mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-25 00:32:31 +00:00
08bebeb1be
Some callers assume that item_name is always set, so this may be
considered an API break.
This reverts commit 0c6203c97a
.
886 lines
28 KiB
C
886 lines
28 KiB
C
/*
|
|
* QuickTime RPZA Video Encoder
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file rpzaenc.c
|
|
* QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler
|
|
*/
|
|
|
|
#include "libavutil/avassert.h"
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/opt.h"
|
|
|
|
#include "avcodec.h"
|
|
#include "codec_internal.h"
|
|
#include "encode.h"
|
|
#include "mathops.h"
|
|
#include "put_bits.h"
|
|
|
|
typedef struct RpzaContext {
|
|
AVClass *avclass;
|
|
|
|
int skip_frame_thresh;
|
|
int start_one_color_thresh;
|
|
int continue_one_color_thresh;
|
|
int sixteen_color_thresh;
|
|
|
|
AVFrame *prev_frame; // buffer for previous source frame
|
|
PutBitContext pb; // buffer for encoded frame data.
|
|
|
|
int frame_width; // width in pixels of source frame
|
|
int frame_height; // height in pixesl of source frame
|
|
|
|
int first_frame; // flag set to one when the first frame is being processed
|
|
// so that comparisons with previous frame data in not attempted
|
|
} RpzaContext;
|
|
|
|
typedef enum channel_offset {
|
|
RED = 2,
|
|
GREEN = 1,
|
|
BLUE = 0,
|
|
} channel_offset;
|
|
|
|
typedef struct rgb {
|
|
uint8_t r;
|
|
uint8_t g;
|
|
uint8_t b;
|
|
} rgb;
|
|
|
|
#define SQR(x) ((x) * (x))
|
|
|
|
/* 15 bit components */
|
|
#define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F))
|
|
#define R(color) GET_CHAN(color, RED)
|
|
#define G(color) GET_CHAN(color, GREEN)
|
|
#define B(color) GET_CHAN(color, BLUE)
|
|
|
|
typedef struct BlockInfo {
|
|
int row;
|
|
int col;
|
|
int block_width;
|
|
int block_height;
|
|
int image_width;
|
|
int image_height;
|
|
int block_index;
|
|
uint16_t start;
|
|
int rowstride;
|
|
int prev_rowstride;
|
|
int blocks_per_row;
|
|
int total_blocks;
|
|
} BlockInfo;
|
|
|
|
static void get_colors(const uint8_t *min, const uint8_t *max, uint8_t color4[4][3])
|
|
{
|
|
uint8_t step;
|
|
|
|
color4[0][0] = min[0];
|
|
color4[0][1] = min[1];
|
|
color4[0][2] = min[2];
|
|
|
|
color4[3][0] = max[0];
|
|
color4[3][1] = max[1];
|
|
color4[3][2] = max[2];
|
|
|
|
// red components
|
|
step = (color4[3][0] - color4[0][0] + 1) / 3;
|
|
color4[1][0] = color4[0][0] + step;
|
|
color4[2][0] = color4[3][0] - step;
|
|
|
|
// green components
|
|
step = (color4[3][1] - color4[0][1] + 1) / 3;
|
|
color4[1][1] = color4[0][1] + step;
|
|
color4[2][1] = color4[3][1] - step;
|
|
|
|
// blue components
|
|
step = (color4[3][2] - color4[0][2] + 1) / 3;
|
|
color4[1][2] = color4[0][2] + step;
|
|
color4[2][2] = color4[3][2] - step;
|
|
}
|
|
|
|
/* Fill BlockInfo struct with information about a 4x4 block of the image */
|
|
static int get_block_info(BlockInfo *bi, int block, int prev_frame)
|
|
{
|
|
bi->row = block / bi->blocks_per_row;
|
|
bi->col = block % bi->blocks_per_row;
|
|
|
|
// test for right edge block
|
|
