ffmpeg/libavcodec/asv1.c

669 lines
20 KiB
C

/*
* ASUS V1/V2 codec
* Copyright (c) 2003 Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* ASUS V1/V2 codec.
*/
#include "avcodec.h"
#include "libavutil/common.h"
#include "put_bits.h"
#include "dsputil.h"
#include "mpeg12data.h"
//#undef NDEBUG
//#include <assert.h>
#define VLC_BITS 6
#define ASV2_LEVEL_VLC_BITS 10
typedef struct ASV1Context{
AVCodecContext *avctx;
DSPContext dsp;
AVFrame picture;
PutBitContext pb;
GetBitContext gb;
ScanTable scantable;
int inv_qscale;
int mb_width;
int mb_height;
int mb_width2;
int mb_height2;
DECLARE_ALIGNED(16, DCTELEM, block)[6][64];
uint16_t intra_matrix[64];
int q_intra_matrix[64];
uint8_t *bitstream_buffer;
unsigned int bitstream_buffer_size;
} ASV1Context;
static const uint8_t scantab[64]={
0x00,0x08,0x01,0x09,0x10,0x18,0x11,0x19,
0x02,0x0A,0x03,0x0B,0x12,0x1A,0x13,0x1B,
0x04,0x0C,0x05,0x0D,0x20,0x28,0x21,0x29,
0x06,0x0E,0x07,0x0F,0x14,0x1C,0x15,0x1D,
0x22,0x2A,0x23,0x2B,0x30,0x38,0x31,0x39,
0x16,0x1E,0x17,0x1F,0x24,0x2C,0x25,0x2D,
0x32,0x3A,0x33,0x3B,0x26,0x2E,0x27,0x2F,
0x34,0x3C,0x35,0x3D,0x36,0x3E,0x37,0x3F,
};
static const uint8_t ccp_tab[17][2]={
{0x2,2}, {0x7,5}, {0xB,5}, {0x3,5},
{0xD,5}, {0x5,5}, {0x9,5}, {0x1,5},
{0xE,5}, {0x6,5}, {0xA,5}, {0x2,5},
{0xC,5}, {0x4,5}, {0x8,5}, {0x3,2},
{0xF,5}, //EOB
};
static const uint8_t level_tab[7][2]={
{3,4}, {3,3}, {3,2}, {0,3}, {2,2}, {2,3}, {2,4}
};
static const uint8_t dc_ccp_tab[8][2]={
{0x1,2}, {0xD,4}, {0xF,4}, {0xC,4},
{0x5,3}, {0xE,4}, {0x4,3}, {0x0,2},
};
static const uint8_t ac_ccp_tab[16][2]={
{0x00,2}, {0x3B,6}, {0x0A,4}, {0x3A,6},
{0x02,3}, {0x39,6}, {0x3C,6}, {0x38,6},
{0x03,3}, {0x3D,6}, {0x08,4}, {0x1F,5},
{0x09,4}, {0x0B,4}, {0x0D,4}, {0x0C,4},
};
static const uint8_t asv2_level_tab[63][2]={
{0x3F,10},{0x2F,10},{0x37,10},{0x27,10},{0x3B,10},{0x2B,10},{0x33,10},{0x23,10},
{0x3D,10},{0x2D,10},{0x35,10},{0x25,10},{0x39,10},{0x29,10},{0x31,10},{0x21,10},
{0x1F, 8},{0x17, 8},{0x1B, 8},{0x13, 8},{0x1D, 8},{0x15, 8},{0x19, 8},{0x11, 8},
{0x0F, 6},{0x0B, 6},{0x0D, 6},{0x09, 6},
{0x07, 4},{0x05, 4},
{0x03, 2},
{0x00, 5},
{0x02, 2},
{0x04, 4},{0x06, 4},
{0x08, 6},{0x0C, 6},{0x0A, 6},{0x0E, 6},
{0x10, 8},{0x18, 8},{0x14, 8},{0x1C, 8},{0x12, 8},{0x1A, 8},{0x16, 8},{0x1E, 8},
{0x20,10},{0x30,10},{0x28,10},{0x38,10},{0x24,10},{0x34,10},{0x2C,10},{0x3C,10},
{0x22,10},{0x32,10},{0x2A,10},{0x3A,10},{0x26,10},{0x36,10},{0x2E,10},{0x3E,10},
};
static VLC ccp_vlc;
static VLC level_vlc;
static VLC dc_ccp_vlc;
static VLC ac_ccp_vlc;
static VLC asv2_level_vlc;
static av_cold void init_vlcs(ASV1Context *a){
static int done = 0;
if (!done) {
done = 1;
INIT_VLC_STATIC(&ccp_vlc, VLC_BITS, 17,
&ccp_tab[0][1], 2, 1,
&ccp_tab[0][0], 2, 1, 64);
INIT_VLC_STATIC(&dc_ccp_vlc, VLC_BITS, 8,
&dc_ccp_tab[0][1], 2, 1,
