mirror of https://git.ffmpeg.org/ffmpeg.git
1077 lines
34 KiB
C
1077 lines
34 KiB
C
/*
|
|
* Atrac 3 compatible decoder
|
|
* Copyright (c) 2006-2008 Maxim Poliakovski
|
|
* Copyright (c) 2006-2008 Benjamin Larsson
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Atrac 3 compatible decoder.
|
|
* This decoder handles Sony's ATRAC3 data.
|
|
*
|
|
* Container formats used to store atrac 3 data:
|
|
* RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
|
|
*
|
|
* To use this decoder, a calling application must supply the extradata
|
|
* bytes provided in the containers above.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
|
|
#include "avcodec.h"
|
|
#include "get_bits.h"
|
|
#include "dsputil.h"
|
|
#include "bytestream.h"
|
|
#include "fft.h"
|
|
#include "fmtconvert.h"
|
|
|
|
#include "atrac.h"
|
|
#include "atrac3data.h"
|
|
|
|
#define JOINT_STEREO 0x12
|
|
#define STEREO 0x2
|
|
|
|
#define SAMPLES_PER_FRAME 1024
|
|
#define MDCT_SIZE 512
|
|
|
|
/* These structures are needed to store the parsed gain control data. */
|
|
typedef struct {
|
|
int num_gain_data;
|
|
int levcode[8];
|
|
int loccode[8];
|
|
} gain_info;
|
|
|
|
typedef struct {
|
|
gain_info gBlock[4];
|
|
} gain_block;
|
|
|
|
typedef struct {
|
|
int pos;
|
|
int numCoefs;
|
|
float coef[8];
|
|
} tonal_component;
|
|
|
|
typedef struct {
|
|
int bandsCoded;
|
|
int numComponents;
|
|
tonal_component components[64];
|
|
float prevFrame[SAMPLES_PER_FRAME];
|
|
int gcBlkSwitch;
|
|
gain_block gainBlock[2];
|
|
|
|
DECLARE_ALIGNED(32, float, spectrum)[SAMPLES_PER_FRAME];
|
|
DECLARE_ALIGNED(32, float, IMDCT_buf)[SAMPLES_PER_FRAME];
|
|
|
|
float delayBuf1[46]; ///<qmf delay buffers
|
|
float delayBuf2[46];
|
|
float delayBuf3[46];
|
|
} channel_unit;
|
|
|
|
typedef struct {
|
|
AVFrame frame;
|
|
GetBitContext gb;
|
|
//@{
|
|
/** stream data */
|
|
int channels;
|
|
int codingMode;
|
|
int bit_rate;
|
|
int sample_rate;
|
|
int samples_per_channel;
|
|
int samples_per_frame;
|
|
|
|
int bits_per_frame;
|
|
int bytes_per_frame;
|
|
int pBs;
|
|
channel_unit* pUnits;
|
|
//@}
|
|
//@{
|
|
/** joint-stereo related variables */
|
|
int matrix_coeff_index_prev[4];
|
|
int matrix_coeff_index_now[4];
|
|
int matrix_coeff_index_next[4];
|
|
int weighting_delay[6];
|
|
//@}
|
|
//@{
|
|
/** data buffers */
|
|
float *outSamples[2];
|
|
uint8_t* decoded_bytes_buffer;
|
|
float tempBuf[1070];
|
|
//@}
|
|
//@{
|
|
/** extradata */
|
|
int atrac3version;
|
|
int delay;
|
|
int scrambled_stream;
|
|
int frame_factor;
|
|
//@}
|
|
|
|
FFTContext mdct_ctx;
|
|
FmtConvertContext fmt_conv;
|
|
} ATRAC3Context;
|
|
|
|
static DECLARE_ALIGNED(32, float, mdct_window)[MDCT_SIZE];
|
|
static VLC spectral_coeff_tab[7];
|
|
static float gain_tab1[16];
|
|
static float gain_tab2[31];
|
|
static DSPContext dsp;
|
|
|
|
|
|
/**
|
|
* Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
|
|
* caused by the reverse spectra of the QMF.
|
|
*
|
|
* @param pInput float input
|
|
* @param pOutput float output
|
|
* @param odd_band 1 if the band is an odd band
|
|
*/
|
|
|
|
static void IMLT(ATRAC3Context *q, float *pInput, float *pOutput, int odd_band)
|
|
{
|
|
int i;
|
|
|
|
if (odd_band) {
|
|
/**
|
|
* Reverse the odd bands before IMDCT, this is an effect of the QMF transform
|
|
* or it gives better compression to do it this way.
