mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-10 09:09:50 +00:00
1ff93ffcd4
Originally committed as revision 2982 to svn://svn.ffmpeg.org/ffmpeg/trunk
805 lines
23 KiB
C
805 lines
23 KiB
C
/*
|
|
* High quality image resampling with polyphase filters
|
|
* Copyright (c) 2001 Fabrice Bellard.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/**
|
|
* @file imgresample.c
|
|
* High quality image resampling with polyphase filters .
|
|
*/
|
|
|
|
#include "avcodec.h"
|
|
#include "dsputil.h"
|
|
|
|
#ifdef USE_FASTMEMCPY
|
|
#include "fastmemcpy.h"
|
|
#endif
|
|
|
|
#define NB_COMPONENTS 3
|
|
|
|
#define PHASE_BITS 4
|
|
#define NB_PHASES (1 << PHASE_BITS)
|
|
#define NB_TAPS 4
|
|
#define FCENTER 1 /* index of the center of the filter */
|
|
//#define TEST 1 /* Test it */
|
|
|
|
#define POS_FRAC_BITS 16
|
|
#define POS_FRAC (1 << POS_FRAC_BITS)
|
|
/* 6 bits precision is needed for MMX */
|
|
#define FILTER_BITS 8
|
|
|
|
#define LINE_BUF_HEIGHT (NB_TAPS * 4)
|
|
|
|
struct ImgReSampleContext {
|
|
int iwidth, iheight, owidth, oheight;
|
|
int topBand, bottomBand, leftBand, rightBand;
|
|
int padtop, padbottom, padleft, padright;
|
|
int pad_owidth, pad_oheight;
|
|
int h_incr, v_incr;
|
|
int16_t h_filters[NB_PHASES][NB_TAPS] __align8; /* horizontal filters */
|
|
int16_t v_filters[NB_PHASES][NB_TAPS] __align8; /* vertical filters */
|
|
uint8_t *line_buf;
|
|
};
|
|
|
|
static inline int get_phase(int pos)
|
|
{
|
|
return ((pos) >> (POS_FRAC_BITS - PHASE_BITS)) & ((1 << PHASE_BITS) - 1);
|
|
}
|
|
|
|
/* This function must be optimized */
|
|
static void h_resample_fast(uint8_t *dst, int dst_width, const uint8_t *src,
|
|
int src_width, int src_start, int src_incr,
|
|
int16_t *filters)
|
|
{
|
|
int src_pos, phase, sum, i;
|
|
const uint8_t *s;
|
|
int16_t *filter;
|
|
|
|
src_pos = src_start;
|
|
for(i=0;i<dst_width;i++) {
|
|
#ifdef TEST
|
|
/* test */
|
|
if ((src_pos >> POS_FRAC_BITS) < 0 ||
|
|
(src_pos >> POS_FRAC_BITS) > (src_width - NB_TAPS))
|
|
av_abort();
|
|
#endif
|
|
s = src + (src_pos >> POS_FRAC_BITS);
|
|
phase = get_phase(src_pos);
|
|
filter = filters + phase * NB_TAPS;
|
|
#if NB_TAPS == 4
|
|
sum = s[0] * filter[0] +
|
|
s[1] * filter[1] +
|
|
s[2] * filter[2] +
|
|
s[3] * filter[3];
|
|
#else
|
|
{
|
|
int j;
|
|
sum = 0;
|
|
for(j=0;j<NB_TAPS;j++)
|
|
sum += s[j] * filter[j];
|
|
}
|
|
#endif
|
|
sum = sum >> FILTER_BITS;
|
|
if (sum < 0)
|
|
sum = 0;
|
|
else if (sum > 255)
|
|
sum = 255;
|
|
dst[0] = sum;
|
|