&dc_ccp_tab[0][0], 2, 1, 64);
INIT_VLC_STATIC(&ac_ccp_vlc, VLC_BITS, 16,
&ac_ccp_tab[0][1], 2, 1,
&ac_ccp_tab[0][0], 2, 1, 64);
INIT_VLC_STATIC(&level_vlc, VLC_BITS, 7,
&level_tab[0][1], 2, 1,
&level_tab[0][0], 2, 1, 64);
INIT_VLC_STATIC(&asv2_level_vlc, ASV2_LEVEL_VLC_BITS, 63,
&asv2_level_tab[0][1], 2, 1,
&asv2_level_tab[0][0], 2, 1, 1024);
}
}
//FIXME write a reversed bitstream reader to avoid the double reverse
static inline int asv2_get_bits(GetBitContext *gb, int n){
return av_reverse[ get_bits(gb, n) << (8-n) ];
}
static inline void asv2_put_bits(PutBitContext *pb, int n, int v){
put_bits(pb, n, av_reverse[ v << (8-n) ]);
}
static inline int asv1_get_level(GetBitContext *gb){
int code= get_vlc2(gb, level_vlc.table, VLC_BITS, 1);
if(code==3) return get_sbits(gb, 8);
else return code - 3;
}
static inline int asv2_get_level(GetBitContext *gb){
int code= get_vlc2(gb, asv2_level_vlc.table, ASV2_LEVEL_VLC_BITS, 1);
if(code==31) return (int8_t)asv2_get_bits(gb, 8);
else return code - 31;
}
static inline void asv1_put_level(PutBitContext *pb, int level){
unsigned int index= level + 3;
if(index <= 6) put_bits(pb, level_tab[index][1], level_tab[index][0]);
else{
put_bits(pb, level_tab[3][1], level_tab[3][0]);
put_sbits(pb, 8, level);
}
}
static inline void asv2_put_level(PutBitContext *pb, int level){
unsigned int index= level + 31;
if(index <= 62) put_bits(pb, asv2_level_tab[index][1], asv2_level_tab[index][0]);
else{
put_bits(pb, asv2_level_tab[31][1], asv2_level_tab[31][0]);
asv2_put_bits(pb, 8, level&0xFF);
}
}
static inline int asv1_decode_block(ASV1Context *a, DCTELEM block[64]){
int i;
block[0]= 8*get_bits(&a->gb, 8);
for(i=0; i<11; i++){
const int ccp= get_vlc2(&a->gb, ccp_vlc.table, VLC_BITS, 1);
if(ccp){
if(ccp == 16) break;
if(ccp < 0 || i>=10){
av_log(a->avctx, AV_LOG_ERROR, "coded coeff pattern damaged\n");
return -1;
}
if(ccp&8) block[a->scantable.permutated[4*i+0]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+0])>>4;
if(ccp&4) block[a->scantable.permutated[4*i+1]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+1])>>4;
if(ccp&2) block[a->scantable.permutated[4*i+2]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+2])>>4;
if(ccp&1) block[a->scantable.permutated[4*i+3]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+3])>>4;
}
}
return 0;
}
static inline int asv2_decode_block(ASV1Context *a, DCTELEM block[64]){
int i, count, ccp;
count= asv2_get_bits(&a->gb, 4);
block[0]= 8*asv2_get_bits(&a->gb, 8);
ccp= get_vlc2(&a->gb, dc_ccp_vlc.table, VLC_BITS, 1);
if(ccp){
if(ccp&4) block[a->scantable.permutated[1]]= (asv2_get_level(&a->gb) * a->intra_matrix[1])>>4;
if(ccp&2) block[a->scantable.permutated[2]]= (asv2_get_level(&a->gb) * a->intra_matrix[2])>>4;
if(ccp&1) block[a->scantable.permutated[3]]= (asv2_get_level(&a->gb) * a->intra_matrix[3])>>4;