|
|
* FIXME: It should be possible to handle this in imdct_calc
|
|
* for that to happen a modification of the prerotation step of
|
|
* all SIMD code and C code is needed.
|
|
* Or fix the functions before so they generate a pre reversed spectrum.
|
|
*/
|
|
|
|
for (i=0; i<128; i++)
|
|
FFSWAP(float, pInput[i], pInput[255-i]);
|
|
}
|
|
|
|
q->mdct_ctx.imdct_calc(&q->mdct_ctx,pOutput,pInput);
|
|
|
|
/* Perform windowing on the output. */
|
|
dsp.vector_fmul(pOutput, pOutput, mdct_window, MDCT_SIZE);
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* Atrac 3 indata descrambling, only used for data coming from the rm container
|
|
*
|
|
* @param inbuffer pointer to 8 bit array of indata
|
|
* @param out pointer to 8 bit array of outdata
|
|
* @param bytes amount of bytes
|
|
*/
|
|
|
|
static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
|
|
int i, off;
|
|
uint32_t c;
|
|
const uint32_t* buf;
|
|
uint32_t* obuf = (uint32_t*) out;
|
|
|
|
off = (intptr_t)inbuffer & 3;
|
|
buf = (const uint32_t*) (inbuffer - off);
|
|
c = av_be2ne32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
|
|
bytes += 3 + off;
|
|
for (i = 0; i < bytes/4; i++)
|
|
obuf[i] = c ^ buf[i];
|
|
|
|
if (off)
|
|
av_log_ask_for_sample(NULL, "Offset of %d not handled.\n", off);
|
|
|
|
return off;
|
|
}
|
|
|
|
|
|
static av_cold int init_atrac3_transforms(ATRAC3Context *q, int is_float) {
|
|
float enc_window[256];
|
|
int i;
|
|
|
|
/* Generate the mdct window, for details see
|
|
* http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
|
|
for (i=0 ; i<256; i++)
|
|
enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5;
|
|
|
|
if (!mdct_window[0])
|
|
for (i=0 ; i<256; i++) {
|
|
mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]);
|
|
mdct_window[511-i] = mdct_window[i];
|
|
}
|
|
|
|
/* Initialize the MDCT transform. */
|
|
return ff_mdct_init(&q->mdct_ctx, 9, 1, is_float ? 1.0 / 32768 : 1.0);
|
|
}
|
|
|
|
/**
|
|
* Atrac3 uninit, free all allocated memory
|
|
*/
|
|
|
|
static av_cold int atrac3_decode_close(AVCodecContext *avctx)
|
|
{
|
|
ATRAC3Context *q = avctx->priv_data;
|
|
|
|
av_free(q->pUnits);
|
|
av_free(q->decoded_bytes_buffer);
|
|
av_freep(&q->outSamples[0]);
|
|
|
|
ff_mdct_end(&q->mdct_ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
/ * Mantissa decoding
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param selector what table is the output values coded with
|
|
* @param codingFlag constant length coding or variable length coding
|
|
* @param mantissas mantissa output table
|
|
* @param numCodes amount of values to get
|
|
*/
|
|
|
|
static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
|
|
{
|
|
int numBits, cnt, code, huffSymb;
|
|
|
|
if (selector == 1)
|
|
numCodes /= 2;
|
|
|
|
if (codingFlag != 0) {
|
|
/* constant length coding (CLC) */
|
|
numBits = CLCLengthTab[selector];
|
|
|
|
if (selector > 1) {
|
|
for (cnt = 0; cnt < numCodes; cnt++) {
|
|
if (numBits)
|
|
code = get_sbits(gb, numBits);
|
|
else
|
|
code = 0;
|
|
mantissas[cnt] = code;
|
|
}
|
|
} else {
|
|
for (cnt = 0; cnt < numCodes; cnt++) {
|
|
if (numBits)
|
|
code = get_bits(gb, numBits); //numBits is always 4 in this case
|
|
else
|
|
code = 0;
|
|
mantissas[cnt*2] = seTab_0[code >> 2];
|
|
mantissas[cnt*2+1] = seTab_0[code & 3];
|
|
}
|
|
}
|
|
} else {
|
|
/* variable length coding (VLC) */
|
|
if (selector != 1) {
|
|
for (cnt = 0; cnt < numCodes; cnt++) {
|
|
huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
|
|
huffSymb += 1;
|
|
code = huffSymb >> 1;
|
|
if (huffSymb & 1)
|
|
code = -code;
|
|
mantissas[cnt] = code;
|
|
}
|
|
} else {
|
|
for (cnt = 0; cnt < numCodes; cnt++) {
|
|
huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
|
|
mantissas[cnt*2] = decTable1[huffSymb*2];
|
|
mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Restore the quantized band spectrum coefficients
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param pOut decoded band spectrum
|
|
* @return outSubbands subband counter, fix for broken specification/files
|
|
*/
|
|
|
|
static int decodeSpectrum (GetBitContext *gb, float *pOut)
|
|
{
|
|
int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
|
|
int subband_vlc_index[32], SF_idxs[32];
|
|
int mantissas[128];
|
|
float SF;
|
|
|
|
numSubbands = get_bits(gb, 5); // number of coded subbands
|
|
codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
|
|
|
|
/* Get the VLC selector table for the subbands, 0 means not coded. */
|
|
for (cnt = 0; cnt <= numSubbands; cnt++)
|
|
subband_vlc_index[cnt] = get_bits(gb, 3);
|
|
|
|
/* Read the scale factor indexes from the stream. */
|
|
for (cnt = 0; cnt <= numSubbands; cnt++) {
|
|
if (subband_vlc_index[cnt] != 0)
|
|
SF_idxs[cnt] = get_bits(gb, 6);
|
|
}
|
|
|
|
for (cnt = 0; cnt <= numSubbands; cnt++) {
|
|
first = subbandTab[cnt];
|
|
last = subbandTab[cnt+1];
|
|
|
|
subbWidth = last - first;
|
|
|
|
if (subband_vlc_index[cnt] != 0) {
|
|
/* Decode spectral coefficients for this subband. */
|
|
/* TODO: This can be done faster is several blocks share the
|
|
* same VLC selector (subband_vlc_index) */
|
|
readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
|
|
|
|
/* Decode the scale factor for this subband. */
|
|
SF = ff_atrac_sf_table[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]];
|
|
|
|
/* Inverse quantize the coefficients. */
|
|
for (pIn=mantissas ; first<last; first++, pIn++)
|
|
pOut[first] = *pIn * SF;
|
|
} else {
|
|
/* This subband was not coded, so zero the entire subband. */
|
|
memset(pOut+first, 0, subbWidth*sizeof(float));
|
|
}
|
|
}
|
|
|
|
/* Clear the subbands that were not coded. */
|
|
first = subbandTab[cnt];
|
|
memset(pOut+first, 0, (SAMPLES_PER_FRAME - first) * sizeof(float));
|
|
return numSubbands;
|
|
}
|
|
|
|
/**
|
|
* Restore the quantized tonal components
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param pComponent tone component
|
|
* @param numBands amount of coded bands
|
|
*/
|
|
|
|
static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
|
|
{
|
|
int i,j,k,cnt;
|
|
int components, coding_mode_selector, coding_mode, coded_values_per_component;
|
|
int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
|
|
int band_flags[4], mantissa[8];
|
|
float *pCoef;
|
|
float scalefactor;
|
|
int component_count = 0;
|
|
|
|
components = get_bits(gb,5);
|
|
|
|
/* no tonal components */
|
|
if (components == 0)
|
|
return 0;
|
|
|
|
coding_mode_selector = get_bits(gb,2);
|
|
if (coding_mode_selector == 2)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
coding_mode = coding_mode_selector & 1;
|
|
|
|
for (i = 0; i < components; i++) {
|
|
for (cnt = 0; cnt <= numBands; cnt++)
|
|
band_flags[cnt] = get_bits1(gb);
|
|
|
|
coded_values_per_component = get_bits(gb,3);
|
|
|
|
quant_step_index = get_bits(gb,3);
|
|
if (quant_step_index <= 1)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if (coding_mode_selector == 3)
|
|
coding_mode = get_bits1(gb);
|
|
|
|
for (j = 0; j < (numBands + 1) * 4; j++) {
|
|
if (band_flags[j >> 2] == 0)
|
|
continue;
|
|
|
|
coded_components = get_bits(gb,3);
|
|
|
|
for (k=0; k<coded_components; k++) {
|
|
sfIndx = get_bits(gb,6);
|
|
pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
|
|
max_coded_values = SAMPLES_PER_FRAME - pComponent[component_count].pos;
|
|
coded_values = coded_values_per_component + 1;
|
|
coded_values = FFMIN(max_coded_values,coded_values);
|
|
|
|
scalefactor = ff_atrac_sf_table[sfIndx] * iMaxQuant[quant_step_index];
|
|
|
|
readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
|
|
|
|
