++ = s->gamma_table[bytestream_get_le16(&r)];
|
|
*ptr_x++ = s->gamma_table[bytestream_get_le16(&g)];
|
|
*ptr_x++ = s->gamma_table[bytestream_get_le16(&b)];
|
|
if (channel_buffer[3])
|
|
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
|
|
}
|
|
}
|
|
|
|
// Zero out the end if xmax+1 is not w
|
|
memset(ptr_x, 0, axmax);
|
|
|
|
channel_buffer[0] += s->scan_line_size;
|
|
channel_buffer[1] += s->scan_line_size;
|
|
channel_buffer[2] += s->scan_line_size;
|
|
if (channel_buffer[3])
|
|
channel_buffer[3] += s->scan_line_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Check if the variable name corresponds to its data type.
|
|
*
|
|
* @param s the EXRContext
|
|
* @param value_name name of the variable to check
|
|
* @param value_type type of the variable to check
|
|
* @param minimum_length minimum length of the variable data
|
|
*
|
|
* @return bytes to read containing variable data
|
|
* -1 if variable is not found
|
|
* 0 if buffer ended prematurely
|
|
*/
|
|
static int check_header_variable(EXRContext *s,
|
|
const char *value_name,
|
|
const char *value_type,
|
|
unsigned int minimum_length)
|
|
{
|
|
int var_size = -1;
|
|
|
|
if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
|
|
!strcmp(s->gb.buffer, value_name)) {
|
|
// found value_name, jump to value_type (null terminated strings)
|
|
s->gb.buffer += strlen(value_name) + 1;
|
|
if (!strcmp(s->gb.buffer, value_type)) {
|
|
s->gb.buffer += strlen(value_type) + 1;
|
|
var_size = bytestream2_get_le32(&s->gb);
|
|
// don't go read past boundaries
|
|
if (var_size > bytestream2_get_bytes_left(&s->gb))
|
|
var_size = 0;
|
|
} else {
|
|
// value_type not found, reset the buffer
|
|
s->gb.buffer -= strlen(value_name) + 1;
|
|
av_log(s->avctx, AV_LOG_WARNING,
|
|
"Unknown data type %s for header variable %s.\n",
|
|
value_type, value_name);
|
|
}
|
|
}
|
|
|
|
return var_size;
|
|
}
|
|
|
|
static int decode_header(EXRContext *s)
|
|
{
|
|
int current_channel_offset = 0;
|
|
int magic_number, version, flags, i;
|
|
|
|
if (bytestream2_get_bytes_left(&s->gb) < 10) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
magic_number = bytestream2_get_le32(&s->gb);
|
|
if (magic_number != 20000630) {
|
|
/* As per documentation of OpenEXR, it is supposed to be
|
|
* int 20000630 little-endian */
|
|
av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
version = bytestream2_get_byte(&s->gb);
|
|
if (version != 2) {
|
|
avpriv_report_missing_feature(s->avctx, "Version %d", version);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
flags = bytestream2_get_le24(&s->gb);
|
|
if (flags & 0x02) {
|
|
avpriv_report_missing_feature(s->avctx, "Tile support");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
// Parse the header
|
|
while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
|
|
int var_size;
|
|
if ((var_size = check_header_variable(s, "channels",
|
|
"chlist", 38)) >= 0) {
|
|
GetByteContext ch_gb;
|
|
if (!var_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
bytestream2_init(&ch_gb, s->gb.buffer, var_size);
|
|
|
|
while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
|
|
EXRChannel *channel;
|
|
enum ExrPixelType current_pixel_type;
|
|
int channel_index = -1;
|
|
int xsub, ysub;
|
|
|
|
if (strcmp(s->layer, "") != 0) {
|
|
if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
|
|
ch_gb.buffer += strlen(s->layer);
|
|
if (*ch_gb.buffer == '.')
