ffmpeg/libavcodec/cavs.c

790 lines
28 KiB
C

/*
* Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
* Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Chinese AVS video (AVS1-P2, JiZhun profile) decoder
* @author Stefan Gehrer <stefan.gehrer@gmx.de>
*/
#include "avcodec.h"
#include "get_bits.h"
#include "golomb.h"
#include "mathops.h"
#include "cavs.h"
static const uint8_t alpha_tab[64] = {
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
};
static const uint8_t beta_tab[64] = {
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
};
static const uint8_t tc_tab[64] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
};
/** mark block as unavailable, i.e. out of picture
or not yet decoded */
static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
/*****************************************************************************
*
* in-loop deblocking filter
*
****************************************************************************/
static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
{
if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
return 2;
if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
return 1;
if (b) {
mvP += MV_BWD_OFFS;
mvQ += MV_BWD_OFFS;
if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
return 1;
} else {
if (mvP->ref != mvQ->ref)
return 1;
}
return 0;
}
#define SET_PARAMS \
alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \
beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \
tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)];
/**
* in-loop deblocking filter for a single macroblock
*
* boundary strength (bs) mapping:
*
* --4---5--
* 0 2 |
* | 6 | 7 |
* 1 3 |
* ---------
*
*/
void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
{
uint8_t bs[8];
int qp_avg, alpha, beta, tc;
int i;
/* save un-deblocked lines */
h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
for (i = 0; i < 8; i++) {
h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
}
if (!h->loop_filter_disable) {
/* determine bs */
if (mb_type == I_8X8)
memset(bs, 2, 8);
else{
memset(bs, 0, 8);
if (ff_cavs_partition_flags[mb_type] & SPLITV) {
bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
}
if (ff_cavs_partition_flags[mb_type] & SPLITH) {
bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
}
bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
}
if (AV_RN64(bs)) {
if (h->flags & A_AVAIL) {
qp_avg = (h->qp + h->left_qp + 1) >> 1;
SET_PARAMS;
h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
}
qp_avg = h->qp;
SET_PARAMS;
h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
if (h->flags & B_AVAIL) {
qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
SET_PARAMS;
h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
}
}
}
h->left_qp = h->qp;
h->top_qp[h->mbx] = h->qp;
}
#undef SET_PARAMS
/*****************************************************************************
*
* spatial intra prediction
*
****************************************************************************/
void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
uint8_t **left, int block)
{
int i;
switch (block) {
case 0:
*left = h->left_border_y;
h->left_border_y[0] = h->left_border_y[1];
memset(&h->left_border_y[17], h->left_border_y[16], 9);
memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
top[17] = top[16];
top[0] = top[1];
if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
h->left_border_y[0] = top[0] = h->topleft_border_y;
break;
case 1:
*left = h->intern_border_y;
for (i = 0; i < 8; i++)
h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
h->intern_border_y[0] = h->intern_border_y[1];
memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
if (h->flags & C_AVAIL)
memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
else
memset(&top[9], top[8], 9);
top[17] = top[16];
top[0] = top[1];
if (h->flags & B_AVAIL)
h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
break;
case 2:
*left = &h->left_border_y[8];
memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
top[17] = top[16];
top[0] = top[1];
if (h->flags & A_AVAIL)
top[0] = h->left_border_y[8];
break;
case 3:
*left = &h->intern_border_y[8];
for (i = 0; i < 8; i++)