if (bi->col == bi->blocks_per_row - 1 && (bi->image_width % 4) != 0) {
|
|
bi->block_width = bi->image_width % 4;
|
|
} else {
|
|
bi->block_width = 4;
|
|
}
|
|
|
|
// test for bottom edge block
|
|
if (bi->row == (bi->image_height / 4) && (bi->image_height % 4) != 0) {
|
|
bi->block_height = bi->image_height % 4;
|
|
} else {
|
|
bi->block_height = 4;
|
|
}
|
|
|
|
return block ? (bi->col * 4) + (bi->row * (prev_frame ? bi->prev_rowstride : bi->rowstride) * 4) : 0;
|
|
}
|
|
|
|
static uint16_t rgb24_to_rgb555(const uint8_t *rgb24)
|
|
{
|
|
uint16_t rgb555 = 0;
|
|
uint32_t r, g, b;
|
|
|
|
r = rgb24[0];
|
|
g = rgb24[1];
|
|
b = rgb24[2];
|
|
|
|
rgb555 |= (r << 10);
|
|
rgb555 |= (g << 5);
|
|
rgb555 |= (b << 0);
|
|
|
|
return rgb555;
|
|
}
|
|
|
|
/*
|
|
* Returns the total difference between two 24 bit color values
|
|
*/
|
|
static int diff_colors(const uint8_t *colorA, const uint8_t *colorB)
|
|
{
|
|
int tot;
|
|
|
|
tot = SQR(colorA[0] - colorB[0]);
|
|
tot += SQR(colorA[1] - colorB[1]);
|
|
tot += SQR(colorA[2] - colorB[2]);
|
|
|
|
return tot;
|
|
}
|
|
|
|
/*
|
|
* Returns the maximum channel difference
|
|
*/
|
|
static int max_component_diff(const uint16_t *colorA, const uint16_t *colorB)
|
|
{
|
|
int diff, max = 0;
|
|
|
|
diff = FFABS(R(colorA[0]) - R(colorB[0]));
|
|
if (diff > max) {
|
|
max = diff;
|
|
}
|
|
diff = FFABS(G(colorA[0]) - G(colorB[0]));
|
|
if (diff > max) {
|
|
max = diff;
|
|
}
|
|
diff = FFABS(B(colorA[0]) - B(colorB[0]));
|
|
if (diff > max) {
|
|
max = diff;
|
|
}
|
|
return max;
|
|
}
|
|
|
|
/*
|
|
* Find the channel that has the largest difference between minimum and maximum
|
|
* color values. Put the minimum value in min, maximum in max and the channel
|
|
* in chan.
|
|
*/
|
|
static void get_max_component_diff(const BlockInfo *bi, const uint16_t *block_ptr,
|
|
uint8_t *min, uint8_t *max, channel_offset *chan)
|
|
{
|
|
int x, y;
|
|
uint8_t min_r, max_r, min_g, max_g, min_b, max_b;
|
|
uint8_t r, g, b;
|
|
|
|
// fix warning about uninitialized vars
|
|
min_r = min_g = min_b = UINT8_MAX;
|
|
max_r = max_g = max_b = 0;
|
|
|
|
// loop thru and compare pixels
|
|
for (y = 0; y < bi->block_height; y++) {
|
|
for (x = 0; x < bi->block_width; x++) {
|
|
// TODO: optimize
|
|
min_r = FFMIN(R(block_ptr[x]), min_r);
|
|
min_g = FFMIN(G(block_ptr[x]), min_g);
|
|
min_b = FFMIN(B(block_ptr[x]), min_b);
|
|
|
|
max_r = FFMAX(R(block_ptr[x]), max_r);
|
|
max_g = FFMAX(G(block_ptr[x]), max_g);
|
|
max_b = FFMAX(B(block_ptr[x]), max_b);
|
|
}
|
|
block_ptr += bi->rowstride;
|
|
}
|
|
|
|
r = max_r - min_r;
|
|
g = max_g - min_g;
|
|
b = max_b - min_b;
|
|
|
|
if (r > g && r > b) {
|
|
*max = max_r;
|
|
*min = min_r;
|
|
*chan = RED;
|
|
} else if (g > b && g >= r) {
|
|
*max = max_g;
|
|
*min = min_g;
|
|
*chan = GREEN;
|
|
} else {
|
|
*max = max_b;
|
|
*min = min_b;
|
|
*chan = BLUE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compare two 4x4 blocks to determine if the total difference between the
|
|
* blocks is greater than the thresh parameter. Returns -1 if difference
|
|
* exceeds threshold or zero otherwise.
