mirror of https://git.ffmpeg.org/ffmpeg.git
1076 lines
38 KiB
C
1076 lines
38 KiB
C
/*
|
|
* Indeo Video v3 compatible decoder
|
|
* Copyright (c) 2009 - 2011 Maxim Poliakovski
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* This is a decoder for Intel Indeo Video v3.
|
|
* It is based on vector quantization, run-length coding and motion compensation.
|
|
* Known container formats: .avi and .mov
|
|
* Known FOURCCs: 'IV31', 'IV32'
|
|
*
|
|
* @see http://wiki.multimedia.cx/index.php?title=Indeo_3
|
|
*/
|
|
|
|
#include "libavutil/imgutils.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "avcodec.h"
|
|
#include "dsputil.h"
|
|
#include "bytestream.h"
|
|
#include "get_bits.h"
|
|
|
|
#include "indeo3data.h"
|
|
|
|
/* RLE opcodes. */
|
|
enum {
|
|
RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
|
|
RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
|
|
RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
|
|
RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
|
|
RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
|
|
RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
|
|
RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
|
|
};
|
|
|
|
|
|
/* Some constants for parsing frame bitstream flags. */
|
|
#define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
|
|
#define BS_KEYFRAME (1 << 2) ///< intra frame indicator
|
|
#define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
|
|
#define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
|
|
#define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
|
|
#define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
|
|
|
|
|
|
typedef struct Plane {
|
|
uint8_t *buffers[2];
|
|
uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
|
|
uint32_t width;
|
|
uint32_t height;
|
|
uint32_t pitch;
|
|
} Plane;
|
|
|
|
#define CELL_STACK_MAX 20
|
|
|
|
typedef struct Cell {
|
|
int16_t xpos; ///< cell coordinates in 4x4 blocks
|
|
int16_t ypos;
|
|
int16_t width; ///< cell width in 4x4 blocks
|
|
int16_t height; ///< cell height in 4x4 blocks
|
|
uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
|
|
const int8_t *mv_ptr; ///< ptr to the motion vector if any
|
|
} Cell;
|
|
|
|
typedef struct Indeo3DecodeContext {
|
|
AVCodecContext *avctx;
|
|
AVFrame frame;
|
|
DSPContext dsp;
|
|
|
|
GetBitContext gb;
|
|
int need_resync;
|
|
int skip_bits;
|
|
const uint8_t *next_cell_data;
|
|
const uint8_t *last_byte;
|
|
const int8_t *mc_vectors;
|
|
|
|
int16_t width, height;
|
|
uint32_t frame_num; ///< current frame number (zero-based)
|
|
uint32_t data_size; ///< size of the frame data in bytes
|
|
uint16_t frame_flags; ///< frame properties
|
|
uint8_t cb_offset; ///< needed for selecting VQ tables
|
|
uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
|
|
const uint8_t *y_data_ptr;
|
|
const uint8_t *v_data_ptr;
|
|
const uint8_t *u_data_ptr;
|
|
int32_t y_data_size;
|
|
int32_t v_data_size;
|
|
int32_t u_data_size;
|
|
const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
|
|
Plane planes[3];
|
|
} Indeo3DecodeContext;
|
|
|
|
|
|
static uint8_t requant_tab[8][128];
|
|
|
|
/*
|
|
* Build the static requantization table.
|
|
* This table is used to remap pixel values according to a specific
|
|
* quant index and thus avoid overflows while adding deltas.