pComponent[component_count].numCoefs = coded_values;
|
|
|
|
/* inverse quant */
|
|
pCoef = pComponent[component_count].coef;
|
|
for (cnt = 0; cnt < coded_values; cnt++)
|
|
pCoef[cnt] = mantissa[cnt] * scalefactor;
|
|
|
|
component_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return component_count;
|
|
}
|
|
|
|
/**
|
|
* Decode gain parameters for the coded bands
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param pGb the gainblock for the current band
|
|
* @param numBands amount of coded bands
|
|
*/
|
|
|
|
static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
|
|
{
|
|
int i, cf, numData;
|
|
int *pLevel, *pLoc;
|
|
|
|
gain_info *pGain = pGb->gBlock;
|
|
|
|
for (i=0 ; i<=numBands; i++)
|
|
{
|
|
numData = get_bits(gb,3);
|
|
pGain[i].num_gain_data = numData;
|
|
pLevel = pGain[i].levcode;
|
|
pLoc = pGain[i].loccode;
|
|
|
|
for (cf = 0; cf < numData; cf++){
|
|
pLevel[cf]= get_bits(gb,4);
|
|
pLoc [cf]= get_bits(gb,5);
|
|
if(cf && pLoc[cf] <= pLoc[cf-1])
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
|
|
/* Clear the unused blocks. */
|
|
for (; i<4 ; i++)
|
|
pGain[i].num_gain_data = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Apply gain parameters and perform the MDCT overlapping part
|
|
*
|
|
* @param pIn input float buffer
|
|
* @param pPrev previous float buffer to perform overlap against
|
|
* @param pOut output float buffer
|
|
* @param pGain1 current band gain info
|
|
* @param pGain2 next band gain info
|
|
*/
|
|
|
|
static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2)
|
|
{
|
|
/* gain compensation function */
|
|
float gain1, gain2, gain_inc;
|
|
int cnt, numdata, nsample, startLoc, endLoc;
|
|
|
|
|
|
if (pGain2->num_gain_data == 0)
|
|
gain1 = 1.0;
|
|
else
|
|
gain1 = gain_tab1[pGain2->levcode[0]];
|
|
|
|
if (pGain1->num_gain_data == 0) {
|
|
for (cnt = 0; cnt < 256; cnt++)
|
|
pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt];
|
|
} else {
|
|
numdata = pGain1->num_gain_data;
|
|
pGain1->loccode[numdata] = 32;
|
|
pGain1->levcode[numdata] = 4;
|
|
|
|
nsample = 0; // current sample = 0
|
|
|
|
for (cnt = 0; cnt < numdata; cnt++) {
|
|
startLoc = pGain1->loccode[cnt] * 8;
|
|
endLoc = startLoc + 8;
|
|
|
|
gain2 = gain_tab1[pGain1->levcode[cnt]];
|
|
gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
|
|
|
|
/* interpolate */
|
|
for (; nsample < startLoc; nsample++)
|
|
pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
|
|
|
|
/* interpolation is done over eight samples */
|
|
for (; nsample < endLoc; nsample++) {
|
|
pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
|
|
gain2 *= gain_inc;
|
|
}
|
|
}
|
|
|
|
for (; nsample < 256; nsample++)
|
|
pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample];
|
|
}
|
|
|
|
/* Delay for the overlapping part. */
|
|
memcpy(pPrev, &pIn[256], 256*sizeof(float));
|
|
}
|
|
|
|
/**
|
|
* Combine the tonal band spectrum and regular band spectrum
|
|
* Return position of the last tonal coefficient
|
|
*
|
|
* @param pSpectrum output spectrum buffer
|
|
* @param numComponents amount of tonal components
|
|
* @param pComponent tonal components for this band
|
|
*/
|
|
|
|
static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent)
|
|
{
|
|
int cnt, i, lastPos = -1;
|
|
float *pIn, *pOut;
|
|
|
|
for (cnt = 0; cnt < numComponents; cnt++){
|
|
lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
|
|
pIn = pComponent[cnt].coef;
|
|
pOut = &(pSpectrum[pComponent[cnt].pos]);
|
|
|
|
for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
|
|
pOut[i] += pIn[i];
|
|
}
|
|
|
|
return lastPos;
|
|
}
|
|
|
|
|
|
#define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old)))
|
|
|
|
static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode)
|
|
{
|
|
int i, band, nsample, s1, s2;
|
|
float c1, c2;
|
|