src_pos += src_incr;
|
|
dst++;
|
|
}
|
|
}
|
|
|
|
/* This function must be optimized */
|
|
static void v_resample(uint8_t *dst, int dst_width, const uint8_t *src,
|
|
int wrap, int16_t *filter)
|
|
{
|
|
int sum, i;
|
|
const uint8_t *s;
|
|
|
|
s = src;
|
|
for(i=0;i<dst_width;i++) {
|
|
#if NB_TAPS == 4
|
|
sum = s[0 * wrap] * filter[0] +
|
|
s[1 * wrap] * filter[1] +
|
|
s[2 * wrap] * filter[2] +
|
|
s[3 * wrap] * filter[3];
|
|
#else
|
|
{
|
|
int j;
|
|
uint8_t *s1 = s;
|
|
|
|
sum = 0;
|
|
for(j=0;j<NB_TAPS;j++) {
|
|
sum += s1[0] * filter[j];
|
|
s1 += wrap;
|
|
}
|
|
}
|
|
#endif
|
|
sum = sum >> FILTER_BITS;
|
|
if (sum < 0)
|
|
sum = 0;
|
|
else if (sum > 255)
|
|
sum = 255;
|
|
dst[0] = sum;
|
|
dst++;
|
|
s++;
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_MMX
|
|
|
|
#include "i386/mmx.h"
|
|
|
|
#define FILTER4(reg) \
|
|
{\
|
|
s = src + (src_pos >> POS_FRAC_BITS);\
|
|
phase = get_phase(src_pos);\
|
|
filter = filters + phase * NB_TAPS;\
|
|
movq_m2r(*s, reg);\
|
|
punpcklbw_r2r(mm7, reg);\
|
|
movq_m2r(*filter, mm6);\
|
|
pmaddwd_r2r(reg, mm6);\
|
|
movq_r2r(mm6, reg);\
|
|
psrlq_i2r(32, reg);\
|
|
paddd_r2r(mm6, reg);\
|
|
psrad_i2r(FILTER_BITS, reg);\
|
|
src_pos += src_incr;\
|
|
}
|
|
|
|
#define DUMP(reg) movq_r2m(reg, tmp); printf(#reg "=%016Lx\n", tmp.uq);
|
|
|
|
/* XXX: do four pixels at a time */
|
|
static void h_resample_fast4_mmx(uint8_t *dst, int dst_width,
|
|
const uint8_t *src, int src_width,
|
|
int src_start, int src_incr, int16_t *filters)
|
|
{
|
|
int src_pos, phase;
|
|
const uint8_t *s;
|
|
int16_t *filter;
|
|
mmx_t tmp;
|
|
|
|
src_pos = src_start;
|
|
pxor_r2r(mm7, mm7);
|
|
|
|
while (dst_width >= 4) {
|
|
|
|
FILTER4(mm0);
|
|
FILTER4(mm1);
|
|
FILTER4(mm2);
|
|
FILTER4(mm3);
|
|
|
|
packuswb_r2r(mm7, mm0);
|
|
packuswb_r2r(mm7, mm1);
|
|
packuswb_r2r(mm7, mm3);
|
|
packuswb_r2r(mm7, mm2);
|
|
movq_r2m(mm0, tmp);
|
|
dst[0] = tmp.ub[0];
|
|
movq_r2m(mm1, tmp);
|
|
dst[1] = tmp.ub[0];
|
|
movq_r2m(mm2, tmp);
|
|
dst[2] = tmp.ub[0];
|
|
movq_r2m(mm3, tmp);
|
|
dst[3] = tmp.ub[0];
|
|
dst += 4;
|
|
dst_width -= 4;
|
|
}
|
|
while (dst_width > 0) {
|
|
FILTER4(mm0);
|
|
packuswb_r2r(mm7, mm0);
|
|
movq_r2m(mm0, tmp);
|
|
dst[0] = tmp.ub[0];
|
|
dst++;
|
|
dst_width--;
|
|
}
|
|
emms();
|
|
}
|
|
|
|
static void v_resample4_mmx(uint8_t *dst, int dst_width, const uint8_t *src,
|
|
int wrap, int16_t *filter)
|
|
{
|
|
int sum, i, v;
|
|
const uint8_t *s;
|
|
mmx_t tmp;
|
|
mmx_t coefs[4];
|
|
|
|
for(i=0;i<4;i++) {
|
