mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-04 14:22:12 +00:00
f921c58335
This avoids triggering overflows in the filters, and avoids stray test failures in the approximate functions on x86; due to rounding differences, one implementation might overflow while another one doesn't. Signed-off-by: Martin Storsjö <martin@martin.st>
372 lines
14 KiB
C
372 lines
14 KiB
C
/*
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "libavutil/mem_internal.h"
|
|
|
|
#include "libswscale/swscale.h"
|
|
#include "libswscale/swscale_internal.h"
|
|
|
|
#include "checkasm.h"
|
|
|
|
#define randomize_buffers(buf, size) \
|
|
do { \
|
|
int j; \
|
|
for (j = 0; j < size; j+=4) \
|
|
AV_WN32(buf + j, rnd()); \
|
|
} while (0)
|
|
|
|
static void yuv2planeX_8_ref(const int16_t *filter, int filterSize,
|
|
const int16_t **src, uint8_t *dest, int dstW,
|
|
const uint8_t *dither, int offset)
|
|
{
|
|
// This corresponds to the yuv2planeX_8_c function
|
|
int i;
|
|
for (i = 0; i < dstW; i++) {
|
|
int val = dither[(i + offset) & 7] << 12;
|
|
int j;
|
|
for (j = 0; j < filterSize; j++)
|
|
val += src[j][i] * filter[j];
|
|
|
|
dest[i]= av_clip_uint8(val >> 19);
|
|
}
|
|
}
|
|
|
|
static int cmp_off_by_n(const uint8_t *ref, const uint8_t *test, size_t n, int accuracy)
|
|
{
|
|
for (size_t i = 0; i < n; i++) {
|
|
if (abs(ref[i] - test[i]) > accuracy)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void print_data(uint8_t *p, size_t len, size_t offset)
|
|
{
|
|
size_t i = 0;
|
|
for (; i < len; i++) {
|
|
if (i % 8 == 0) {
|
|
printf("0x%04zx: ", i+offset);
|
|
}
|
|
printf("0x%02x ", (uint32_t) p[i]);
|
|
if (i % 8 == 7) {
|
|
printf("\n");
|
|
}
|
|
}
|
|
if (i % 8 != 0) {
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
static size_t show_differences(uint8_t *a, uint8_t *b, size_t len)
|
|
{
|
|
for (size_t i = 0; i < len; i++) {
|
|
if (a[i] != b[i]) {
|
|
size_t offset_of_mismatch = i;
|
|
size_t offset;
|
|
if (i >= 8) i-=8;
|
|
offset = i & (~7);
|
|
printf("test a:\n");
|
|
print_data(&a[offset], 32, offset);
|
|
printf("\ntest b:\n");
|
|
print_data(&b[offset], 32, offset);
|
|
printf("\n");
|
|
return offset_of_mismatch;
|
|
}
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static void check_yuv2yuv1(int accurate)
|
|
{
|
|
struct SwsContext *ctx;
|
|
int osi, isi;
|
|
int dstW, offset;
|
|
size_t fail_offset;
|
|
const int input_sizes[] = {8, 24, 128, 144, 256, 512};
|
|
const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]);
|
|
#define LARGEST_INPUT_SIZE 512
|
|
|
|
const int offsets[] = {0, 3, 8, 11, 16, 19};
|
|
const int OFFSET_SIZES = sizeof(offsets)/sizeof(offsets[0]);
|
|
const char *accurate_str = (accurate) ? "accurate" : "approximate";
|
|
|
|
declare_func_emms(AV_CPU_FLAG_MMX, void,
|
|
const int16_t *src, uint8_t *dest,
|
|
int dstW, const uint8_t *dither, int offset);
|
|
|
|
LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_INPUT_SIZE]);
|
|
LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
|
|
LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
|
|
LOCAL_ALIGNED_8(uint8_t, dither, [8]);
|
|
|
|
randomize_buffers((uint8_t*)dither, 8);
|
|
randomize_buffers((uint8_t*)src_pixels, LARGEST_INPUT_SIZE * sizeof(int16_t));
|
|
ctx = sws_alloc_context();
|
|
if (accurate)
|
|
ctx->flags |= SWS_ACCURATE_RND;
|
|
if (sws_init_context(ctx, NULL, NULL) < 0)
|
|
fail();
|
|
|
|
ff_sws_init_scale(ctx);
|
|
for (isi = 0; isi < INPUT_SIZES; ++isi) {
|
|
dstW = input_sizes[isi];
|
|
for (osi = 0; osi < OFFSET_SIZES; osi++) {
|
|
offset = offsets[osi];
|
|
if (check_func(ctx->yuv2plane1, "yuv2yuv1_%d_%d_%s", offset, dstW, accurate_str)){
|
|
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
|
|
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
|
|
|
|
call_ref(src_pixels, dst0, dstW, dither, offset);
|
|
call_new(src_pixels, dst1, dstW, dither, offset);
|
|
if (cmp_off_by_n(dst0, dst1, dstW * sizeof(dst0[0]), accurate ? 0 : 2)) {