|
|
*/
|
|
static av_cold void build_requant_tab(void)
|
|
{
|
|
static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
|
|
static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
|
|
|
|
int i, j, step;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
step = i + 2;
|
|
for (j = 0; j < 128; j++)
|
|
requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
|
|
}
|
|
|
|
/* some last elements calculated above will have values >= 128 */
|
|
/* pixel values shall never exceed 127 so set them to non-overflowing values */
|
|
/* according with the quantization step of the respective section */
|
|
requant_tab[0][127] = 126;
|
|
requant_tab[1][119] = 118;
|
|
requant_tab[1][120] = 118;
|
|
requant_tab[2][126] = 124;
|
|
requant_tab[2][127] = 124;
|
|
requant_tab[6][124] = 120;
|
|
requant_tab[6][125] = 120;
|
|
requant_tab[6][126] = 120;
|
|
requant_tab[6][127] = 120;
|
|
|
|
/* Patch for compatibility with the Intel's binary decoders */
|
|
requant_tab[1][7] = 10;
|
|
requant_tab[4][8] = 10;
|
|
}
|
|
|
|
|
|
static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
|
|
AVCodecContext *avctx)
|
|
{
|
|
int p, luma_width, luma_height, chroma_width, chroma_height;
|
|
int luma_pitch, chroma_pitch, luma_size, chroma_size;
|
|
|
|
luma_width = ctx->width;
|
|
luma_height = ctx->height;
|
|
|
|
if (luma_width < 16 || luma_width > 640 ||
|
|
luma_height < 16 || luma_height > 480 ||
|
|
luma_width & 3 || luma_height & 3) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
|
|
luma_width, luma_height);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
chroma_width = FFALIGN(luma_width >> 2, 4);
|
|
chroma_height = FFALIGN(luma_height >> 2, 4);
|
|
|
|
luma_pitch = FFALIGN(luma_width, 16);
|
|
chroma_pitch = FFALIGN(chroma_width, 16);
|
|
|
|
/* Calculate size of the luminance plane. */
|
|
/* Add one line more for INTRA prediction. */
|
|
luma_size = luma_pitch * (luma_height + 1);
|
|
|
|
/* Calculate size of a chrominance planes. */
|
|
/* Add one line more for INTRA prediction. */
|
|
chroma_size = chroma_pitch * (chroma_height + 1);
|
|
|
|
/* allocate frame buffers */
|
|
for (p = 0; p < 3; p++) {
|
|
ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
|
|
ctx->planes[p].width = !p ? luma_width : chroma_width;
|
|
ctx->planes[p].height = !p ? luma_height : chroma_height;
|
|
|
|
ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
|
|
ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
|
|
|
|
/* fill the INTRA prediction lines with the middle pixel value = 64 */
|
|
memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
|
|
memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
|
|
|
|
/* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
|
|
ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
|
|
ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
|
|
{
|
|
int p;
|
|
|
|
for (p = 0; p < 3; p++) {
|
|
av_freep(&ctx->planes[p].buffers[0]);
|
|
av_freep(&ctx->planes[p].buffers[1]);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
|
|
* the cell(x, y) in the current frame.
|
|
*
|
|
* @param ctx pointer to the decoder context
|
|
* @param plane pointer to the plane descriptor
|
|
* @param cell pointer to the cell descriptor
|
|
*/
|
|
static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
|
|
{
|
|
int h, w, mv_x, mv_y, offset, offset_dst;
|
|
uint8_t *src, *dst;
|
|
|
|
/* setup output and reference pointers */
|
|
offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
|
|
dst = plane->pixels[ctx->buf_sel] + offset_dst;
|
|
if(cell->mv_ptr){
|
|
mv_y = cell->mv_ptr[0];
|
|
mv_x = cell->mv_ptr[1];
|
|
}else
|
|
mv_x= mv_y= 0;
|
|
offset = offset_dst + mv_y * plane->pitch + mv_x;
|
|
src = plane->pixels[ctx->buf_sel ^ 1] + offset;
|
|
|
|
h = cell->height << 2;
|
|
|
|
for (w = cell->width; w > 0;) {
|
|
/* copy using 16xH blocks */
|
|
if (!((cell->xpos << 2) & 15) && w >= 4) {
|
|
for (; w >= 4; src += 16, dst += 16, w -= 4)
|
|
ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
|
|
}
|
|
|
|
/* copy using 8xH blocks */
|
|
if (!((cell->xpos << 2) & 7) && w >= 2) {