|
v = filter[i];
|
|
coefs[i].uw[0] = v;
|
|
coefs[i].uw[1] = v;
|
|
coefs[i].uw[2] = v;
|
|
coefs[i].uw[3] = v;
|
|
}
|
|
|
|
pxor_r2r(mm7, mm7);
|
|
s = src;
|
|
while (dst_width >= 4) {
|
|
movq_m2r(s[0 * wrap], mm0);
|
|
punpcklbw_r2r(mm7, mm0);
|
|
movq_m2r(s[1 * wrap], mm1);
|
|
punpcklbw_r2r(mm7, mm1);
|
|
movq_m2r(s[2 * wrap], mm2);
|
|
punpcklbw_r2r(mm7, mm2);
|
|
movq_m2r(s[3 * wrap], mm3);
|
|
punpcklbw_r2r(mm7, mm3);
|
|
|
|
pmullw_m2r(coefs[0], mm0);
|
|
pmullw_m2r(coefs[1], mm1);
|
|
pmullw_m2r(coefs[2], mm2);
|
|
pmullw_m2r(coefs[3], mm3);
|
|
|
|
paddw_r2r(mm1, mm0);
|
|
paddw_r2r(mm3, mm2);
|
|
paddw_r2r(mm2, mm0);
|
|
psraw_i2r(FILTER_BITS, mm0);
|
|
|
|
packuswb_r2r(mm7, mm0);
|
|
movq_r2m(mm0, tmp);
|
|
|
|
*(uint32_t *)dst = tmp.ud[0];
|
|
dst += 4;
|
|
s += 4;
|
|
dst_width -= 4;
|
|
}
|
|
while (dst_width > 0) {
|
|
sum = s[0 * wrap] * filter[0] +
|
|
s[1 * wrap] * filter[1] +
|
|
s[2 * wrap] * filter[2] +
|
|
s[3 * wrap] * filter[3];
|
|
sum = sum >> FILTER_BITS;
|
|
if (sum < 0)
|
|
sum = 0;
|
|
else if (sum > 255)
|
|
sum = 255;
|
|
dst[0] = sum;
|
|
dst++;
|
|
s++;
|
|
dst_width--;
|
|
}
|
|
emms();
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_ALTIVEC
|
|
typedef union {
|
|
vector unsigned char v;
|
|
unsigned char c[16];
|
|
} vec_uc_t;
|
|
|
|
typedef union {
|
|
vector signed short v;
|
|
signed short s[8];
|
|
} vec_ss_t;
|
|
|
|
void v_resample16_altivec(uint8_t *dst, int dst_width, const uint8_t *src,
|
|
int wrap, int16_t *filter)
|
|
{
|
|
int sum, i;
|
|
const uint8_t *s;
|
|
vector unsigned char *tv, tmp, dstv, zero;
|
|
vec_ss_t srchv[4], srclv[4], fv[4];
|
|
vector signed short zeros, sumhv, sumlv;
|
|
s = src;
|
|
|
|
for(i=0;i<4;i++)
|
|
{
|
|
/*
|
|
The vec_madds later on does an implicit >>15 on the result.
|
|
Since FILTER_BITS is 8, and we have 15 bits of magnitude in
|
|
a signed short, we have just enough bits to pre-shift our
|
|
filter constants <<7 to compensate for vec_madds.
|
|
*/
|
|
fv[i].s[0] = filter[i] << (15-FILTER_BITS);
|
|
fv[i].v = vec_splat(fv[i].v, 0);
|
|
}
|
|
|
|
zero = vec_splat_u8(0);
|
|
zeros = vec_splat_s16(0);
|
|
|
|
|
|
/*
|
|
When we're resampling, we'd ideally like both our input buffers,
|
|
and output buffers to be 16-byte aligned, so we can do both aligned
|
|
reads and writes. Sadly we can't always have this at the moment, so
|
|
we opt for aligned writes, as unaligned writes have a huge overhead.
|
|
To do this, do enough scalar resamples to get dst 16-byte aligned.