}
for(i=1; i<count+1; i++){
const int ccp= get_vlc2(&a->gb, ac_ccp_vlc.table, VLC_BITS, 1);
if(ccp){
if(ccp&8) block[a->scantable.permutated[4*i+0]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+0])>>4;
if(ccp&4) block[a->scantable.permutated[4*i+1]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+1])>>4;
if(ccp&2) block[a->scantable.permutated[4*i+2]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+2])>>4;
if(ccp&1) block[a->scantable.permutated[4*i+3]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+3])>>4;
}
}
return 0;
}
static inline void asv1_encode_block(ASV1Context *a, DCTELEM block[64]){
int i;
int nc_count=0;
put_bits(&a->pb, 8, (block[0] + 32)>>6);
block[0]= 0;
for(i=0; i<10; i++){
const int index= scantab[4*i];
int ccp=0;
if( (block[index + 0] = (block[index + 0]*a->q_intra_matrix[index + 0] + (1<<15))>>16) ) ccp |= 8;
if( (block[index + 8] = (block[index + 8]*a->q_intra_matrix[index + 8] + (1<<15))>>16) ) ccp |= 4;
if( (block[index + 1] = (block[index + 1]*a->q_intra_matrix[index + 1] + (1<<15))>>16) ) ccp |= 2;
if( (block[index + 9] = (block[index + 9]*a->q_intra_matrix[index + 9] + (1<<15))>>16) ) ccp |= 1;
if(ccp){
for(;nc_count; nc_count--)
put_bits(&a->pb, ccp_tab[0][1], ccp_tab[0][0]);
put_bits(&a->pb, ccp_tab[ccp][1], ccp_tab[ccp][0]);
if(ccp&8) asv1_put_level(&a->pb, block[index + 0]);
if(ccp&4) asv1_put_level(&a->pb, block[index + 8]);
if(ccp&2) asv1_put_level(&a->pb, block[index + 1]);
if(ccp&1) asv1_put_level(&a->pb, block[index + 9]);
}else{
nc_count++;
}
}
put_bits(&a->pb, ccp_tab[16][1], ccp_tab[16][0]);
}
static inline void asv2_encode_block(ASV1Context *a, DCTELEM block[64]){
int i;
int count=0;
for(count=63; count>3; count--){
const int index= scantab[count];
if( (block[index]*a->q_intra_matrix[index] + (1<<15))>>16 )
break;
}
count >>= 2;
asv2_put_bits(&a->pb, 4, count);
asv2_put_bits(&a->pb, 8, (block[0] + 32)>>6);
block[0]= 0;
for(i=0; i<=count; i++){
const int index= scantab[4*i];
int ccp=0;
if( (block[index + 0] = (block[index + 0]*a->q_intra_matrix[index + 0] + (1<<15))>>16) ) ccp |= 8;
if( (block[index + 8] = (block[index + 8]*a->q_intra_matrix[index + 8] + (1<<15))>>16) ) ccp |= 4;
if( (block[index + 1] = (block[index + 1]*a->q_intra_matrix[index + 1] + (1<<15))>>16) ) ccp |= 2;
if( (block[index + 9] = (block[index + 9]*a->q_intra_matrix[index + 9] + (1<<15))>>16) ) ccp |= 1;
assert(i || ccp<8);
if(i) put_bits(&a->pb, ac_ccp_tab[ccp][1], ac_ccp_tab[ccp][0]);
else put_bits(&a->pb, dc_ccp_tab[ccp][1], dc_ccp_tab[ccp][0]);
if(ccp){
if(ccp&8) asv2_put_level(&a->pb, block[index + 0]);
if(ccp&4) asv2_put_level(&a->pb, block[index + 8]);
if(ccp&2) asv2_put_level(&a->pb, block[index + 1]);
if(ccp&1) asv2_put_level(&a->pb, block[index + 9]);
}
}
}