|
|
*/
|
|
static int compare_blocks(const uint16_t *block1, const uint16_t *block2,
|
|
const BlockInfo *bi, int thresh)
|
|
{
|
|
int x, y, diff = 0;
|
|
for (y = 0; y < bi->block_height; y++) {
|
|
for (x = 0; x < bi->block_width; x++) {
|
|
diff = max_component_diff(&block1[x], &block2[x]);
|
|
if (diff >= thresh) {
|
|
return -1;
|
|
}
|
|
}
|
|
block1 += bi->prev_rowstride;
|
|
block2 += bi->rowstride;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine the fit of one channel to another within a 4x4 block. This
|
|
* is used to determine the best palette choices for 4-color encoding.
|
|
*/
|
|
static int leastsquares(const uint16_t *block_ptr, const BlockInfo *bi,
|
|
channel_offset xchannel, channel_offset ychannel,
|
|
int *slope, int *y_intercept, int *correlation_coef)
|
|
{
|
|
int sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0,
|
|
sumx_sq = 0, sumy_sq = 0, tmp, tmp2;
|
|
int i, j, count;
|
|
uint8_t x, y;
|
|
|
|
count = bi->block_height * bi->block_width;
|
|
|
|
if (count < 2)
|
|
return -1;
|
|
|
|
for (i = 0; i < bi->block_height; i++) {
|
|
for (j = 0; j < bi->block_width; j++) {
|
|
x = GET_CHAN(block_ptr[j], xchannel);
|
|
y = GET_CHAN(block_ptr[j], ychannel);
|
|
sumx += x;
|
|
sumy += y;
|
|
sumx2 += x * x;
|
|
sumy2 += y * y;
|
|
sumxy += x * y;
|
|
}
|
|
block_ptr += bi->rowstride;
|
|
}
|
|
|
|
sumx_sq = sumx * sumx;
|
|
tmp = (count * sumx2 - sumx_sq);
|
|
|
|
// guard against div/0
|
|
if (tmp == 0)
|
|
return -2;
|
|
|
|
sumy_sq = sumy * sumy;
|
|
|
|
*slope = (sumx * sumy - sumxy) / tmp;
|
|
*y_intercept = (sumy - (*slope) * sumx) / count;
|
|
|
|
tmp2 = count * sumy2 - sumy_sq;
|
|
if (tmp2 == 0) {
|
|
*correlation_coef = 0;
|
|
} else {
|
|
*correlation_coef = (count * sumxy - sumx * sumy) /
|
|
ff_sqrt((unsigned)tmp * tmp2);
|
|
}
|
|
|
|
return 0; // success
|
|
}
|
|
|
|
/*
|
|
* Determine the amount of error in the leastsquares fit.
|
|
*/
|
|
static int calc_lsq_max_fit_error(const uint16_t *block_ptr, const BlockInfo *bi,
|
|
int min, int max, int tmp_min, int tmp_max,
|
|
channel_offset xchannel, channel_offset ychannel)
|
|
{
|
|
int i, j, x, y;
|
|
int err;
|
|
int max_err = 0;
|
|
|
|
for (i = 0; i < bi->block_height; i++) {
|
|
for (j = 0; j < bi->block_width; j++) {
|
|
int x_inc, lin_y, lin_x;
|
|
x = GET_CHAN(block_ptr[j], xchannel);
|
|
y = GET_CHAN(block_ptr[j], ychannel);
|
|
|
|
/* calculate x_inc as the 4-color index (0..3) */
|
|
x_inc = (x - min) * 3 / (max - min) + 1;
|
|
x_inc = FFMAX(FFMIN(3, x_inc), 0);
|
|
|
|
/* calculate lin_y corresponding to x_inc */
|
|
lin_y = tmp_min + (tmp_max - tmp_min) * x_inc / 3 + 1;
|
|
|
|
err = FFABS(lin_y - y);
|
|
if (err > max_err)
|
|
max_err = err;
|
|
|
|
/* calculate lin_x corresponding to x_inc */
|
|
lin_x = min + (max - min) * x_inc / 3 + 1;
|
|
|
|
err = FFABS(lin_x - x);
|
|
if (err > max_err)
|
|
max_err += err;
|
|
}
|
|
block_ptr += bi->rowstride;
|
|
}
|
|
|
|
return max_err;
|
|
}
|
|
|
|
/*
|
|
* Find the closest match to a color within the 4-color palette
|
|
*/
|
|
static int match_color(const uint16_t *color, uint8_t colors[4][3])
|
|
{
|
|
int ret = 0;
|
|
int smallest_variance = INT_MAX;