|
|
ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
|
|
w -= 2;
|
|
src += 8;
|
|
dst += 8;
|
|
}
|
|
|
|
if (w >= 1) {
|
|
copy_block4(dst, src, plane->pitch, plane->pitch, h);
|
|
w--;
|
|
src += 4;
|
|
dst += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Average 4/8 pixels at once without rounding using SWAR */
|
|
#define AVG_32(dst, src, ref) \
|
|
AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
|
|
|
|
#define AVG_64(dst, src, ref) \
|
|
AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
|
|
|
|
|
|
/*
|
|
* Replicate each even pixel as follows:
|
|
* ABCDEFGH -> AACCEEGG
|
|
*/
|
|
static inline uint64_t replicate64(uint64_t a) {
|
|
#if HAVE_BIGENDIAN
|
|
a &= 0xFF00FF00FF00FF00ULL;
|
|
a |= a >> 8;
|
|
#else
|
|
a &= 0x00FF00FF00FF00FFULL;
|
|
a |= a << 8;
|
|
#endif
|
|
return a;
|
|
}
|
|
|
|
static inline uint32_t replicate32(uint32_t a) {
|
|
#if HAVE_BIGENDIAN
|
|
a &= 0xFF00FF00UL;
|
|
a |= a >> 8;
|
|
#else
|
|
a &= 0x00FF00FFUL;
|
|
a |= a << 8;
|
|
#endif
|
|
return a;
|
|
}
|
|
|
|
|
|
/* Fill n lines with 64bit pixel value pix */
|
|
static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
|
|
int32_t row_offset)
|
|
{
|
|
for (; n > 0; dst += row_offset, n--)
|
|
AV_WN64A(dst, pix);
|
|
}
|
|
|
|
|
|
/* Error codes for cell decoding. */
|
|
enum {
|
|
IV3_NOERR = 0,
|
|
IV3_BAD_RLE = 1,
|
|
IV3_BAD_DATA = 2,
|
|
IV3_BAD_COUNTER = 3,
|
|
IV3_UNSUPPORTED = 4,
|
|
IV3_OUT_OF_DATA = 5
|
|
};
|
|
|
|
|
|
#define BUFFER_PRECHECK \
|
|
if (*data_ptr >= last_ptr) \
|
|
return IV3_OUT_OF_DATA; \
|
|
|
|
#define RLE_BLOCK_COPY \
|
|
if (cell->mv_ptr || !skip_flag) \
|
|
copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
|
|
|
|
#define RLE_BLOCK_COPY_8 \
|
|
pix64 = AV_RN64A(ref);\
|
|
if (is_first_row) {/* special prediction case: top line of a cell */\
|
|
pix64 = replicate64(pix64);\
|
|
fill_64(dst + row_offset, pix64, 7, row_offset);\
|
|
AVG_64(dst, ref, dst + row_offset);\
|
|
} else \
|
|
fill_64(dst, pix64, 8, row_offset)
|
|
|
|
#define RLE_LINES_COPY \
|
|
copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
|
|
|
|
#define RLE_LINES_COPY_M10 \
|
|
pix64 = AV_RN64A(ref);\
|
|
if (is_top_of_cell) {\
|
|
pix64 = replicate64(pix64);\
|
|
fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
|
|
AVG_64(dst, ref, dst + row_offset);\
|
|
} else \
|
|
fill_64(dst, pix64, num_lines << 1, row_offset)
|
|
|
|
#define APPLY_DELTA_4 \
|
|
AV_WN16A(dst + line_offset , AV_RN16A(ref ) + delta_tab->deltas[dyad1]);\
|
|
AV_WN16A(dst + line_offset + 2, AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]);\
|
|
if (mode >= 3) {\
|
|
if (is_top_of_cell && !cell->ypos) {\
|
|
AV_COPY32(dst, dst + row_offset);\
|
|
} else {\
|
|
AVG_32(dst, ref, dst + row_offset);\
|
|
}\
|
|
}
|
|
|
|
#define APPLY_DELTA_8 \
|
|
/* apply two 32-bit VQ deltas to next even line */\
|
|
if (is_top_of_cell) { \
|
|
AV_WN32A(dst + row_offset , \
|
|
replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]);\
|
|
AV_WN32A(dst + row_offset + 4, \
|
|
replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]);\
|
|
} else { \
|
|
AV_WN32A(dst + row_offset , \
|
|
AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]);\
|
|
AV_WN32A(dst + row_offset + 4, \
|
|
AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]);\
|
|
} \
|
|
/* odd lines are not coded but rather interpolated/replicated */\
|
|
/* first line of the cell on the top of image? - replicate */\
|
|
/* otherwise - interpolate */\
|
|
if (is_top_of_cell && !cell->ypos) {\
|
|
AV_COPY64(dst, dst + row_offset);\
|
|
} else \
|
|
AVG_64(dst, ref, dst + row_offset);
|
|
|
|
|
|
#define APPLY_DELTA_1011_INTER \
|
|
if (mode == 10) { \
|
|
AV_WN32A(dst , \
|
|
AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]);\
|
|
AV_WN32A(dst + 4 , \
|
|
AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]);\
|
|
AV_WN32A(dst + row_offset , \
|
|
AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]);\
|
|
AV_WN32A(dst + row_offset + 4, \
|
|
AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]);\
|
|