h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
memset(&top[9], top[8], 9);
break;
}
}
void ff_cavs_load_intra_pred_chroma(AVSContext *h)
{
/* extend borders by one pixel */
h->left_border_u[9] = h->left_border_u[8];
h->left_border_v[9] = h->left_border_v[8];
h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
if (h->mbx && h->mby) {
h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
} else {
h->left_border_u[0] = h->left_border_u[1];
h->left_border_v[0] = h->left_border_v[1];
h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
}
}
static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
{
int y;
uint64_t a = AV_RN64(&top[1]);
for (y = 0; y < 8; y++) {
*((uint64_t *)(d + y * stride)) = a;
}
}
static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
{
int y;
uint64_t a;
for (y = 0; y < 8; y++) {
a = left[y + 1] * 0x0101010101010101ULL;
*((uint64_t *)(d + y * stride)) = a;
}
}
static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
{
int y;
uint64_t a = 0x8080808080808080ULL;
for (y = 0; y < 8; y++)
*((uint64_t *)(d + y * stride)) = a;
}
static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
{
int x, y, ia;
int ih = 0;
int iv = 0;
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
for (x = 0; x < 4; x++) {
ih += (x + 1) * (top [5 + x] - top [3 - x]);
iv += (x + 1) * (left[5 + x] - left[3 - x]);
}
ia = (top[8] + left[8]) << 4;
ih = (17 * ih + 16) >> 5;
iv = (17 * iv + 16) >> 5;
for (y = 0; y < 8; y++)
for (x = 0; x < 8; x++)
d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
}
#define LOWPASS(ARRAY,INDEX) \
((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
{
int x, y;
for (y = 0; y < 8; y++)
for (x = 0; x < 8; x++)
d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
}
static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
{
int x, y;
for (y = 0; y < 8; y++)
for (x = 0; x < 8; x++)
d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
}
static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
{
int x, y;
for (y = 0; y < 8; y++)
for (x = 0; x < 8; x++)
if (x == y)
d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
else if (x > y)
d[y * stride + x] = LOWPASS(top, x - y);
else
d[y * stride + x] = LOWPASS(left, y - x);
}
static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
{
int x, y;
for (y = 0; y < 8; y++)
for (x = 0; x < 8; x++)
d[y * stride + x] = LOWPASS(left, y + 1);
}
static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
{
int x, y;
for (y = 0; y < 8; y++)
for (x = 0; x < 8; x++)
d[y * stride + x] = LOWPASS(top, x + 1);
}
#undef LOWPASS
static inline void modify_pred(const int8_t *mod_table, int *mode)
{
*mode = mod_table[*mode];
if (*mode < 0) {
av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
*mode = 0;
}
}
void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
{
/* save pred modes before they get modified */
h->pred_mode_Y[3] = h->pred_mode_Y[5];
h->pred_mode_Y[6] = h->pred_mode_Y[8];
h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
/* modify pred modes according to availability of neighbour samples */
if (!(h->flags & A_AVAIL)) {
modify_pred(left_modifier_l, &h->pred_mode_Y[4]);
modify_pred(left_modifier_l, &h->pred_mode_Y[7]);
modify_pred(left_modifier_c, pred_mode_uv);
}
if (!(h->flags & B_AVAIL)) {
modify_pred(top_modifier_l, &h->pred_mode_Y[4]);
modify_pred(top_modifier_l, &h->pred_mode_Y[5]);
modify_pred(top_modifier_c, pred_mode_uv);
}
}
/*****************************************************************************
*
* motion compensation
*
****************************************************************************/
static inline void mc_dir_part(AVSContext *h, AVFrame *pic,
int chroma_height,int delta,int list,uint8_t *dest_y,
uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
int src_y_offset,qpel_mc_func *qpix_op,
h264_chroma_mc_func chroma_op,cavs_vector *mv)
{
const int mx= mv->x + src_x_offset*8;
const int my= mv->y + src_y_offset*8;
const int luma_xy= (mx&3) + ((my&3)<<2);
uint8_t * src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
uint8_t * src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
uint8_t * src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