|
|
ch_gb.buffer++; /* skip dot if not given */
|
|
av_log(s->avctx, AV_LOG_INFO,
|
|
"Layer %s.%s matched.\n", s->layer, ch_gb.buffer);
|
|
}
|
|
}
|
|
|
|
if (!strcmp(ch_gb.buffer, "R") ||
|
|
!strcmp(ch_gb.buffer, "X") ||
|
|
!strcmp(ch_gb.buffer, "U"))
|
|
channel_index = 0;
|
|
else if (!strcmp(ch_gb.buffer, "G") ||
|
|
!strcmp(ch_gb.buffer, "Y") ||
|
|
!strcmp(ch_gb.buffer, "V"))
|
|
channel_index = 1;
|
|
else if (!strcmp(ch_gb.buffer, "B") ||
|
|
!strcmp(ch_gb.buffer, "Z") ||
|
|
!strcmp(ch_gb.buffer, "W"))
|
|
channel_index = 2;
|
|
else if (!strcmp(ch_gb.buffer, "A"))
|
|
channel_index = 3;
|
|
else
|
|
av_log(s->avctx, AV_LOG_WARNING,
|
|
"Unsupported channel %.256s.\n", ch_gb.buffer);
|
|
|
|
/* skip until you get a 0 */
|
|
while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
|
|
bytestream2_get_byte(&ch_gb))
|
|
continue;
|
|
|
|
if (bytestream2_get_bytes_left(&ch_gb) < 4) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
current_pixel_type = bytestream2_get_le32(&ch_gb);
|
|
if (current_pixel_type >= EXR_UNKNOWN) {
|
|
avpriv_report_missing_feature(s->avctx, "Pixel type %d",
|
|
current_pixel_type);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
bytestream2_skip(&ch_gb, 4);
|
|
xsub = bytestream2_get_le32(&ch_gb);
|
|
ysub = bytestream2_get_le32(&ch_gb);
|
|
if (xsub != 1 || ysub != 1) {
|
|
avpriv_report_missing_feature(s->avctx,
|
|
"Subsampling %dx%d",
|
|
xsub, ysub);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
if (channel_index >= 0) {
|
|
if (s->pixel_type != EXR_UNKNOWN &&
|
|
s->pixel_type != current_pixel_type) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"RGB channels not of the same depth.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
s->pixel_type = current_pixel_type;
|
|
s->channel_offsets[channel_index] = current_channel_offset;
|
|
}
|
|
|
|
s->channels = av_realloc(s->channels,
|
|
++s->nb_channels * sizeof(EXRChannel));
|
|
if (!s->channels)
|
|
return AVERROR(ENOMEM);
|
|
channel = &s->channels[s->nb_channels - 1];
|
|
channel->pixel_type = current_pixel_type;
|
|
channel->xsub = xsub;
|
|
channel->ysub = ysub;
|
|
|
|
current_channel_offset += 1 << current_pixel_type;
|
|
}
|
|
|
|
/* Check if all channels are set with an offset or if the channels
|
|
* are causing an overflow */
|
|
if (FFMIN3(s->channel_offsets[0],
|
|
s->channel_offsets[1],
|
|
s->channel_offsets[2]) < 0) {
|
|
if (s->channel_offsets[0] < 0)
|
|
av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
|
|
if (s->channel_offsets[1] < 0)
|
|
av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
|
|
if (s->channel_offsets[2] < 0)
|
|
av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
// skip one last byte and update main gb
|
|
s->gb.buffer = ch_gb.buffer + 1;
|
|
continue;
|
|
} else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
|
|
31)) >= 0) {
|
|
if (!var_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
s->xmin = bytestream2_get_le32(&s->gb);
|
|
s->ymin = bytestream2_get_le32(&s->gb);
|
|
s->xmax = bytestream2_get_le32(&s->gb);
|
|
s->ymax = bytestream2_get_le32(&s->gb);
|
|
s->xdelta = (s->xmax - s->xmin) + 1;
|
|
s->ydelta = (s->ymax - s->ymin) + 1;
|
|
|
|
continue;
|
|
} else if ((var_size = check_header_variable(s, "displayWindow",
|
|
"box2i", 34)) >= 0) {
|
|
if (!var_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
bytestream2_skip(&s->gb, 8);
|
|
s->w = bytestream2_get_le32(&s->gb) + 1;
|
|
s->h = bytestream2_get_le32(&s->gb) + 1;
|
|
|
|
continue;
|
|
} else if ((var_size = check_header_variable(s, "lineOrder",
|
|
"lineOrder", 25)) >= 0) {
|
|