} else { \
|
|
AV_WN16A(dst , \
|
|
AV_RN16A(dst ) + delta_tab->deltas[dyad1]);\
|
|
AV_WN16A(dst + 2 , \
|
|
AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]);\
|
|
AV_WN16A(dst + row_offset , \
|
|
AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]);\
|
|
AV_WN16A(dst + row_offset + 2, \
|
|
AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]);\
|
|
}
|
|
|
|
|
|
static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
|
|
int pitch, int h_zoom, int v_zoom, int mode,
|
|
const vqEntry *delta[2], int swap_quads[2],
|
|
const uint8_t **data_ptr, const uint8_t *last_ptr)
|
|
{
|
|
int x, y, line, num_lines;
|
|
int rle_blocks = 0;
|
|
uint8_t code, *dst, *ref;
|
|
const vqEntry *delta_tab;
|
|
unsigned int dyad1, dyad2;
|
|
uint64_t pix64;
|
|
int skip_flag = 0, is_top_of_cell, is_first_row = 1;
|
|
int row_offset, blk_row_offset, line_offset;
|
|
|
|
row_offset = pitch;
|
|
blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
|
|
line_offset = v_zoom ? row_offset : 0;
|
|
|
|
for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
|
|
for (x = 0; x < cell->width; x += 1 + h_zoom) {
|
|
ref = ref_block;
|
|
dst = block;
|
|
|
|
if (rle_blocks > 0) {
|
|
if (mode <= 4) {
|
|
RLE_BLOCK_COPY;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
RLE_BLOCK_COPY_8;
|
|
}
|
|
rle_blocks--;
|
|
} else {
|
|
for (line = 0; line < 4;) {
|
|
num_lines = 1;
|
|
is_top_of_cell = is_first_row && !line;
|
|
|
|
/* select primary VQ table for odd, secondary for even lines */
|
|
if (mode <= 4)
|
|
delta_tab = delta[line & 1];
|
|
else
|
|
delta_tab = delta[1];
|
|
BUFFER_PRECHECK;
|
|
code = bytestream_get_byte(data_ptr);
|
|
if (code < 248) {
|
|
if (code < delta_tab->num_dyads) {
|
|
BUFFER_PRECHECK;
|
|
dyad1 = bytestream_get_byte(data_ptr);
|
|
dyad2 = code;
|
|
if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
|
|
return IV3_BAD_DATA;
|
|
} else {
|
|
/* process QUADS */
|
|
code -= delta_tab->num_dyads;
|
|
dyad1 = code / delta_tab->quad_exp;
|
|
dyad2 = code % delta_tab->quad_exp;
|
|
if (swap_quads[line & 1])
|
|
FFSWAP(unsigned int, dyad1, dyad2);
|
|
}
|
|
if (mode <= 4) {
|
|
APPLY_DELTA_4;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
APPLY_DELTA_8;
|
|
} else {
|
|
APPLY_DELTA_1011_INTER;
|
|
}
|
|
} else {
|
|
/* process RLE codes */
|
|
switch (code) {
|
|
case RLE_ESC_FC:
|
|
skip_flag = 0;
|
|
rle_blocks = 1;
|
|
code = 253;
|
|
/* FALLTHROUGH */
|
|
case RLE_ESC_FF:
|
|
case RLE_ESC_FE:
|
|
case RLE_ESC_FD:
|
|
num_lines = 257 - code - line;
|
|
if (num_lines <= 0)
|
|
return IV3_BAD_RLE;
|
|
if (mode <= 4) {
|
|
RLE_LINES_COPY;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
RLE_LINES_COPY_M10;
|
|
}
|
|
break;
|
|
case RLE_ESC_FB:
|
|
BUFFER_PRECHECK;
|
|
code = bytestream_get_byte(data_ptr);
|
|
rle_blocks = (code & 0x1F) - 1; /* set block counter */
|
|
if (code >= 64 || rle_blocks < 0)
|
|
return IV3_BAD_COUNTER;
|
|
skip_flag = code & 0x20;
|
|
num_lines = 4 - line; /* enforce next block processing */
|
|
if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
|
|
if (mode <= 4) {
|
|
RLE_LINES_COPY;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
RLE_LINES_COPY_M10;
|
|
}
|
|
}
|
|
break;
|
|
case RLE_ESC_F9:
|
|
skip_flag = 1;
|
|
rle_blocks = 1;
|
|
/* FALLTHROUGH */
|
|
case RLE_ESC_FA:
|
|
if (line)
|
|
return IV3_BAD_RLE;
|
|
num_lines = 4; /* enforce next block processing */
|
|
if (cell->mv_ptr) {
|
|
if (mode <= 4) {
|
|
RLE_LINES_COPY;
|
|
} else if (mode == 10 && !cell->mv_ptr) {
|
|
RLE_LINES_COPY_M10;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return IV3_UNSUPPORTED;
|
|
}
|
|
}
|
|
|
|
line += num_lines;
|
|
ref += row_offset * (num_lines << v_zoom);
|
|
dst += row_offset * (num_lines << v_zoom);
|
|
}
|
|
}
|
|
|
|
/* move to next horizontal block */
|
|
block += 4 << h_zoom;
|
|
ref_block += 4 << h_zoom;
|
|
}
|
|
|
|
/* move to next line of blocks */
|
|
ref_block += blk_row_offset;
|
|
block += blk_row_offset;
|
|
}
|
|
return IV3_NOERR;
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode a vector-quantized cell.