|
|
*/
|
|
i = (-(int)dst) & 0xf;
|
|
while(i>0) {
|
|
sum = s[0 * wrap] * filter[0] +
|
|
s[1 * wrap] * filter[1] +
|
|
s[2 * wrap] * filter[2] +
|
|
s[3 * wrap] * filter[3];
|
|
sum = sum >> FILTER_BITS;
|
|
if (sum<0) sum = 0; else if (sum>255) sum=255;
|
|
dst[0] = sum;
|
|
dst++;
|
|
s++;
|
|
dst_width--;
|
|
i--;
|
|
}
|
|
|
|
/* Do our altivec resampling on 16 pixels at once. */
|
|
while(dst_width>=16) {
|
|
/*
|
|
Read 16 (potentially unaligned) bytes from each of
|
|
4 lines into 4 vectors, and split them into shorts.
|
|
Interleave the multipy/accumulate for the resample
|
|
filter with the loads to hide the 3 cycle latency
|
|
the vec_madds have.
|
|
*/
|
|
tv = (vector unsigned char *) &s[0 * wrap];
|
|
tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[i * wrap]));
|
|
srchv[0].v = (vector signed short) vec_mergeh(zero, tmp);
|
|
srclv[0].v = (vector signed short) vec_mergel(zero, tmp);
|
|
sumhv = vec_madds(srchv[0].v, fv[0].v, zeros);
|
|
sumlv = vec_madds(srclv[0].v, fv[0].v, zeros);
|
|
|
|
tv = (vector unsigned char *) &s[1 * wrap];
|
|
tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[1 * wrap]));
|
|
srchv[1].v = (vector signed short) vec_mergeh(zero, tmp);
|
|
srclv[1].v = (vector signed short) vec_mergel(zero, tmp);
|
|
sumhv = vec_madds(srchv[1].v, fv[1].v, sumhv);
|
|
sumlv = vec_madds(srclv[1].v, fv[1].v, sumlv);
|
|
|
|
tv = (vector unsigned char *) &s[2 * wrap];
|
|
tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[2 * wrap]));
|
|
srchv[2].v = (vector signed short) vec_mergeh(zero, tmp);
|
|
srclv[2].v = (vector signed short) vec_mergel(zero, tmp);
|
|
sumhv = vec_madds(srchv[2].v, fv[2].v, sumhv);
|
|
sumlv = vec_madds(srclv[2].v, fv[2].v, sumlv);
|
|
|
|
tv = (vector unsigned char *) &s[3 * wrap];
|
|
tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[3 * wrap]));
|
|
srchv[3].v = (vector signed short) vec_mergeh(zero, tmp);
|
|
srclv[3].v = (vector signed short) vec_mergel(zero, tmp);
|
|
sumhv = vec_madds(srchv[3].v, fv[3].v, sumhv);
|
|
sumlv = vec_madds(srclv[3].v, fv[3].v, sumlv);
|
|
|
|
/*
|
|
Pack the results into our destination vector,
|
|
and do an aligned write of that back to memory.
|
|
*/
|
|
dstv = vec_packsu(sumhv, sumlv) ;
|
|
vec_st(dstv, 0, (vector unsigned char *) dst);
|
|
|
|
dst+=16;
|
|
s+=16;
|
|
dst_width-=16;
|
|
}
|
|
|
|
/*
|
|
If there are any leftover pixels, resample them
|
|
with the slow scalar method.