int extra_width = 0;
int extra_height= extra_width;
int emu=0;
const int full_mx= mx>>2;
const int full_my= my>>2;
const int pic_width = 16*h->mb_width;
const int pic_height = 16*h->mb_height;
if (!pic->data[0])
return;
if(mx&7) extra_width -= 3;
if(my&7) extra_height -= 3;
if( full_mx < 0-extra_width
|| full_my < 0-extra_height
|| full_mx + 16/*FIXME*/ > pic_width + extra_width
|| full_my + 16/*FIXME*/ > pic_height + extra_height){
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
src_y= h->edge_emu_buffer + 2 + 2*h->l_stride;
emu=1;
}
qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
if(emu){
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb, h->c_stride,
9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
src_cb= h->edge_emu_buffer;
}
chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
if(emu){
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr, h->c_stride,
9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
src_cr= h->edge_emu_buffer;
}
chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
}
static inline void mc_part_std(AVSContext *h,int chroma_height,int delta,
uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
int x_offset, int y_offset,qpel_mc_func *qpix_put,
h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
h264_chroma_mc_func chroma_avg, cavs_vector *mv)
{
qpel_mc_func *qpix_op= qpix_put;
h264_chroma_mc_func chroma_op= chroma_put;
dest_y += 2*x_offset + 2*y_offset*h->l_stride;
dest_cb += x_offset + y_offset*h->c_stride;
dest_cr += x_offset + y_offset*h->c_stride;
x_offset += 8*h->mbx;
y_offset += 8*h->mby;
if(mv->ref >= 0){
AVFrame *ref = h->DPB[mv->ref].f;
mc_dir_part(h, ref, chroma_height, delta, 0,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, mv);
qpix_op= qpix_avg;
chroma_op= chroma_avg;
}
if((mv+MV_BWD_OFFS)->ref >= 0){
AVFrame *ref = h->DPB[0].f;
mc_dir_part(h, ref, chroma_height, delta, 1,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, mv+MV_BWD_OFFS);
}
}
void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type) {
if(ff_cavs_partition_flags[mb_type] == 0){ // 16x16
mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
h->cdsp.put_cavs_qpel_pixels_tab[0],
h->dsp.put_h264_chroma_pixels_tab[0],
h->cdsp.avg_cavs_qpel_pixels_tab[0],
h->dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
}else{
mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
h->cdsp.put_cavs_qpel_pixels_tab[1],
h->dsp.put_h264_chroma_pixels_tab[1],
h->cdsp.avg_cavs_qpel_pixels_tab[1],
h->dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
h->cdsp.put_cavs_qpel_pixels_tab[1],
h->dsp.put_h264_chroma_pixels_tab[1],
h->cdsp.avg_cavs_qpel_pixels_tab[1],
h->dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
h->cdsp.put_cavs_qpel_pixels_tab[1],
h->dsp.put_h264_chroma_pixels_tab[1],
h->cdsp.avg_cavs_qpel_pixels_tab[1],
h->dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
h->cdsp.put_cavs_qpel_pixels_tab[1],
h->dsp.put_h264_chroma_pixels_tab[1],
h->cdsp.avg_cavs_qpel_pixels_tab[1],
h->dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
}
}
/*****************************************************************************
*
* motion vector prediction
*
****************************************************************************/
static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp) {
int den = h->scale_den[src->ref];
*d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
*d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
}
static inline void mv_pred_median(AVSContext *h, cavs_vector *mvP,
cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC) {
int ax, ay, bx, by, cx, cy;
int len_ab, len_bc, len_ca, len_mid;
/* scale candidates according to their temporal span */
scale_mv(h, &ax, &ay, mvA, mvP->dist);
scale_mv(h, &bx, &by, mvB, mvP->dist);
scale_mv(h, &cx, &cy, mvC, mvP->dist);
/* find the geometrical median of the three candidates */
len_ab = abs(ax - bx) + abs(ay - by);
len_bc = abs(bx - cx) + abs(by - cy);
len_ca = abs(cx - ax) + abs(cy - ay);
len_mid = mid_pred(len_ab, len_bc, len_ca);
if(len_mid == len_ab) {
mvP->x = cx;
mvP->y = cy;
} else if(len_mid == len_bc) {
mvP->x = ax;
mvP->y = ay;
} else {
mvP->x = bx;