|
|
* It consists of several routines, each of which handles one or more "modes"
|
|
* with which a cell can be encoded.
|
|
*
|
|
* @param ctx pointer to the decoder context
|
|
* @param avctx ptr to the AVCodecContext
|
|
* @param plane pointer to the plane descriptor
|
|
* @param cell pointer to the cell descriptor
|
|
* @param data_ptr pointer to the compressed data
|
|
* @param last_ptr pointer to the last byte to catch reads past end of buffer
|
|
* @return number of consumed bytes or negative number in case of error
|
|
*/
|
|
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
|
|
Plane *plane, Cell *cell, const uint8_t *data_ptr,
|
|
const uint8_t *last_ptr)
|
|
{
|
|
int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
|
|
int zoom_fac;
|
|
int offset, error = 0, swap_quads[2];
|
|
uint8_t code, *block, *ref_block = 0;
|
|
const vqEntry *delta[2];
|
|
const uint8_t *data_start = data_ptr;
|
|
|
|
/* get coding mode and VQ table index from the VQ descriptor byte */
|
|
code = *data_ptr++;
|
|
mode = code >> 4;
|
|
vq_index = code & 0xF;
|
|
|
|
/* setup output and reference pointers */
|
|
offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
|
|
block = plane->pixels[ctx->buf_sel] + offset;
|
|
if (!cell->mv_ptr) {
|
|
/* use previous line as reference for INTRA cells */
|
|
ref_block = block - plane->pitch;
|
|
} else if (mode >= 10) {
|
|
/* for mode 10 and 11 INTER first copy the predicted cell into the current one */
|
|
/* so we don't need to do data copying for each RLE code later */
|
|
copy_cell(ctx, plane, cell);
|
|
} else {
|
|
/* set the pointer to the reference pixels for modes 0-4 INTER */
|
|
mv_y = cell->mv_ptr[0];
|
|
mv_x = cell->mv_ptr[1];
|
|
offset += mv_y * plane->pitch + mv_x;
|
|
ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
|
|
}
|
|
|
|
/* select VQ tables as follows: */
|
|
/* modes 0 and 3 use only the primary table for all lines in a block */
|
|
/* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
|
|
if (mode == 1 || mode == 4) {
|
|
code = ctx->alt_quant[vq_index];
|
|
prim_indx = (code >> 4) + ctx->cb_offset;
|
|
second_indx = (code & 0xF) + ctx->cb_offset;
|
|
} else {
|
|
vq_index += ctx->cb_offset;
|
|
prim_indx = second_indx = vq_index;
|
|
}
|
|
|
|
if (prim_indx >= 24 || second_indx >= 24) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
|
|
prim_indx, second_indx);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
delta[0] = &vq_tab[second_indx];
|
|
delta[1] = &vq_tab[prim_indx];
|
|
swap_quads[0] = second_indx >= 16;
|
|
swap_quads[1] = prim_indx >= 16;
|
|
|
|
/* requantize the prediction if VQ index of this cell differs from VQ index */
|
|
/* of the predicted cell in order to avoid overflows. */
|
|
if (vq_index >= 8 && ref_block) {
|
|
for (x = 0; x < cell->width << 2; x++)
|
|
ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
|
|
}
|
|
|
|
error = IV3_NOERR;
|
|
|
|
switch (mode) {
|
|
case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
|
|
case 1:
|
|
case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
|
|
case 4:
|
|
if (mode >= 3 && cell->mv_ptr) {
|
|
av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
zoom_fac = mode >= 3;
|
|
error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
|
|
mode, delta, swap_quads, &data_ptr, last_ptr);
|
|
break;
|
|
case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
|
|
case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
|
|
if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
|
|
error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
|
|
mode, delta, swap_quads, &data_ptr, last_ptr);
|
|
} else { /* mode 10 and 11 INTER processing */
|
|
if (mode == 11 && !cell->mv_ptr) {
|
|
av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
zoom_fac = mode == 10;
|
|
error = decode_cell_data(cell, block, ref_block, plane->pitch,
|
|
zoom_fac, 1, mode, delta, swap_quads,
|
|
&data_ptr, last_ptr);
|
|
}
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
|
|
return AVERROR_INVALIDDATA;
|
|
}//switch mode
|
|
|
|
switch (error) {
|
|