|
|
fail();
|
|
printf("failed: yuv2yuv1_%d_%di_%s\n", offset, dstW, accurate_str);
|
|
fail_offset = show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
|
|
printf("failing values: src: 0x%04x dither: 0x%02x dst-c: %02x dst-asm: %02x\n",
|
|
(int) src_pixels[fail_offset],
|
|
(int) dither[(fail_offset + fail_offset) & 7],
|
|
(int) dst0[fail_offset],
|
|
(int) dst1[fail_offset]);
|
|
}
|
|
if(dstW == LARGEST_INPUT_SIZE)
|
|
bench_new(src_pixels, dst1, dstW, dither, offset);
|
|
}
|
|
}
|
|
}
|
|
sws_freeContext(ctx);
|
|
}
|
|
|
|
static void check_yuv2yuvX(int accurate)
|
|
{
|
|
struct SwsContext *ctx;
|
|
int fsi, osi, isi, i, j;
|
|
int dstW;
|
|
#define LARGEST_FILTER 16
|
|
// ff_yuv2planeX_8_sse2 can't handle odd filter sizes
|
|
const int filter_sizes[] = {2, 4, 8, 16};
|
|
const int FILTER_SIZES = sizeof(filter_sizes)/sizeof(filter_sizes[0]);
|
|
#define LARGEST_INPUT_SIZE 512
|
|
static const int input_sizes[] = {8, 24, 128, 144, 256, 512};
|
|
const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]);
|
|
const char *accurate_str = (accurate) ? "accurate" : "approximate";
|
|
|
|
declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter,
|
|
int filterSize, const int16_t **src, uint8_t *dest,
|
|
int dstW, const uint8_t *dither, int offset);
|
|
|
|
const int16_t **src;
|
|
LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]);
|
|
LOCAL_ALIGNED_16(int16_t, filter_coeff, [LARGEST_FILTER]);
|
|
LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
|
|
LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
|
|
LOCAL_ALIGNED_16(uint8_t, dither, [LARGEST_INPUT_SIZE]);
|
|
union VFilterData{
|
|
const int16_t *src;
|
|
uint16_t coeff[8];
|
|
} *vFilterData;
|
|
uint8_t d_val = rnd();
|
|
memset(dither, d_val, LARGEST_INPUT_SIZE);
|
|
randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t));
|
|
ctx = sws_alloc_context();
|
|
if (accurate)
|
|
ctx->flags |= SWS_ACCURATE_RND;
|
|
if (sws_init_context(ctx, NULL, NULL) < 0)
|
|
fail();
|
|
|
|
ff_sws_init_scale(ctx);
|
|
for(isi = 0; isi < INPUT_SIZES; ++isi){
|
|
dstW = input_sizes[isi];
|
|
for(osi = 0; osi < 64; osi += 16){
|
|
if (dstW <= osi)
|
|
continue;
|
|
for (fsi = 0; fsi < FILTER_SIZES; ++fsi) {
|
|
// Generate filter coefficients for the given filter size,
|
|
// with some properties:
|
|
// - The coefficients add up to the intended sum (4096, 1<<12)
|
|
// - The coefficients contain negative values
|
|
// - The filter intermediates don't overflow for worst case
|
|
// inputs (all positive coefficients are coupled with
|
|
// input_max and all negative coefficients with input_min,
|
|
// or vice versa).
|
|
// Produce a filter with all coefficients set to
|
|
// -((1<<12)/(filter_size-1)) except for one (randomly chosen)
|
|
// which is set to ((1<<13)-1).
|
|
for (i = 0; i < filter_sizes[fsi]; ++i)
|
|
filter_coeff[i] = -((1 << 12) / (filter_sizes[fsi] - 1));
|
|
filter_coeff[rnd() % filter_sizes[fsi]] = (1 << 13) - 1;
|
|
|
|
src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]);
|
|
vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData));
|
|
memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData));
|
|
for (i = 0; i < filter_sizes[fsi]; ++i) {
|
|
src[i] = &src_pixels[i * LARGEST_INPUT_SIZE];
|
|
vFilterData[i].src = src[i] - osi;
|
|
for(j = 0; j < 4; ++j)
|
|
vFilterData[i].coeff[j + 4] = filter_coeff[i];
|
|
}
|
|
if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d_%s", filter_sizes[fsi], osi, dstW, accurate_str)){
|
|
// use vFilterData for the mmx function
|
|
const int16_t *filter = ctx->use_mmx_vfilter ? (const int16_t*)vFilterData : &filter_coeff[0];
|
|
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
|
|
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
|
|
|
|
// We can't use call_ref here, because we don't know if use_mmx_vfilter was set for that
|
|
// function or not, so we can't pass it the parameters correctly.