mvP->y = by;
}
}
void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
enum cavs_mv_pred mode, enum cavs_block size, int ref) {
cavs_vector *mvP = &h->mv[nP];
cavs_vector *mvA = &h->mv[nP-1];
cavs_vector *mvB = &h->mv[nP-4];
cavs_vector *mvC = &h->mv[nC];
const cavs_vector *mvP2 = NULL;
mvP->ref = ref;
mvP->dist = h->dist[mvP->ref];
if(mvC->ref == NOT_AVAIL)
mvC = &h->mv[nP-5]; // set to top-left (mvD)
if((mode == MV_PRED_PSKIP) &&
((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
((mvA->x | mvA->y | mvA->ref) == 0) ||
((mvB->x | mvB->y | mvB->ref) == 0) )) {
mvP2 = &un_mv;
/* if there is only one suitable candidate, take it */
} else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
mvP2= mvA;
} else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
mvP2= mvB;
} else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
mvP2= mvC;
} else if(mode == MV_PRED_LEFT && mvA->ref == ref){
mvP2= mvA;
} else if(mode == MV_PRED_TOP && mvB->ref == ref){
mvP2= mvB;
} else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
mvP2= mvC;
}
if(mvP2){
mvP->x = mvP2->x;
mvP->y = mvP2->y;
}else
mv_pred_median(h, mvP, mvA, mvB, mvC);
if(mode < MV_PRED_PSKIP) {
mvP->x += get_se_golomb(&h->gb);
mvP->y += get_se_golomb(&h->gb);
}
set_mvs(mvP,size);
}
/*****************************************************************************
*
* macroblock level
*
****************************************************************************/
/**
* initialise predictors for motion vectors and intra prediction
*/
void ff_cavs_init_mb(AVSContext *h) {
int i;
/* copy predictors from top line (MB B and C) into cache */
for(i=0;i<3;i++) {
h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
}
h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
/* clear top predictors if MB B is not available */
if(!(h->flags & B_AVAIL)) {
h->mv[MV_FWD_B2] = un_mv;
h->mv[MV_FWD_B3] = un_mv;
h->mv[MV_BWD_B2] = un_mv;
h->mv[MV_BWD_B3] = un_mv;
h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
h->flags &= ~(C_AVAIL|D_AVAIL);
} else if(h->mbx) {
h->flags |= D_AVAIL;
}
if(h->mbx == h->mb_width-1) //MB C not available
h->flags &= ~C_AVAIL;
/* clear top-right predictors if MB C is not available */
if(!(h->flags & C_AVAIL)) {
h->mv[MV_FWD_C2] = un_mv;
h->mv[MV_BWD_C2] = un_mv;
}
/* clear top-left predictors if MB D is not available */
if(!(h->flags & D_AVAIL)) {
h->mv[MV_FWD_D3] = un_mv;
h->mv[MV_BWD_D3] = un_mv;
}
}
/**
* save predictors for later macroblocks and increase
* macroblock address
* @return 0 if end of frame is reached, 1 otherwise
*/
int ff_cavs_next_mb(AVSContext *h) {
int i;
h->flags |= A_AVAIL;
h->cy += 16;
h->cu += 8;
h->cv += 8;
/* copy mvs as predictors to the left */
for(i=0;i<=20;i+=4)
h->mv[i] = h->mv[i+2];
/* copy bottom mvs from cache to top line */
h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
/* next MB address */
h->mbidx++;
h->mbx++;
if(h->mbx == h->mb_width) { //new mb line
h->flags = B_AVAIL|C_AVAIL;
/* clear left pred_modes */
h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
/* clear left mv predictors */
for(i=0;i<=20;i+=4)
h->mv[i] = un_mv;
h->mbx = 0;
h->mby++;
/* re-calculate sample pointers */
h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
if(h->mby == h->mb_height) { //frame end
return 0;
}
}
return 1;
}
/*****************************************************************************
*
* frame level
*
****************************************************************************/
int ff_cavs_init_pic(AVSContext *h) {
int i;
/* clear some predictors */
for(i=0;i<=20;i+=4)
h->mv[i] = un_mv;
h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
h->cy = h->cur.f->data[0];
h->cu = h->cur.f->data[1];
h->cv = h->cur.f->data[2];
h->l_stride = h->cur.f->linesize[0];
h->c_stride = h->cur.f->linesize[1];
h->luma_scan[2] = 8*h->l_stride;
h->luma_scan[3] = 8*h->l_stride+8;
h->mbx = h->mby = h->mbidx = 0;
h->flags = 0;
return 0;
}
/*****************************************************************************
*
* headers and interface
*
****************************************************************************/
/**
* some predictions require data from the top-neighbouring macroblock.