case IV3_BAD_RLE:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
|
|
mode, data_ptr[-1]);
|
|
return AVERROR_INVALIDDATA;
|
|
case IV3_BAD_DATA:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
|
|
return AVERROR_INVALIDDATA;
|
|
case IV3_BAD_COUNTER:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
|
|
return AVERROR_INVALIDDATA;
|
|
case IV3_UNSUPPORTED:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
|
|
return AVERROR_INVALIDDATA;
|
|
case IV3_OUT_OF_DATA:
|
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
|
|
}
|
|
|
|
|
|
/* Binary tree codes. */
|
|
enum {
|
|
H_SPLIT = 0,
|
|
V_SPLIT = 1,
|
|
INTRA_NULL = 2,
|
|
INTER_DATA = 3
|
|
};
|
|
|
|
|
|
#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
|
|
|
|
#define UPDATE_BITPOS(n) \
|
|
ctx->skip_bits += (n); \
|
|
ctx->need_resync = 1
|
|
|
|
#define RESYNC_BITSTREAM \
|
|
if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
|
|
skip_bits_long(&ctx->gb, ctx->skip_bits); \
|
|
ctx->skip_bits = 0; \
|
|
ctx->need_resync = 0; \
|
|
}
|
|
|
|
#define CHECK_CELL \
|
|
if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
|
|
curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
|
|
curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
|
|
return AVERROR_INVALIDDATA; \
|
|
}
|
|
|
|
|
|
static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
|
|
Plane *plane, int code, Cell *ref_cell,
|
|
const int depth, const int strip_width)
|
|
{
|
|
Cell curr_cell;
|
|
int bytes_used;
|
|
|
|
if (depth <= 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
|
|
return AVERROR_INVALIDDATA; // unwind recursion
|
|
}
|
|
|
|
curr_cell = *ref_cell; // clone parent cell
|
|
if (code == H_SPLIT) {
|
|
SPLIT_CELL(ref_cell->height, curr_cell.height);
|
|
ref_cell->ypos += curr_cell.height;
|
|
ref_cell->height -= curr_cell.height;
|
|
} else if (code == V_SPLIT) {
|
|
if (curr_cell.width > strip_width) {
|
|
/* split strip */
|
|
curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
|
|
} else
|
|
SPLIT_CELL(ref_cell->width, curr_cell.width);
|
|
ref_cell->xpos += curr_cell.width;
|
|
ref_cell->width -= curr_cell.width;
|
|
}
|
|
|
|
while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
|
|
RESYNC_BITSTREAM;
|
|
switch (code = get_bits(&ctx->gb, 2)) {
|
|
case H_SPLIT:
|
|
case V_SPLIT:
|
|
if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
|
|
return AVERROR_INVALIDDATA;
|
|
break;
|
|
case INTRA_NULL:
|
|
if (!curr_cell.tree) { /* MC tree INTRA code */
|
|
curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
|
|
curr_cell.tree = 1; /* enter the VQ tree */
|
|
} else { /* VQ tree NULL code */
|
|
RESYNC_BITSTREAM;
|
|
code = get_bits(&ctx->gb, 2);
|
|
if (code >= 2) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (code == 1)
|
|
av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
|
|
|
|
CHECK_CELL
|
|
if (!curr_cell.mv_ptr)
|
|
return AVERROR_INVALIDDATA;
|
|
copy_cell(ctx, plane, &curr_cell);
|
|
return 0;
|
|
}
|
|
break;
|
|
case INTER_DATA:
|
|
if (!curr_cell.tree) { /* MC tree INTER code */
|
|
/* get motion vector index and setup the pointer to the mv set */
|
|
if (!ctx->need_resync)
|
|
ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
|
|
curr_cell.mv_ptr = &ctx->mc_vectors[*(ctx->next_cell_data++) << 1];
|
|
curr_cell.tree = 1; /* enter the VQ tree */
|
|
UPDATE_BITPOS(8);
|
|
} else { /* VQ tree DATA code */
|
|
if (!ctx->need_resync)
|
|
ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
|
|
|
|
CHECK_CELL
|
|
bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
|
|
ctx->next_cell_data, ctx->last_byte);
|
|
if (bytes_used < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
UPDATE_BITPOS(bytes_used << 3);
|
|
ctx->next_cell_data += bytes_used;
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
}//while
|
|
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
|
|
static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
|
|
Plane *plane, const uint8_t *data, int32_t data_size,
|
|
int32_t strip_width)
|
|
{
|
|
Cell curr_cell;
|
|
uint32_t num_vectors;
|
|
|
|