float mc1_l, mc1_r, mc2_l, mc2_r;
|
|
|
|
for (i=0,band = 0; band < 4*256; band+=256,i++) {
|
|
s1 = pPrevCode[i];
|
|
s2 = pCurrCode[i];
|
|
nsample = 0;
|
|
|
|
if (s1 != s2) {
|
|
/* Selector value changed, interpolation needed. */
|
|
mc1_l = matrixCoeffs[s1*2];
|
|
mc1_r = matrixCoeffs[s1*2+1];
|
|
mc2_l = matrixCoeffs[s2*2];
|
|
mc2_r = matrixCoeffs[s2*2+1];
|
|
|
|
/* Interpolation is done over the first eight samples. */
|
|
for(; nsample < 8; nsample++) {
|
|
c1 = su1[band+nsample];
|
|
c2 = su2[band+nsample];
|
|
c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample);
|
|
su1[band+nsample] = c2;
|
|
su2[band+nsample] = c1 * 2.0 - c2;
|
|
}
|
|
}
|
|
|
|
/* Apply the matrix without interpolation. */
|
|
switch (s2) {
|
|
case 0: /* M/S decoding */
|
|
for (; nsample < 256; nsample++) {
|
|
c1 = su1[band+nsample];
|
|
c2 = su2[band+nsample];
|
|
su1[band+nsample] = c2 * 2.0;
|
|
su2[band+nsample] = (c1 - c2) * 2.0;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
for (; nsample < 256; nsample++) {
|
|
c1 = su1[band+nsample];
|
|
c2 = su2[band+nsample];
|
|
su1[band+nsample] = (c1 + c2) * 2.0;
|
|
su2[band+nsample] = c2 * -2.0;
|
|
}
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
for (; nsample < 256; nsample++) {
|
|
c1 = su1[band+nsample];
|
|
c2 = su2[band+nsample];
|
|
su1[band+nsample] = c1 + c2;
|
|
su2[band+nsample] = c1 - c2;
|
|
}
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void getChannelWeights (int indx, int flag, float ch[2]){
|
|
|
|
if (indx == 7) {
|
|
ch[0] = 1.0;
|
|
ch[1] = 1.0;
|
|
} else {
|
|
ch[0] = (float)(indx & 7) / 7.0;
|
|
ch[1] = sqrt(2 - ch[0]*ch[0]);
|
|
if(flag)
|
|
FFSWAP(float, ch[0], ch[1]);
|
|
}
|
|
}
|
|
|
|
static void channelWeighting (float *su1, float *su2, int *p3)
|
|
{
|
|
int band, nsample;
|
|
/* w[x][y] y=0 is left y=1 is right */
|
|
float w[2][2];
|
|
|
|
if (p3[1] != 7 || p3[3] != 7){
|
|
getChannelWeights(p3[1], p3[0], w[0]);
|
|
getChannelWeights(p3[3], p3[2], w[1]);
|
|
|
|
for(band = 1; band < 4; band++) {
|
|
/* scale the channels by the weights */
|
|
for(nsample = 0; nsample < 8; nsample++) {
|
|
su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample);
|
|
su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample);
|
|
}
|
|
|
|
for(; nsample < 256; nsample++) {
|
|
su1[band*256+nsample] *= w[1][0];
|
|
su2[band*256+nsample] *= w[1][1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode a Sound Unit
|
|
*
|
|
* @param gb the GetBit context
|
|
* @param pSnd the channel unit to be used
|
|
* @param pOut the decoded samples before IQMF in float representation
|
|
* @param channelNum channel number
|
|
* @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono)
|
|
*/
|
|
|
|
|
|
static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode)
|
|
{
|
|
int band, result=0, numSubbands, lastTonal, numBands;
|
|
|
|
if (codingMode == JOINT_STEREO && channelNum == 1) {
|
|
if (get_bits(gb,2) != 3) {
|
|
av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
} else {
|
|
if (get_bits(gb,6) != 0x28) {
|
|
av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
|
|
/* number of coded QMF bands */
|
|
pSnd->bandsCoded = get_bits(gb,2);
|
|
|
|
result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
|
|
if (result) return result;
|
|
|
|
pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
|
|
if (pSnd->numComponents == -1) return -1;
|
|
|
|
numSubbands = decodeSpectrum (gb, pSnd->spectrum);
|
|
|
|
/* Merge the decoded spectrum and tonal components. */
|
|
lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
|
|
|
|
|
|
/* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
|
|
numBands = (subbandTab[numSubbands] - 1) >> 8;
|
|
if (lastTonal >= 0)
|
|
numBands = FFMAX((lastTonal + 256) >> 8, numBands);
|
|
|
|
|
|