|
|
uint8_t dithered_color[3];
|
|
|
|
for (int channel = 0; channel < 3; channel++) {
|
|
dithered_color[channel] = GET_CHAN(color[0], channel);
|
|
}
|
|
|
|
for (int palette_entry = 0; palette_entry < 4; palette_entry++) {
|
|
int variance = diff_colors(dithered_color, colors[palette_entry]);
|
|
|
|
if (variance < smallest_variance) {
|
|
smallest_variance = variance;
|
|
ret = palette_entry;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Encode a block using the 4-color opcode and palette. return number of
|
|
* blocks encoded (until we implement multi-block 4 color runs this will
|
|
* always be 1)
|
|
*/
|
|
static int encode_four_color_block(const uint8_t *min_color, const uint8_t *max_color,
|
|
PutBitContext *pb, const uint16_t *block_ptr, const BlockInfo *bi)
|
|
{
|
|
const int y_size = FFMIN(4, bi->image_height - bi->row * 4);
|
|
const int x_size = FFMIN(4, bi->image_width - bi->col * 4);
|
|
uint8_t color4[4][3];
|
|
uint16_t rounded_max, rounded_min;
|
|
int idx;
|
|
|
|
// round min and max wider
|
|
rounded_min = rgb24_to_rgb555(min_color);
|
|
rounded_max = rgb24_to_rgb555(max_color);
|
|
|
|
// put a and b colors
|
|
// encode 4 colors = first 16 bit color with MSB zeroed and...
|
|
put_bits(pb, 16, rounded_max & ~0x8000);
|
|
// ...second 16 bit color with MSB on.
|
|
put_bits(pb, 16, rounded_min | 0x8000);
|
|
|
|
get_colors(min_color, max_color, color4);
|
|
|
|
for (int y = 0; y < y_size; y++) {
|
|
for (int x = 0; x < x_size; x++) {
|
|
idx = match_color(&block_ptr[x], color4);
|
|
put_bits(pb, 2, idx);
|
|
}
|
|
|
|
for (int x = x_size; x < 4; x++)
|
|
put_bits(pb, 2, idx);
|
|
block_ptr += bi->rowstride;
|
|
}
|
|
|
|
for (int y = y_size; y < 4; y++) {
|
|
for (int x = 0; x < 4; x++)
|
|
put_bits(pb, 2, 0);
|
|
}
|
|
return 1; // num blocks encoded
|
|
}
|
|
|
|
/*
|
|
* Copy a 4x4 block from the current frame buffer to the previous frame buffer.
|
|
*/
|
|
static void update_block_in_prev_frame(const uint16_t *src_pixels,
|
|
uint16_t *dest_pixels,
|
|
const BlockInfo *bi, int block_counter)
|
|
{
|
|
const int y_size = FFMIN(4, bi->image_height - bi->row * 4);
|
|
const int x_size = FFMIN(4, bi->image_width - bi->col * 4) * 2;
|
|
|
|
for (int y = 0; y < y_size; y++) {
|
|
memcpy(dest_pixels, src_pixels, x_size);
|
|
dest_pixels += bi->prev_rowstride;
|
|
src_pixels += bi->rowstride;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* update statistics for the specified block. If first_block,
|
|
* it initializes the statistics. Otherwise it updates the statistics IF THIS
|
|
* BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether
|
|
* the range of colors (since the routine was called first_block != 0) are
|
|
* all close enough intensities to be represented by a single color.
|
|
|
|
* The routine returns 0 if this block is too different to be part of
|
|
* the same run of 1-color blocks. The routine returns 1 if this
|
|
* block can be part of the same 1-color block run.
|
|
|
|
* If the routine returns 1, it also updates its arguments to include
|
|
* the statistics of this block. Otherwise, the stats are unchanged
|
|
* and don't include the current block.