/* each plane data starts with mc_vector_count field, */
|
|
/* an optional array of motion vectors followed by the vq data */
|
|
num_vectors = bytestream_get_le32(&data);
|
|
if(num_vectors >= data_size/2)
|
|
return AVERROR_INVALIDDATA;
|
|
ctx->mc_vectors = num_vectors ? data : 0;
|
|
data += num_vectors * 2;
|
|
data_size-= num_vectors * 2;
|
|
|
|
/* init the bitreader */
|
|
init_get_bits(&ctx->gb, data, data_size << 3);
|
|
ctx->skip_bits = 0;
|
|
ctx->need_resync = 0;
|
|
|
|
ctx->last_byte = data + data_size - 1;
|
|
|
|
/* initialize the 1st cell and set its dimensions to whole plane */
|
|
curr_cell.xpos = curr_cell.ypos = 0;
|
|
curr_cell.width = plane->width >> 2;
|
|
curr_cell.height = plane->height >> 2;
|
|
curr_cell.tree = 0; // we are in the MC tree now
|
|
curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
|
|
|
|
return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
|
|
}
|
|
|
|
|
|
#define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
|
|
|
|
static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
|
|
const uint8_t *buf, int buf_size)
|
|
{
|
|
const uint8_t *buf_ptr = buf, *bs_hdr;
|
|
uint32_t frame_num, word2, check_sum, data_size;
|
|
uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
|
|
uint16_t height, width;
|
|
int i, j;
|
|
|
|
/* parse and check the OS header */
|
|
frame_num = bytestream_get_le32(&buf_ptr);
|
|
word2 = bytestream_get_le32(&buf_ptr);
|
|
check_sum = bytestream_get_le32(&buf_ptr);
|
|
data_size = bytestream_get_le32(&buf_ptr);
|
|
|
|
if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
|
|
av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/* parse the bitstream header */
|
|
bs_hdr = buf_ptr;
|
|
|
|
if (bytestream_get_le16(&buf_ptr) != 32) {
|
|
av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
ctx->frame_num = frame_num;
|
|
ctx->frame_flags = bytestream_get_le16(&buf_ptr);
|
|
ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
|
|
ctx->cb_offset = *buf_ptr++;
|
|
|
|
if (ctx->data_size == 16)
|
|
return 4;
|
|
if (ctx->data_size > buf_size)
|
|
ctx->data_size = buf_size;
|
|
|
|
buf_ptr += 3; // skip reserved byte and checksum
|
|
|
|
/* check frame dimensions */
|
|
height = bytestream_get_le16(&buf_ptr);
|
|
width = bytestream_get_le16(&buf_ptr);
|
|
if (av_image_check_size(width, height, 0, avctx))
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if (width != ctx->width || height != ctx->height) {
|
|
av_dlog(avctx, "Frame dimensions changed!\n");
|
|
|
|
ctx->width = width;
|
|
ctx->height = height;
|
|
|
|
free_frame_buffers(ctx);
|
|
if(allocate_frame_buffers(ctx, avctx) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
avcodec_set_dimensions(avctx, width, height);
|
|
}
|
|
|
|
y_offset = bytestream_get_le32(&buf_ptr);
|
|
v_offset = bytestream_get_le32(&buf_ptr);
|
|
u_offset = bytestream_get_le32(&buf_ptr);
|
|
|
|
/* unfortunately there is no common order of planes in the buffer */
|
|
/* so we use that sorting algo for determining planes data sizes */
|
|
starts[0] = y_offset;
|
|
starts[1] = v_offset;
|
|
starts[2] = u_offset;
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
ends[j] = ctx->data_size;
|
|
for (i = 2; i >= 0; i--)
|
|
if (starts[i] < ends[j] && starts[i] > starts[j])
|
|
ends[j] = starts[i];
|
|
}
|
|
|
|
ctx->y_data_size = ends[0] - starts[0];
|
|
ctx->v_data_size = ends[1] - starts[1];
|
|
ctx->u_data_size = ends[2] - starts[2];
|
|
if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
|
|
FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
ctx->y_data_ptr = bs_hdr + y_offset;
|
|
ctx->v_data_ptr = bs_hdr + v_offset;
|
|
ctx->u_data_ptr = bs_hdr + u_offset;
|
|
ctx->alt_quant = buf_ptr + sizeof(uint32_t);
|
|
|
|
if (ctx->data_size == 16) {
|
|
av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
|
|
return 16;
|
|
}
|
|
|
|
if (ctx->frame_flags & BS_8BIT_PEL) {
|
|
av_log_ask_for_sample(avctx, "8-bit pixel format\n");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
|
|
av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Convert and output the current plane.