static inline int decode_mb(ASV1Context *a, DCTELEM block[6][64]){
int i;
a->dsp.clear_blocks(block[0]);
if(a->avctx->codec_id == CODEC_ID_ASV1){
for(i=0; i<6; i++){
if( asv1_decode_block(a, block[i]) < 0)
return -1;
}
}else{
for(i=0; i<6; i++){
if( asv2_decode_block(a, block[i]) < 0)
return -1;
}
}
return 0;
}
static inline int encode_mb(ASV1Context *a, DCTELEM block[6][64]){
int i;
if(a->pb.buf_end - a->pb.buf - (put_bits_count(&a->pb)>>3) < 30*16*16*3/2/8){
av_log(a->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
if(a->avctx->codec_id == CODEC_ID_ASV1){
for(i=0; i<6; i++)
asv1_encode_block(a, block[i]);
}else{
for(i=0; i<6; i++)
asv2_encode_block(a, block[i]);
}
return 0;
}
static inline void idct_put(ASV1Context *a, int mb_x, int mb_y){
DCTELEM (*block)[64]= a->block;
int linesize= a->picture.linesize[0];
uint8_t *dest_y = a->picture.data[0] + (mb_y * 16* linesize ) + mb_x * 16;
uint8_t *dest_cb = a->picture.data[1] + (mb_y * 8 * a->picture.linesize[1]) + mb_x * 8;
uint8_t *dest_cr = a->picture.data[2] + (mb_y * 8 * a->picture.linesize[2]) + mb_x * 8;
a->dsp.idct_put(dest_y , linesize, block[0]);
a->dsp.idct_put(dest_y + 8, linesize, block[1]);
a->dsp.idct_put(dest_y + 8*linesize , linesize, block[2]);
a->dsp.idct_put(dest_y + 8*linesize + 8, linesize, block[3]);
if(!(a->avctx->flags&CODEC_FLAG_GRAY)){
a->dsp.idct_put(dest_cb, a->picture.linesize[1], block[4]);
a->dsp.idct_put(dest_cr, a->picture.linesize[2], block[5]);
}
}
static inline void dct_get(ASV1Context *a, int mb_x, int mb_y){
DCTELEM (*block)[64]= a->block;
int linesize= a->picture.linesize[0];
int i;
uint8_t *ptr_y = a->picture.data[0] + (mb_y * 16* linesize ) + mb_x * 16;
uint8_t *ptr_cb = a->picture.data[1] + (mb_y * 8 * a->picture.linesize[1]) + mb_x * 8;
uint8_t *ptr_cr = a->picture.data[2] + (mb_y * 8 * a->picture.linesize[2]) + mb_x * 8;
a->dsp.get_pixels(block[0], ptr_y , linesize);
a->dsp.get_pixels(block[1], ptr_y + 8, linesize);
a->dsp.get_pixels(block[2], ptr_y + 8*linesize , linesize);
a->dsp.get_pixels(block[3], ptr_y + 8*linesize + 8, linesize);
for(i=0; i<4; i++)
a->dsp.fdct(block[i]);
if(!(a->avctx->flags&CODEC_FLAG_GRAY)){
a->dsp.get_pixels(block[4], ptr_cb, a->picture.linesize[1]);
a->dsp.get_pixels(block[5], ptr_cr, a->picture.linesize[2]);
for(i=4; i<6; i++)
a->dsp.fdct(block[i]);
}
}
static int decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
ASV1Context * const a = avctx->priv_data;
AVFrame *picture = data;
AVFrame * const p= &a->picture;
int mb_x, mb_y;
if(p->data[0])
avctx->release_buffer(avctx, p);
p->reference= 0;
if(avctx->get_buffer(avctx, p) < 0){
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
p->pict_type= FF_I_TYPE;
p->key_frame= 1;
av_fast_malloc(&a->bitstream_buffer, &a->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