|
|
*/
|
|
static int update_block_stats(RpzaContext *s, const BlockInfo *bi, const uint16_t *block,
|
|
uint8_t min_color[3], uint8_t max_color[3],
|
|
int *total_rgb, int *total_pixels,
|
|
uint8_t avg_color[3], int first_block)
|
|
{
|
|
int x, y;
|
|
int is_in_range;
|
|
int total_pixels_blk;
|
|
int threshold;
|
|
|
|
uint8_t min_color_blk[3], max_color_blk[3];
|
|
int total_rgb_blk[3];
|
|
uint8_t avg_color_blk[3];
|
|
|
|
if (first_block) {
|
|
min_color[0] = UINT8_MAX;
|
|
min_color[1] = UINT8_MAX;
|
|
min_color[2] = UINT8_MAX;
|
|
max_color[0] = 0;
|
|
max_color[1] = 0;
|
|
max_color[2] = 0;
|
|
total_rgb[0] = 0;
|
|
total_rgb[1] = 0;
|
|
total_rgb[2] = 0;
|
|
*total_pixels = 0;
|
|
threshold = s->start_one_color_thresh;
|
|
} else {
|
|
threshold = s->continue_one_color_thresh;
|
|
}
|
|
|
|
/*
|
|
The *_blk variables will include the current block.
|
|
Initialize them based on the blocks so far.
|
|
*/
|
|
min_color_blk[0] = min_color[0];
|
|
min_color_blk[1] = min_color[1];
|
|
min_color_blk[2] = min_color[2];
|
|
max_color_blk[0] = max_color[0];
|
|
max_color_blk[1] = max_color[1];
|
|
max_color_blk[2] = max_color[2];
|
|
total_rgb_blk[0] = total_rgb[0];
|
|
total_rgb_blk[1] = total_rgb[1];
|
|
total_rgb_blk[2] = total_rgb[2];
|
|
total_pixels_blk = *total_pixels + bi->block_height * bi->block_width;
|
|
|
|
/*
|
|
Update stats for this block's pixels
|
|
*/
|
|
for (y = 0; y < bi->block_height; y++) {
|
|
for (x = 0; x < bi->block_width; x++) {
|
|
total_rgb_blk[0] += R(block[x]);
|
|
total_rgb_blk[1] += G(block[x]);
|
|
total_rgb_blk[2] += B(block[x]);
|
|
|
|
min_color_blk[0] = FFMIN(R(block[x]), min_color_blk[0]);
|
|
min_color_blk[1] = FFMIN(G(block[x]), min_color_blk[1]);
|
|
min_color_blk[2] = FFMIN(B(block[x]), min_color_blk[2]);
|
|
|
|
max_color_blk[0] = FFMAX(R(block[x]), max_color_blk[0]);
|
|
max_color_blk[1] = FFMAX(G(block[x]), max_color_blk[1]);
|
|
max_color_blk[2] = FFMAX(B(block[x]), max_color_blk[2]);
|
|
}
|
|
block += bi->rowstride;
|
|
}
|
|
|
|
/*
|
|
Calculate average color including current block.
|
|
*/
|
|
avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk;
|
|
avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk;
|
|
avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk;
|
|
|
|
/*
|
|
Are all the pixels within threshold of the average color?
|
|
*/
|
|
is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold &&
|
|
max_color_blk[1] - avg_color_blk[1] <= threshold &&
|
|
max_color_blk[2] - avg_color_blk[2] <= threshold &&
|
|
avg_color_blk[0] - min_color_blk[0] <= threshold &&
|
|
avg_color_blk[1] - min_color_blk[1] <= threshold &&
|
|
avg_color_blk[2] - min_color_blk[2] <= threshold);
|
|
|
|
if (is_in_range) {
|
|
/*
|
|
Set the output variables to include this block.