int line_order;
|
|
if (!var_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
line_order = bytestream2_get_byte(&s->gb);
|
|
av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
|
|
if (line_order > 2) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
continue;
|
|
} else if ((var_size = check_header_variable(s, "pixelAspectRatio",
|
|
"float", 31)) >= 0) {
|
|
if (!var_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
ff_set_sar(s->avctx,
|
|
av_d2q(av_int2float(bytestream2_get_le32(&s->gb)), 255));
|
|
|
|
continue;
|
|
} else if ((var_size = check_header_variable(s, "compression",
|
|
"compression", 29)) >= 0) {
|
|
if (!var_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if (s->compression == EXR_UNKN)
|
|
s->compression = bytestream2_get_byte(&s->gb);
|
|
else
|
|
av_log(s->avctx, AV_LOG_WARNING,
|
|
"Found more than one compression attribute.\n");
|
|
|
|
continue;
|
|
}
|
|
|
|
// Check if there are enough bytes for a header
|
|
if (bytestream2_get_bytes_left(&s->gb) <= 9) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
// Process unknown variables
|
|
for (i = 0; i < 2; i++) // value_name and value_type
|
|
while (bytestream2_get_byte(&s->gb) != 0);
|
|
|
|
// Skip variable length
|
|
bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
|
|
}
|
|
|
|
if (s->compression == EXR_UNKN) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
s->scan_line_size = s->xdelta * current_channel_offset;
|
|
|
|
if (bytestream2_get_bytes_left(&s->gb) <= 0) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
// aaand we are done
|
|
bytestream2_skip(&s->gb, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int decode_frame(AVCodecContext *avctx, void *data,
|
|
int *got_frame, AVPacket *avpkt)
|
|
{
|
|
EXRContext *s = avctx->priv_data;
|
|
ThreadFrame frame = { .f = data };
|
|
AVFrame *picture = data;
|
|
uint8_t *ptr;
|
|
|
|
int y, ret;
|
|
int out_line_size;
|
|
int scan_line_blocks;
|
|
|
|
bytestream2_init(&s->gb, avpkt->data, avpkt->size);
|
|
|
|
if ((ret = decode_header(s)) < 0)
|
|
return ret;
|
|
|
|
switch (s->pixel_type) {
|
|
case EXR_FLOAT:
|
|
case EXR_HALF:
|
|
if (s->channel_offsets[3] >= 0)
|
|
avctx->pix_fmt = AV_PIX_FMT_RGBA64;
|
|
else
|
|
avctx->pix_fmt = AV_PIX_FMT_RGB48;
|
|
break;
|
|
case EXR_UINT:
|
|
avpriv_request_sample(avctx, "32-bit unsigned int");
|
|
return AVERROR_PATCHWELCOME;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
switch (s->compression) {
|
|
case EXR_RAW:
|
|
case EXR_RLE:
|
|
case EXR_ZIP1:
|
|
s->scan_lines_per_block = 1;
|
|
break;
|
|
case EXR_PXR24:
|
|
case EXR_ZIP16:
|
|
s->scan_lines_per_block = 16;
|
|
break;
|
|
case EXR_PIZ:
|
|
s->scan_lines_per_block = 32;
|
|
break;
|
|
default:
|
|
avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
/* Verify the xmin, xmax, ymin, ymax and xdelta before setting
|
|
* the actual image size. */
|
|
if (s->xmin > s->xmax ||
|
|
s->ymin > s->ymax ||
|
|
s->xdelta != s->xmax - s->xmin + 1 ||
|
|
s->xmax >= s->w ||
|
|
s->ymax >= s->h) {
|
|
av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
|
|
return ret;
|
|
|
|
s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
|
|
if (!s->desc)
|
|
return AVERROR_INVALIDDATA;
|
|
out_line_size = avctx->width * 2 * s->desc->nb_components;
|
|
scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
|
|
s->scan_lines_per_block;
|
|
|
|
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
|
|
return ret;
|
|
|
|
if (bytestream2_get_bytes_left(&s->gb) < scan_line_blocks * 8)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
// save pointer we are going to use in decode_block