if (!a->bitstream_buffer)
return AVERROR(ENOMEM);
if(avctx->codec_id == CODEC_ID_ASV1)
a->dsp.bswap_buf((uint32_t*)a->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
else{
int i;
for(i=0; i<buf_size; i++)
a->bitstream_buffer[i]= av_reverse[ buf[i] ];
}
init_get_bits(&a->gb, a->bitstream_buffer, buf_size*8);
for(mb_y=0; mb_y<a->mb_height2; mb_y++){
for(mb_x=0; mb_x<a->mb_width2; mb_x++){
if( decode_mb(a, a->block) <0)
return -1;
idct_put(a, mb_x, mb_y);
}
}
if(a->mb_width2 != a->mb_width){
mb_x= a->mb_width2;
for(mb_y=0; mb_y<a->mb_height2; mb_y++){
if( decode_mb(a, a->block) <0)
return -1;
idct_put(a, mb_x, mb_y);
}
}
if(a->mb_height2 != a->mb_height){
mb_y= a->mb_height2;
for(mb_x=0; mb_x<a->mb_width; mb_x++){
if( decode_mb(a, a->block) <0)
return -1;
idct_put(a, mb_x, mb_y);
}
}
#if 0
int i;
printf("%d %d\n", 8*buf_size, get_bits_count(&a->gb));
for(i=get_bits_count(&a->gb); i<8*buf_size; i++){
printf("%d", get_bits1(&a->gb));
}
for(i=0; i<s->avctx->extradata_size; i++){
printf("%c\n", ((uint8_t*)s->avctx->extradata)[i]);
}
#endif
*picture= *(AVFrame*)&a->picture;
*data_size = sizeof(AVPicture);
emms_c();
return (get_bits_count(&a->gb)+31)/32*4;
}
#if CONFIG_ASV1_ENCODER || CONFIG_ASV2_ENCODER
static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
ASV1Context * const a = avctx->priv_data;
AVFrame *pict = data;
AVFrame * const p= &a->picture;
int size;
int mb_x, mb_y;
init_put_bits(&a->pb, buf, buf_size);
*p = *pict;
p->pict_type= FF_I_TYPE;
p->key_frame= 1;
for(mb_y=0; mb_y<a->mb_height2; mb_y++){
for(mb_x=0; mb_x<a->mb_width2; mb_x++){
dct_get(a, mb_x, mb_y);
encode_mb(a, a->block);
}
}
if(a->mb_width2 != a->mb_width){
mb_x= a->mb_width2;
for(mb_y=0; mb_y<a->mb_height2; mb_y++){
dct_get(a, mb_x, mb_y);
encode_mb(a, a->block);
}
}
if(a->mb_height2 != a->mb_height){
mb_y= a->mb_height2;
for(mb_x=0; mb_x<a->mb_width; mb_x++){
dct_get(a, mb_x, mb_y);
encode_mb(a, a->block);
}
}
emms_c();
align_put_bits(&a->pb);
while(put_bits_count(&a->pb)&31)
put_bits(&a->pb, 8, 0);
size= put_bits_count(&a->pb)/32;
if(avctx->codec_id == CODEC_ID_ASV1)
a->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
else{
int i;
for(i=0; i<4*size; i++)
buf[i]= av_reverse[ buf[i] ];
}
return size*4;
}
#endif /* CONFIG_ASV1_ENCODER || CONFIG_ASV2_ENCODER */
static av_cold void common_init(AVCodecContext *avctx){
ASV1Context * const a = avctx->priv_data;
dsputil_init(&a->dsp, avctx);
a->mb_width = (avctx->width + 15) / 16;
a->mb_height = (avctx->height + 15) / 16;
a->mb_width2 = (avctx->width + 0) / 16;
a->mb_height2 = (avctx->height + 0) / 16;
avctx->coded_frame= &a->picture;
a->avctx= avctx;
}
static av_cold int decode_init(AVCodecContext *avctx){
ASV1Context * const a = avctx->priv_data;
AVFrame *p= &a->picture;
int i;