|
|
yuv2planeX_8_ref(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi);
|
|
|
|
call_new(filter, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
|
|
if (cmp_off_by_n(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]), accurate ? 0 : 2)) {
|
|
fail();
|
|
printf("failed: yuv2yuvX_%d_%d_%d_%s\n", filter_sizes[fsi], osi, dstW, accurate_str);
|
|
show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
|
|
}
|
|
if(dstW == LARGEST_INPUT_SIZE)
|
|
bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
|
|
|
|
}
|
|
av_freep(&src);
|
|
av_freep(&vFilterData);
|
|
}
|
|
}
|
|
}
|
|
sws_freeContext(ctx);
|
|
#undef FILTER_SIZES
|
|
}
|
|
|
|
#undef SRC_PIXELS
|
|
#define SRC_PIXELS 512
|
|
|
|
static void check_hscale(void)
|
|
{
|
|
#define MAX_FILTER_WIDTH 40
|
|
#define FILTER_SIZES 6
|
|
static const int filter_sizes[FILTER_SIZES] = { 4, 8, 12, 16, 32, 40 };
|
|
|
|
#define HSCALE_PAIRS 2
|
|
static const int hscale_pairs[HSCALE_PAIRS][2] = {
|
|
{ 8, 14 },
|
|
{ 8, 18 },
|
|
};
|
|
|
|
#define LARGEST_INPUT_SIZE 512
|
|
#define INPUT_SIZES 6
|
|
static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512};
|
|
|
|
int i, j, fsi, hpi, width, dstWi;
|
|
struct SwsContext *ctx;
|
|
|
|
// padded
|
|
LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]);
|
|
LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]);
|
|
LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]);
|
|
|
|
// padded
|
|
LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
|
|
LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]);
|
|
LOCAL_ALIGNED_32(int16_t, filterAvx2, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
|
|
LOCAL_ALIGNED_32(int32_t, filterPosAvx, [SRC_PIXELS]);
|
|
|
|
// The dst parameter here is either int16_t or int32_t but we use void* to
|
|
// just cover both cases.
|
|
declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW,
|
|
const uint8_t *src, const int16_t *filter,
|
|
const int32_t *filterPos, int filterSize);
|
|
|
|
ctx = sws_alloc_context();
|
|
if (sws_init_context(ctx, NULL, NULL) < 0)
|
|
fail();
|
|
|
|
randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1);
|
|
|
|
for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) {
|
|
for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
|
|
for (dstWi = 0; dstWi < INPUT_SIZES; dstWi++) {
|
|
width = filter_sizes[fsi];
|
|
|
|
ctx->srcBpc = hscale_pairs[hpi][0];
|
|
ctx->dstBpc = hscale_pairs[hpi][1];
|
|
ctx->hLumFilterSize = ctx->hChrFilterSize = width;
|
|
|
|
for (i = 0; i < SRC_PIXELS; i++) {
|
|
filterPos[i] = i;
|
|
filterPosAvx[i] = i;
|
|
|
|
// These filter cofficients are chosen to try break two corner
|
|
// cases, namely:
|
|
//
|
|
// - Negative filter coefficients. The filters output signed
|
|
// values, and it should be possible to end up with negative
|
|
// output values.
|
|
//
|
|
// - Positive clipping. The hscale filter function has clipping
|
|
// at (1<<15) - 1
|
|
//
|
|
// The coefficients sum to the 1.0 point for the hscale
|
|
// functions (1 << 14).
|
|
|
|
for (j = 0; j < width; j++) {
|
|
filter[i * width + j] = -((1 << 14) / (width - 1));
|
|
}
|
|
filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
|
|
}
|
|
|
|
for (i = 0; i < MAX_FILTER_WIDTH; i++) {
|
|
// These values should be unused in SIMD implementations but
|
|
// may still be read, random coefficients here should help show
|
|
// issues where they are used in error.
|
|
|
|
filter[SRC_PIXELS * width + i] = rnd();
|
|
}
|
|
ctx->dstW = ctx->chrDstW = input_sizes[dstWi];
|
|
ff_sws_init_scale(ctx);
|
|
memcpy(filterAvx2, filter, sizeof(uint16_t) * (SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH));
|
|
ff_shuffle_filter_coefficients(ctx, filterPosAvx, width, filterAvx2, ctx->dstW);
|
|
|
|
if (check_func(ctx->hcScale, "hscale_%d_to_%d__fs_%d_dstW_%d", ctx->srcBpc, ctx->dstBpc + 1, width, ctx->dstW)) {
|
|
memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
|
|
memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));
|
|
|
|
call_ref(NULL, dst0, ctx->dstW, src, filter, filterPos, width);
|
|
call_new(NULL, dst1, ctx->dstW, src, filterAvx2, filterPosAvx, width);
|
|
if (memcmp(dst0, dst1, ctx->dstW * sizeof(dst0[0])))
|
|
fail();
|
|
bench_new(NULL, dst0, ctx->dstW, src, filter, filterPosAvx, width);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sws_freeContext(ctx);
|
|
}
|
|
|
|
void checkasm_check_sw_scale(void)
|
|
{
|
|
check_hscale();
|
|
report("hscale");
|
|
check_yuv2yuv1(0);
|
|
check_yuv2yuv1(1);
|
|
report("yuv2yuv1");
|
|
check_yuv2yuvX(0);
|
|
check_yuv2yuvX(1);
|
|
report("yuv2yuvX");
|
|
}
|