/* Reconstruct time domain samples. */
|
|
for (band=0; band<4; band++) {
|
|
/* Perform the IMDCT step without overlapping. */
|
|
if (band <= numBands) {
|
|
IMLT(q, &(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1);
|
|
} else
|
|
memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float));
|
|
|
|
/* gain compensation and overlapping */
|
|
gainCompensateAndOverlap(pSnd->IMDCT_buf, &pSnd->prevFrame[band * 256],
|
|
&pOut[band * 256],
|
|
&pSnd->gainBlock[1 - pSnd->gcBlkSwitch].gBlock[band],
|
|
&pSnd->gainBlock[ pSnd->gcBlkSwitch].gBlock[band]);
|
|
}
|
|
|
|
/* Swap the gain control buffers for the next frame. */
|
|
pSnd->gcBlkSwitch ^= 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Frame handling
|
|
*
|
|
* @param q Atrac3 private context
|
|
* @param databuf the input data
|
|
*/
|
|
|
|
static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf,
|
|
float **out_samples)
|
|
{
|
|
int result, i;
|
|
float *p1, *p2, *p3, *p4;
|
|
uint8_t *ptr1;
|
|
|
|
if (q->codingMode == JOINT_STEREO) {
|
|
|
|
/* channel coupling mode */
|
|
/* decode Sound Unit 1 */
|
|
init_get_bits(&q->gb,databuf,q->bits_per_frame);
|
|
|
|
result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, out_samples[0], 0, JOINT_STEREO);
|
|
if (result != 0)
|
|
return (result);
|
|
|
|
/* Framedata of the su2 in the joint-stereo mode is encoded in
|
|
* reverse byte order so we need to swap it first. */
|
|
if (databuf == q->decoded_bytes_buffer) {
|
|
uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
|
|
ptr1 = q->decoded_bytes_buffer;
|
|
for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
|
|
FFSWAP(uint8_t,*ptr1,*ptr2);
|
|
}
|
|
} else {
|
|
const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
|
|
for (i = 0; i < q->bytes_per_frame; i++)
|
|
q->decoded_bytes_buffer[i] = *ptr2--;
|
|
}
|
|
|
|
/* Skip the sync codes (0xF8). */
|
|
ptr1 = q->decoded_bytes_buffer;
|
|
for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
|
|
if (i >= q->bytes_per_frame)
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
|
|
/* set the bitstream reader at the start of the second Sound Unit*/
|
|
init_get_bits(&q->gb,ptr1,q->bits_per_frame);
|
|
|
|
/* Fill the Weighting coeffs delay buffer */
|
|
memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
|
|
q->weighting_delay[4] = get_bits1(&q->gb);
|
|
q->weighting_delay[5] = get_bits(&q->gb,3);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
|
|
q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
|
|
q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
|
|
}
|
|
|
|
/* Decode Sound Unit 2. */
|
|
result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], out_samples[1], 1, JOINT_STEREO);
|
|
if (result != 0)
|
|
return (result);
|
|
|
|
/* Reconstruct the channel coefficients. */
|
|
reverseMatrixing(out_samples[0], out_samples[1], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
|
|
|
|
channelWeighting(out_samples[0], out_samples[1], q->weighting_delay);
|
|
|
|
} else {
|
|
/* normal stereo mode or mono */
|
|
/* Decode the channel sound units. */
|
|
for (i=0 ; i<q->channels ; i++) {
|
|
|
|
/* Set the bitstream reader at the start of a channel sound unit. */
|
|
init_get_bits(&q->gb,
|
|
databuf + i * q->bytes_per_frame / q->channels,
|
|
q->bits_per_frame / q->channels);
|
|
|
|
result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], out_samples[i], i, q->codingMode);
|
|
if (result != 0)
|
|
return (result);
|
|
}
|
|
}
|
|
|
|
/* Apply the iQMF synthesis filter. */
|
|
for (i=0 ; i<q->channels ; i++) {
|
|
p1 = out_samples[i];
|
|
p2= p1+256;
|
|
p3= p2+256;
|
|
p4= p3+256;
|
|
atrac_iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
|
|
atrac_iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
|
|
atrac_iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Atrac frame decoding