|
|
*/
|
|
min_color[0] = min_color_blk[0];
|
|
min_color[1] = min_color_blk[1];
|
|
min_color[2] = min_color_blk[2];
|
|
max_color[0] = max_color_blk[0];
|
|
max_color[1] = max_color_blk[1];
|
|
max_color[2] = max_color_blk[2];
|
|
total_rgb[0] = total_rgb_blk[0];
|
|
total_rgb[1] = total_rgb_blk[1];
|
|
total_rgb[2] = total_rgb_blk[2];
|
|
*total_pixels = total_pixels_blk;
|
|
avg_color[0] = avg_color_blk[0];
|
|
avg_color[1] = avg_color_blk[1];
|
|
avg_color[2] = avg_color_blk[2];
|
|
}
|
|
|
|
return is_in_range;
|
|
}
|
|
|
|
static void rpza_encode_stream(RpzaContext *s, const AVFrame *pict)
|
|
{
|
|
BlockInfo bi;
|
|
int block_counter = 0;
|
|
int n_blocks;
|
|
int total_blocks;
|
|
int prev_block_offset;
|
|
int block_offset = 0;
|
|
int pblock_offset = 0;
|
|
uint8_t min = 0, max = 0;
|
|
channel_offset chan;
|
|
int i;
|
|
int tmp_min, tmp_max;
|
|
int total_rgb[3];
|
|
uint8_t avg_color[3];
|
|
int pixel_count;
|
|
uint8_t min_color[3], max_color[3];
|
|
int slope, y_intercept, correlation_coef;
|
|
const uint16_t *src_pixels = (const uint16_t *)pict->data[0];
|
|
uint16_t *prev_pixels = (uint16_t *)s->prev_frame->data[0];
|
|
|
|
/* Number of 4x4 blocks in frame. */
|
|
total_blocks = ((s->frame_width + 3) / 4) * ((s->frame_height + 3) / 4);
|
|
|
|
bi.image_width = s->frame_width;
|
|
bi.image_height = s->frame_height;
|
|
bi.rowstride = pict->linesize[0] / 2;
|
|
bi.prev_rowstride = s->prev_frame->linesize[0] / 2;
|
|
|
|
bi.blocks_per_row = (s->frame_width + 3) / 4;
|
|
|
|
while (block_counter < total_blocks) {
|
|
// SKIP CHECK
|
|
// make sure we have a valid previous frame and we're not writing
|
|
// a key frame
|
|
if (!s->first_frame) {
|
|
n_blocks = 0;
|
|
prev_block_offset = 0;
|
|
|
|
while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
|
|
block_offset = get_block_info(&bi, block_counter + n_blocks, 0);
|
|
pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1);
|
|
|
|
// multi-block opcodes cannot span multiple rows.
|
|
// If we're starting a new row, break out and write the opcode
|
|
/* TODO: Should eventually use bi.row here to determine when a
|
|
row break occurs, but that is currently breaking the
|
|
quicktime player. This is probably due to a bug in the
|
|
way I'm calculating the current row.
|
|
*/
|
|
if (prev_block_offset && block_offset - prev_block_offset > 12) {
|
|
break;
|
|
}
|
|
|
|
prev_block_offset = block_offset;
|
|
|
|
if (compare_blocks(&prev_pixels[pblock_offset],
|
|
&src_pixels[block_offset], &bi, s->skip_frame_thresh) != 0) {
|
|
// write out skipable blocks
|
|
if (n_blocks) {
|
|
|
|
// write skip opcode
|
|
put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
|
|
block_counter += n_blocks;
|
|
|
|
goto post_skip;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* NOTE: we don't update skipped blocks in the previous frame buffer
|
|
* since skipped needs always to be compared against the first skipped
|
|
* block to avoid artifacts during gradual fade in/outs.
|
|
*/
|
|
|
|
// update_block_in_prev_frame(&src_pixels[block_offset],
|
|
// &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
|
|
|
|
n_blocks++;
|
|
}
|
|
|
|
// we're either at the end of the frame or we've reached the maximum
|
|
// of 32 blocks in a run. Write out the run.