|
|
* All pixel values will be upsampled by shifting right by one bit.
|
|
*
|
|
* @param[in] plane pointer to the descriptor of the plane being processed
|
|
* @param[in] buf_sel indicates which frame buffer the input data stored in
|
|
* @param[out] dst pointer to the buffer receiving converted pixels
|
|
* @param[in] dst_pitch pitch for moving to the next y line
|
|
*/
|
|
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
|
|
{
|
|
int x,y;
|
|
const uint8_t *src = plane->pixels[buf_sel];
|
|
uint32_t pitch = plane->pitch;
|
|
|
|
for (y = 0; y < plane->height; y++) {
|
|
/* convert four pixels at once using SWAR */
|
|
for (x = 0; x < plane->width >> 2; x++) {
|
|
AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
|
|
src += 4;
|
|
dst += 4;
|
|
}
|
|
|
|
for (x <<= 2; x < plane->width; x++)
|
|
*dst++ = *src++ << 1;
|
|
|
|
src += pitch - plane->width;
|
|
dst += dst_pitch - plane->width;
|
|
}
|
|
}
|
|
|
|
|
|
static av_cold int decode_init(AVCodecContext *avctx)
|
|
{
|
|
Indeo3DecodeContext *ctx = avctx->priv_data;
|
|
|
|
ctx->avctx = avctx;
|
|
ctx->width = avctx->width;
|
|
ctx->height = avctx->height;
|
|
avctx->pix_fmt = PIX_FMT_YUV410P;
|
|
avcodec_get_frame_defaults(&ctx->frame);
|
|
|
|
build_requant_tab();
|
|
|
|
dsputil_init(&ctx->dsp, avctx);
|
|
|
|
return allocate_frame_buffers(ctx, avctx);
|
|
}
|
|
|
|
|
|
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
|
|
AVPacket *avpkt)
|
|
{
|
|
Indeo3DecodeContext *ctx = avctx->priv_data;
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
int res;
|
|
|
|
res = decode_frame_headers(ctx, avctx, buf, buf_size);
|
|
if (res < 0)
|
|
return res;
|
|
|
|
/* skip sync(null) frames */
|
|
if (res) {
|
|
// we have processed 16 bytes but no data was decoded
|
|
*data_size = 0;
|
|
return buf_size;
|
|
}
|
|
|
|
/* skip droppable INTER frames if requested */
|
|
if (ctx->frame_flags & BS_NONREF &&
|
|
(avctx->skip_frame >= AVDISCARD_NONREF))
|
|
return 0;
|
|
|
|
/* skip INTER frames if requested */
|
|
if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
|
|
return 0;
|
|
|
|
/* use BS_BUFFER flag for buffer switching */
|
|
ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
|
|
|
|
/* decode luma plane */
|
|
if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
|
|
return res;
|
|
|
|
/* decode chroma planes */
|
|
if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
|
|
return res;
|
|
|
|
if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
|
|
return res;
|
|
|
|
if (ctx->frame.data[0])
|
|
avctx->release_buffer(avctx, &ctx->frame);
|
|
|
|
ctx->frame.reference = 0;
|
|
if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
|
|
av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
|
return res;
|
|
}
|
|
|
|
output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
|
|
output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
|
|
output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);
|
|
|
|
*data_size = sizeof(AVFrame);
|
|
*(AVFrame*)data = ctx->frame;
|
|
|
|
return buf_size;
|
|
}
|
|
|
|
|
|
static av_cold int decode_close(AVCodecContext *avctx)
|
|
{
|
|
Indeo3DecodeContext *ctx = avctx->priv_data;
|
|
|
|
free_frame_buffers(avctx->priv_data);
|
|
|
|
if (ctx->frame.data[0])
|
|
avctx->release_buffer(avctx, &ctx->frame);
|
|
|
|
return 0;
|
|
}
|
|
|
|
AVCodec ff_indeo3_decoder = {
|
|
.name = "indeo3",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = CODEC_ID_INDEO3,
|
|
.priv_data_size = sizeof(Indeo3DecodeContext),
|
|
.init = decode_init,
|
|
.close = decode_close,
|
|
.decode = decode_frame,
|
|
.long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
|
|
};
|