|
|
*
|
|
* @param avctx pointer to the AVCodecContext
|
|
*/
|
|
|
|
static int atrac3_decode_frame(AVCodecContext *avctx, void *data,
|
|
int *got_frame_ptr, AVPacket *avpkt)
|
|
{
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
ATRAC3Context *q = avctx->priv_data;
|
|
int result;
|
|
const uint8_t* databuf;
|
|
float *samples_flt;
|
|
int16_t *samples_s16;
|
|
|
|
if (buf_size < avctx->block_align) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Frame too small (%d bytes). Truncated file?\n", buf_size);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/* get output buffer */
|
|
q->frame.nb_samples = SAMPLES_PER_FRAME;
|
|
if ((result = avctx->get_buffer(avctx, &q->frame)) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
|
return result;
|
|
}
|
|
samples_flt = (float *)q->frame.data[0];
|
|
samples_s16 = (int16_t *)q->frame.data[0];
|
|
|
|
/* Check if we need to descramble and what buffer to pass on. */
|
|
if (q->scrambled_stream) {
|
|
decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
|
|
databuf = q->decoded_bytes_buffer;
|
|
} else {
|
|
databuf = buf;
|
|
}
|
|
|
|
if (q->channels == 1 && avctx->sample_fmt == AV_SAMPLE_FMT_FLT)
|
|
result = decodeFrame(q, databuf, &samples_flt);
|
|
else
|
|
result = decodeFrame(q, databuf, q->outSamples);
|
|
|
|
if (result != 0) {
|
|
av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n");
|
|
return result;
|
|
}
|
|
|
|
/* interleave */
|
|
if (q->channels == 2 && avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
|
|
q->fmt_conv.float_interleave(samples_flt,
|
|
(const float **)q->outSamples,
|
|
SAMPLES_PER_FRAME, 2);
|
|
} else if (avctx->sample_fmt == AV_SAMPLE_FMT_S16) {
|
|
q->fmt_conv.float_to_int16_interleave(samples_s16,
|
|
(const float **)q->outSamples,
|
|
SAMPLES_PER_FRAME, q->channels);
|
|
}
|
|
|
|
*got_frame_ptr = 1;
|
|
*(AVFrame *)data = q->frame;
|
|
|
|
return avctx->block_align;
|
|
}
|
|
|
|
|
|
/**
|
|
* Atrac3 initialization
|
|
*
|
|
* @param avctx pointer to the AVCodecContext
|
|
*/
|
|
|
|
static av_cold int atrac3_decode_init(AVCodecContext *avctx)
|
|
{
|
|
int i, ret;
|
|
const uint8_t *edata_ptr = avctx->extradata;
|
|
ATRAC3Context *q = avctx->priv_data;
|
|
static VLC_TYPE atrac3_vlc_table[4096][2];
|
|
static int vlcs_initialized = 0;
|
|
|
|
/* Take data from the AVCodecContext (RM container). */
|
|
q->sample_rate = avctx->sample_rate;
|
|
q->channels = avctx->channels;
|
|
q->bit_rate = avctx->bit_rate;
|
|
q->bits_per_frame = avctx->block_align * 8;
|
|
q->bytes_per_frame = avctx->block_align;
|
|
|
|
/* Take care of the codec-specific extradata. */
|
|
if (avctx->extradata_size == 14) {
|
|
/* Parse the extradata, WAV format */
|
|
av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown value always 1
|
|
q->samples_per_channel = bytestream_get_le32(&edata_ptr);
|
|
q->codingMode = bytestream_get_le16(&edata_ptr);
|
|
av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr)); //Dupe of coding mode
|
|
q->frame_factor = bytestream_get_le16(&edata_ptr); //Unknown always 1
|
|
av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown always 0
|
|
|
|
/* setup */
|
|
q->samples_per_frame = SAMPLES_PER_FRAME * q->channels;
|
|
q->atrac3version = 4;
|
|
q->delay = 0x88E;
|
|
if (q->codingMode)
|
|
q->codingMode = JOINT_STEREO;
|
|
else
|
|
q->codingMode = STEREO;
|
|
|
|
q->scrambled_stream = 0;
|
|
|
|
if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
|
|
} else {
|
|
av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
} else if (avctx->extradata_size == 10) {
|
|
/* Parse the extradata, RM format. */
|
|
q->atrac3version = bytestream_get_be32(&edata_ptr);
|
|
q->samples_per_frame = bytestream_get_be16(&edata_ptr);
|
|
q->delay = bytestream_get_be16(&edata_ptr);