|
|
if (n_blocks) {
|
|
// write skip opcode
|
|
put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
|
|
block_counter += n_blocks;
|
|
|
|
continue;
|
|
}
|
|
|
|
} else {
|
|
block_offset = get_block_info(&bi, block_counter, 0);
|
|
pblock_offset = get_block_info(&bi, block_counter, 1);
|
|
}
|
|
post_skip :
|
|
|
|
// ONE COLOR CHECK
|
|
if (update_block_stats(s, &bi, &src_pixels[block_offset],
|
|
min_color, max_color,
|
|
total_rgb, &pixel_count, avg_color, 1)) {
|
|
prev_block_offset = block_offset;
|
|
|
|
n_blocks = 1;
|
|
|
|
/* update this block in the previous frame buffer */
|
|
update_block_in_prev_frame(&src_pixels[block_offset],
|
|
&prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
|
|
|
|
// check for subsequent blocks with the same color
|
|
while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
|
|
block_offset = get_block_info(&bi, block_counter + n_blocks, 0);
|
|
pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1);
|
|
|
|
// multi-block opcodes cannot span multiple rows.
|
|
// If we've hit end of a row, break out and write the opcode
|
|
if (block_offset - prev_block_offset > 12) {
|
|
break;
|
|
}
|
|
|
|
if (!update_block_stats(s, &bi, &src_pixels[block_offset],
|
|
min_color, max_color,
|
|
total_rgb, &pixel_count, avg_color, 0)) {
|
|
break;
|
|
}
|
|
|
|
prev_block_offset = block_offset;
|
|
|
|
/* update this block in the previous frame buffer */
|
|
update_block_in_prev_frame(&src_pixels[block_offset],
|
|
&prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
|
|
|
|
n_blocks++;
|
|
}
|
|
|
|
// write one color opcode.
|
|
put_bits(&s->pb, 8, 0xa0 | (n_blocks - 1));
|
|
// write color to encode.
|
|
put_bits(&s->pb, 16, rgb24_to_rgb555(avg_color));
|
|
// skip past the blocks we've just encoded.
|
|
block_counter += n_blocks;
|
|
} else { // FOUR COLOR CHECK
|
|
int err = 0;
|
|
|
|
// get max component diff for block
|
|
get_max_component_diff(&bi, &src_pixels[block_offset], &min, &max, &chan);
|
|
|
|
min_color[0] = 0;
|
|
max_color[0] = 0;
|
|
min_color[1] = 0;
|
|
max_color[1] = 0;
|
|
min_color[2] = 0;
|
|
max_color[2] = 0;
|
|
|
|
// run least squares against other two components
|
|
for (i = 0; i < 3; i++) {
|
|
if (i == chan) {
|
|
min_color[i] = min;
|
|
max_color[i] = max;
|
|
continue;
|
|
}
|
|
|
|
slope = y_intercept = correlation_coef = 0;
|
|
|
|
if (leastsquares(&src_pixels[block_offset], &bi, chan, i,
|
|
&slope, &y_intercept, &correlation_coef)) {
|
|
min_color[i] = GET_CHAN(src_pixels[block_offset], i);
|
|
max_color[i] = GET_CHAN(src_pixels[block_offset], i);
|
|
} else {
|
|
tmp_min = 1 + min * slope + y_intercept;
|
|
tmp_max = 1 + max * slope + y_intercept;
|
|
|
|
av_assert0(tmp_min <= tmp_max);
|
|
// clamp min and max color values
|
|
tmp_min = av_clip_uint8(tmp_min);
|
|
tmp_max = av_clip_uint8(tmp_max);
|
|
|
|
err = FFMAX(calc_lsq_max_fit_error(&src_pixels[block_offset], &bi,
|
|
min, max, tmp_min, tmp_max, chan, i), err);
|
|
|
|
min_color[i] = tmp_min;
|
|
max_color[i] = tmp_max;
|
|
}
|
|
}
|
|
|
|
if (err > s->sixteen_color_thresh) { // DO SIXTEEN COLOR BLOCK
|
|
const uint16_t *row_ptr;
|
|
int y_size, rgb555;
|
|
|
|
block_offset = get_block_info(&bi, block_counter, 0);
|
|
pblock_offset = get_block_info(&bi, block_counter, 1);
|
|
|
|
row_ptr = &src_pixels[block_offset];
|
|
y_size = FFMIN(4, bi.image_height - bi.row * 4);
|
|
|
|
for (int y = 0; y < y_size; y++) {
|
|
for (int x = 0; x < 4; x++) {
|
|
rgb555 = row_ptr[x] & ~0x8000;
|
|
|
|