* this data has to be stored for one complete row of macroblocks
* and this storage space is allocated here
*/
void ff_cavs_init_top_lines(AVSContext *h) {
/* alloc top line of predictors */
h->top_qp = av_mallocz( h->mb_width);
h->top_mv[0] = av_mallocz((h->mb_width*2+1)*sizeof(cavs_vector));
h->top_mv[1] = av_mallocz((h->mb_width*2+1)*sizeof(cavs_vector));
h->top_pred_Y = av_mallocz( h->mb_width*2*sizeof(*h->top_pred_Y));
h->top_border_y = av_mallocz((h->mb_width+1)*16);
h->top_border_u = av_mallocz( h->mb_width * 10);
h->top_border_v = av_mallocz( h->mb_width * 10);
/* alloc space for co-located MVs and types */
h->col_mv = av_mallocz( h->mb_width*h->mb_height*4*sizeof(cavs_vector));
h->col_type_base = av_mallocz(h->mb_width*h->mb_height);
h->block = av_mallocz(64*sizeof(DCTELEM));
}
av_cold int ff_cavs_init(AVCodecContext *avctx) {
AVSContext *h = avctx->priv_data;
ff_dsputil_init(&h->dsp, avctx);
ff_videodsp_init(&h->vdsp, 8);
ff_cavsdsp_init(&h->cdsp, avctx);
ff_init_scantable_permutation(h->dsp.idct_permutation,
h->cdsp.idct_perm);
ff_init_scantable(h->dsp.idct_permutation, &h->scantable, ff_zigzag_direct);
h->avctx = avctx;
avctx->pix_fmt= AV_PIX_FMT_YUV420P;
h->cur.f = avcodec_alloc_frame();
h->DPB[0].f = avcodec_alloc_frame();
h->DPB[1].f = avcodec_alloc_frame();
if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
ff_cavs_end(avctx);
return AVERROR(ENOMEM);
}
h->luma_scan[0] = 0;
h->luma_scan[1] = 8;
h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
h->mv[ 7] = un_mv;
h->mv[19] = un_mv;
return 0;
}
av_cold int ff_cavs_end(AVCodecContext *avctx) {
AVSContext *h = avctx->priv_data;
if (h->cur.f->data[0])
avctx->release_buffer(avctx, h->cur.f);
if (h->DPB[0].f->data[0])
avctx->release_buffer(avctx, h->DPB[0].f);
if (h->DPB[1].f->data[0])
avctx->release_buffer(avctx, h->DPB[1].f);
avcodec_free_frame(&h->cur.f);
avcodec_free_frame(&h->DPB[0].f);
avcodec_free_frame(&h->DPB[1].f);
av_free(h->top_qp);
av_free(h->top_mv[0]);
av_free(h->top_mv[1]);
av_free(h->top_pred_Y);
av_free(h->top_border_y);
av_free(h->top_border_u);
av_free(h->top_border_v);
av_free(h->col_mv);
av_free(h->col_type_base);
av_free(h->block);
av_freep(&h->edge_emu_buffer);
return 0;
}