|
|
q->codingMode = bytestream_get_be16(&edata_ptr);
|
|
|
|
q->samples_per_channel = q->samples_per_frame / q->channels;
|
|
q->scrambled_stream = 1;
|
|
|
|
} else {
|
|
av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size);
|
|
}
|
|
/* Check the extradata. */
|
|
|
|
if (q->atrac3version != 4) {
|
|
av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (q->samples_per_frame != SAMPLES_PER_FRAME && q->samples_per_frame != SAMPLES_PER_FRAME*2) {
|
|
av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (q->delay != 0x88E) {
|
|
av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (q->codingMode == STEREO) {
|
|
av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n");
|
|
} else if (q->codingMode == JOINT_STEREO) {
|
|
av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n");
|
|
} else {
|
|
av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) {
|
|
av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
|
|
if(avctx->block_align >= UINT_MAX/2)
|
|
return AVERROR(EINVAL);
|
|
|
|
/* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE,
|
|
* this is for the bitstream reader. */
|
|
if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE))) == NULL)
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
/* Initialize the VLC tables. */
|
|
if (!vlcs_initialized) {
|
|
for (i=0 ; i<7 ; i++) {
|
|
spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
|
|
spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
|
|
init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
|
|
huff_bits[i], 1, 1,
|
|
huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
|
|
}
|
|
vlcs_initialized = 1;
|
|
}
|
|
|
|
if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT)
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
|
|
else
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16;
|
|
|
|
if ((ret = init_atrac3_transforms(q, avctx->sample_fmt == AV_SAMPLE_FMT_FLT))) {
|
|
av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
|
|
av_freep(&q->decoded_bytes_buffer);
|
|
return ret;
|
|
}
|
|
|
|
atrac_generate_tables();
|
|
|
|
/* Generate gain tables. */
|
|
for (i=0 ; i<16 ; i++)
|
|
gain_tab1[i] = powf (2.0, (4 - i));
|
|
|
|
for (i=-15 ; i<16 ; i++)
|
|
gain_tab2[i+15] = powf (2.0, i * -0.125);
|
|
|
|
/* init the joint-stereo decoding data */
|
|
q->weighting_delay[0] = 0;
|
|
q->weighting_delay[1] = 7;
|
|
q->weighting_delay[2] = 0;
|
|
q->weighting_delay[3] = 7;
|
|
q->weighting_delay[4] = 0;
|
|
q->weighting_delay[5] = 7;
|
|
|
|
for (i=0; i<4; i++) {
|
|
q->matrix_coeff_index_prev[i] = 3;
|
|
q->matrix_coeff_index_now[i] = 3;
|
|
q->matrix_coeff_index_next[i] = 3;
|
|
}
|
|
|
|
dsputil_init(&dsp, avctx);
|
|
ff_fmt_convert_init(&q->fmt_conv, avctx);
|
|
|
|
q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels);
|
|
if (!q->pUnits) {
|
|
atrac3_decode_close(avctx);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
if (avctx->channels > 1 || avctx->sample_fmt == AV_SAMPLE_FMT_S16) {
|
|
q->outSamples[0] = av_mallocz(SAMPLES_PER_FRAME * avctx->channels * sizeof(*q->outSamples[0]));
|
|
q->outSamples[1] = q->outSamples[0] + SAMPLES_PER_FRAME;
|
|
if (!q->outSamples[0]) {
|
|
atrac3_decode_close(avctx);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
}
|
|
|
|
avcodec_get_frame_defaults(&q->frame);
|
|
avctx->coded_frame = &q->frame;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
AVCodec ff_atrac3_decoder =
|
|
{
|
|
.name = "atrac3",
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = CODEC_ID_ATRAC3,
|
|
.priv_data_size = sizeof(ATRAC3Context),
|
|
.init = atrac3_decode_init,
|
|
.close = atrac3_decode_close,
|
|
.decode = atrac3_decode_frame,
|
|
.capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
|
|
.long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"),
|
|
};
|