|
|
s->buf = avpkt->data;
|
|
s->buf_size = avpkt->size;
|
|
ptr = picture->data[0];
|
|
|
|
// Zero out the start if ymin is not 0
|
|
for (y = 0; y < s->ymin; y++) {
|
|
memset(ptr, 0, out_line_size);
|
|
ptr += picture->linesize[0];
|
|
}
|
|
|
|
s->picture = picture;
|
|
avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
|
|
|
|
// Zero out the end if ymax+1 is not h
|
|
for (y = s->ymax + 1; y < avctx->height; y++) {
|
|
memset(ptr, 0, out_line_size);
|
|
ptr += picture->linesize[0];
|
|
}
|
|
|
|
picture->pict_type = AV_PICTURE_TYPE_I;
|
|
*got_frame = 1;
|
|
|
|
return avpkt->size;
|
|
}
|
|
|
|
static av_cold int decode_init(AVCodecContext *avctx)
|
|
{
|
|
EXRContext *s = avctx->priv_data;
|
|
uint32_t i;
|
|
union av_intfloat32 t;
|
|
float one_gamma = 1.0f / s->gamma;
|
|
|
|
s->avctx = avctx;
|
|
s->xmin = ~0;
|
|
s->xmax = ~0;
|
|
s->ymin = ~0;
|
|
s->ymax = ~0;
|
|
s->xdelta = ~0;
|
|
s->ydelta = ~0;
|
|
s->channel_offsets[0] = -1;
|
|
s->channel_offsets[1] = -1;
|
|
s->channel_offsets[2] = -1;
|
|
s->channel_offsets[3] = -1;
|
|
s->pixel_type = EXR_UNKNOWN;
|
|
s->compression = EXR_UNKN;
|
|
s->nb_channels = 0;
|
|
s->w = 0;
|
|
s->h = 0;
|
|
|
|
if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
|
|
for (i = 0; i < 65536; ++i)
|
|
s->gamma_table[i] = exr_halflt2uint(i);
|
|
} else {
|
|
for (i = 0; i < 65536; ++i) {
|
|
t = exr_half2float(i);
|
|
/* If negative value we reuse half value */
|
|
if (t.f <= 0.0f) {
|
|
s->gamma_table[i] = exr_halflt2uint(i);
|
|
} else {
|
|
t.f = powf(t.f, one_gamma);
|
|
s->gamma_table[i] = exr_flt2uint(t.i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate thread data, used for non EXR_RAW compression types
|
|
s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
|
|
if (!s->thread_data)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decode_init_thread_copy(AVCodecContext *avctx)
|
|
{ EXRContext *s = avctx->priv_data;
|
|
|
|
// allocate thread data, used for non EXR_RAW compression types
|
|
s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
|
|
if (!s->thread_data)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int decode_end(AVCodecContext *avctx)
|
|
{
|
|
EXRContext *s = avctx->priv_data;
|
|
int i;
|
|
for (i = 0; i < avctx->thread_count; i++) {
|
|
EXRThreadData *td = &s->thread_data[i];
|
|
av_freep(&td->uncompressed_data);
|
|
av_freep(&td->tmp);
|
|
av_freep(&td->bitmap);
|
|
av_freep(&td->lut);
|
|
}
|
|
|
|
av_freep(&s->thread_data);
|
|
av_freep(&s->channels);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define OFFSET(x) offsetof(EXRContext, x)
|
|
#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
|
|
static const AVOption options[] = {
|
|
{ "layer", "Set the decoding layer", OFFSET(layer),
|
|
AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
|
|
{ "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
|
|
AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
|
|
{ NULL },
|
|
};
|
|
|
|
static const AVClass exr_class = {
|
|
.class_name = "EXR",
|
|
.item_name = av_default_item_name,
|
|
.option = options,
|
|
.version = LIBAVUTIL_VERSION_INT,
|
|
};
|
|
|
|
AVCodec ff_exr_decoder = {
|
|
.name = "exr",
|
|
.long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = AV_CODEC_ID_EXR,
|
|
.priv_data_size = sizeof(EXRContext),
|
|
.init = decode_init,
|
|
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
|
|
.close = decode_end,
|
|
.decode = decode_frame,
|
|
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
|
|
AV_CODEC_CAP_SLICE_THREADS,
|
|
.priv_class = &exr_class,
|
|
};
|