const int scale= avctx->codec_id == CODEC_ID_ASV1 ? 1 : 2;
common_init(avctx);
init_vlcs(a);
ff_init_scantable(a->dsp.idct_permutation, &a->scantable, scantab);
avctx->pix_fmt= PIX_FMT_YUV420P;
a->inv_qscale= avctx->extradata[0];
if(a->inv_qscale == 0){
av_log(avctx, AV_LOG_ERROR, "illegal qscale 0\n");
if(avctx->codec_id == CODEC_ID_ASV1)
a->inv_qscale= 6;
else
a->inv_qscale= 10;
}
for(i=0; i<64; i++){
int index= scantab[i];
a->intra_matrix[i]= 64*scale*ff_mpeg1_default_intra_matrix[index] / a->inv_qscale;
}
p->qstride= a->mb_width;
p->qscale_table= av_malloc( p->qstride * a->mb_height);
p->quality= (32*scale + a->inv_qscale/2)/a->inv_qscale;
memset(p->qscale_table, p->quality, p->qstride*a->mb_height);
return 0;
}
#if CONFIG_ASV1_ENCODER || CONFIG_ASV2_ENCODER
static av_cold int encode_init(AVCodecContext *avctx){
ASV1Context * const a = avctx->priv_data;
int i;
const int scale= avctx->codec_id == CODEC_ID_ASV1 ? 1 : 2;
common_init(avctx);
if(avctx->global_quality == 0) avctx->global_quality= 4*FF_QUALITY_SCALE;
a->inv_qscale= (32*scale*FF_QUALITY_SCALE + avctx->global_quality/2) / avctx->global_quality;
avctx->extradata= av_mallocz(8);
avctx->extradata_size=8;
((uint32_t*)avctx->extradata)[0]= av_le2ne32(a->inv_qscale);
((uint32_t*)avctx->extradata)[1]= av_le2ne32(AV_RL32("ASUS"));
for(i=0; i<64; i++){
int q= 32*scale*ff_mpeg1_default_intra_matrix[i];
a->q_intra_matrix[i]= ((a->inv_qscale<<16) + q/2) / q;
}
return 0;
}
#endif /* CONFIG_ASV1_ENCODER || CONFIG_ASV2_ENCODER */
static av_cold int decode_end(AVCodecContext *avctx){
ASV1Context * const a = avctx->priv_data;
av_freep(&a->bitstream_buffer);
av_freep(&a->picture.qscale_table);
a->bitstream_buffer_size=0;
if(a->picture.data[0])
avctx->release_buffer(avctx, &a->picture);
return 0;
}
AVCodec asv1_decoder = {
"asv1",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_ASV1,
sizeof(ASV1Context),
decode_init,
NULL,
decode_end,
decode_frame,
CODEC_CAP_DR1,
.long_name= NULL_IF_CONFIG_SMALL("ASUS V1"),
};
AVCodec asv2_decoder = {
"asv2",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_ASV2,
sizeof(ASV1Context),
decode_init,
NULL,
decode_end,
decode_frame,
CODEC_CAP_DR1,
.long_name= NULL_IF_CONFIG_SMALL("ASUS V2"),
};
#if CONFIG_ASV1_ENCODER
AVCodec asv1_encoder = {
"asv1",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_ASV1,
sizeof(ASV1Context),
encode_init,
encode_frame,
//encode_end,
.pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_NONE},
.long_name= NULL_IF_CONFIG_SMALL("ASUS V1"),
};
#endif
#if CONFIG_ASV2_ENCODER
AVCodec asv2_encoder = {
"asv2",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_ASV2,
sizeof(ASV1Context),
encode_init,
encode_frame,
//encode_end,
.pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_NONE},
.long_name= NULL_IF_CONFIG_SMALL("ASUS V2"),
};
#endif