put_bits(&s->pb, 16, rgb555);
|
|
}
|
|
row_ptr += bi.rowstride;
|
|
}
|
|
|
|
for (int y = y_size; y < 4; y++) {
|
|
for (int x = 0; x < 4; x++)
|
|
put_bits(&s->pb, 16, 0);
|
|
}
|
|
|
|
block_counter++;
|
|
} else { // FOUR COLOR BLOCK
|
|
block_counter += encode_four_color_block(min_color, max_color,
|
|
&s->pb, &src_pixels[block_offset], &bi);
|
|
}
|
|
|
|
/* update this block in the previous frame buffer */
|
|
update_block_in_prev_frame(&src_pixels[block_offset],
|
|
&prev_pixels[pblock_offset], &bi, block_counter);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int rpza_encode_init(AVCodecContext *avctx)
|
|
{
|
|
RpzaContext *s = avctx->priv_data;
|
|
|
|
s->frame_width = avctx->width;
|
|
s->frame_height = avctx->height;
|
|
|
|
s->prev_frame = av_frame_alloc();
|
|
if (!s->prev_frame)
|
|
return AVERROR(ENOMEM);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rpza_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
|
|
const AVFrame *pict, int *got_packet)
|
|
{
|
|
RpzaContext *s = avctx->priv_data;
|
|
uint8_t *buf;
|
|
int ret = ff_alloc_packet(avctx, pkt, 4LL + 6LL * FFMAX(avctx->height, 4) * FFMAX(avctx->width, 4));
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
init_put_bits(&s->pb, pkt->data, pkt->size);
|
|
|
|
// skip 4 byte header, write it later once the size of the chunk is known
|
|
put_bits32(&s->pb, 0x00);
|
|
|
|
if (!s->prev_frame->data[0]) {
|
|
s->first_frame = 1;
|
|
s->prev_frame->format = pict->format;
|
|
s->prev_frame->width = pict->width;
|
|
s->prev_frame->height = pict->height;
|
|
ret = av_frame_get_buffer(s->prev_frame, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else {
|
|
s->first_frame = 0;
|
|
}
|
|
|
|
rpza_encode_stream(s, pict);
|
|
|
|
flush_put_bits(&s->pb);
|
|
|
|
av_shrink_packet(pkt, put_bytes_output(&s->pb));
|
|
buf = pkt->data;
|
|
|
|
// write header opcode
|
|
buf[0] = 0xe1; // chunk opcode
|
|
|
|
// write chunk length
|
|
AV_WB24(buf + 1, pkt->size);
|
|
|
|
*got_packet = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rpza_encode_end(AVCodecContext *avctx)
|
|
{
|
|
RpzaContext *s = (RpzaContext *)avctx->priv_data;
|
|
|
|
av_frame_free(&s->prev_frame);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define OFFSET(x) offsetof(RpzaContext, x)
|
|
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
|
|
static const AVOption options[] = {
|
|
{ "skip_frame_thresh", NULL, OFFSET(skip_frame_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
|
|
{ "start_one_color_thresh", NULL, OFFSET(start_one_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
|
|
{ "continue_one_color_thresh", NULL, OFFSET(continue_one_color_thresh), AV_OPT_TYPE_INT, {.i64=0}, 0, 24, VE},
|
|
{ "sixteen_color_thresh", NULL, OFFSET(sixteen_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
|
|
{ NULL },
|
|
};
|
|
|
|
static const AVClass rpza_class = {
|
|
.class_name = "rpza",
|
|
.item_name = av_default_item_name,
|
|
.option = options,
|
|
.version = LIBAVUTIL_VERSION_INT,
|
|
};
|
|
|
|
const FFCodec ff_rpza_encoder = {
|
|
.p.name = "rpza",
|
|
CODEC_LONG_NAME("QuickTime video (RPZA)"),
|
|
.p.type = AVMEDIA_TYPE_VIDEO,
|
|
.p.id = AV_CODEC_ID_RPZA,
|
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
|
|
.priv_data_size = sizeof(RpzaContext),
|
|
.p.priv_class = &rpza_class,
|
|
.init = rpza_encode_init,
|
|
FF_CODEC_ENCODE_CB(rpza_encode_frame),
|
|
.close = rpza_encode_end,
|
|
.p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB555,
|
|
AV_PIX_FMT_NONE},
|
|
};
|