|
|
*/
|
|
while(dst_width>0) {
|
|
sum = s[0 * wrap] * filter[0] +
|
|
s[1 * wrap] * filter[1] +
|
|
s[2 * wrap] * filter[2] +
|
|
s[3 * wrap] * filter[3];
|
|
sum = sum >> FILTER_BITS;
|
|
if (sum<0) sum = 0; else if (sum>255) sum=255;
|
|
dst[0] = sum;
|
|
dst++;
|
|
s++;
|
|
dst_width--;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* slow version to handle limit cases. Does not need optimisation */
|
|
static void h_resample_slow(uint8_t *dst, int dst_width,
|
|
const uint8_t *src, int src_width,
|
|
int src_start, int src_incr, int16_t *filters)
|
|
{
|
|
int src_pos, phase, sum, j, v, i;
|
|
const uint8_t *s, *src_end;
|
|
int16_t *filter;
|
|
|
|
src_end = src + src_width;
|
|
src_pos = src_start;
|
|
for(i=0;i<dst_width;i++) {
|
|
s = src + (src_pos >> POS_FRAC_BITS);
|
|
phase = get_phase(src_pos);
|
|
filter = filters + phase * NB_TAPS;
|
|
sum = 0;
|
|
for(j=0;j<NB_TAPS;j++) {
|
|
if (s < src)
|
|
v = src[0];
|
|
else if (s >= src_end)
|
|
v = src_end[-1];
|
|
else
|
|
v = s[0];
|
|
sum += v * filter[j];
|
|
s++;
|
|
}
|
|
sum = sum >> FILTER_BITS;
|
|
if (sum < 0)
|
|
sum = 0;
|
|
else if (sum > 255)
|
|
sum = 255;
|
|
dst[0] = sum;
|
|
src_pos += src_incr;
|
|
dst++;
|
|
}
|
|
}
|
|
|
|
static void h_resample(uint8_t *dst, int dst_width, const uint8_t *src,
|
|
int src_width, int src_start, int src_incr,
|
|
int16_t *filters)
|
|
{
|
|
int n, src_end;
|
|
|
|
if (src_start < 0) {
|
|
n = (0 - src_start + src_incr - 1) / src_incr;
|
|
h_resample_slow(dst, n, src, src_width, src_start, src_incr, filters);
|
|
dst += n;
|
|
dst_width -= n;
|
|
src_start += n * src_incr;
|
|
}
|
|
src_end = src_start + dst_width * src_incr;
|
|
if (src_end > ((src_width - NB_TAPS) << POS_FRAC_BITS)) {
|
|
n = (((src_width - NB_TAPS + 1) << POS_FRAC_BITS) - 1 - src_start) /
|
|
src_incr;
|
|
} else {
|
|
n = dst_width;
|
|
}
|
|
#ifdef HAVE_MMX
|
|
if ((mm_flags & MM_MMX) && NB_TAPS == 4)
|
|
h_resample_fast4_mmx(dst, n,
|
|
src, src_width, src_start, src_incr, filters);
|
|
else
|
|
#endif
|
|
h_resample_fast(dst, n,
|
|
src, src_width, src_start, src_incr, filters);
|
|
if (n < dst_width) {
|
|
dst += n;
|
|
dst_width -= n;
|
|
src_start += n * src_incr;
|
|
h_resample_slow(dst, dst_width,
|
|
src, src_width, src_start, src_incr, filters);
|
|
}
|
|
}
|
|
|
|
static void component_resample(ImgReSampleContext *s,
|
|
uint8_t *output, int owrap, int owidth, int oheight,
|
|
uint8_t *input, int iwrap, int iwidth, int iheight)
|
|
{
|
|
int src_y, src_y1, last_src_y, ring_y, phase_y, y1, y;
|
|
uint8_t *new_line, *src_line;
|
|
|
|
last_src_y = - FCENTER - 1;
|
|
/* position of the bottom of the filter in the source image */
|
|
src_y = (last_src_y + NB_TAPS) * POS_FRAC;
|
|
ring_y = NB_TAPS; /* position in ring buffer */
|
|
for(y=0;y<oheight;y++) {
|
|
/* apply horizontal filter on new lines from input if needed */
|
|
src_y1 = src_y >> POS_FRAC_BITS;
|
|
while (last_src_y < src_y1) {
|
|
if (++ring_y >= LINE_BUF_HEIGHT + NB_TAPS)
|
|
ring_y = NB_TAPS;
|
|
last_src_y++;
|
|
/* handle limit conditions : replicate line (slightly
|
|
inefficient because we filter multiple times) */
|
|
y1 = last_src_y;
|
|
if (y1 < 0) {
|
|
y1 = 0;
|
|
} else if (y1 >= iheight) {
|
|
y1 = iheight - 1;
|
|
}
|
|
src_line = input + y1 * iwrap;
|
|
new_line = s->line_buf + ring_y * owidth;
|
|
/* apply filter and handle limit cases correctly */
|
|
h_resample(new_line, owidth,
|
|
src_line, iwidth, - FCENTER * POS_FRAC, s->h_incr,
|
|
&s->h_filters[0][0]);
|
|
/* handle ring buffer wraping */
|
|
if (ring_y >= LINE_BUF_HEIGHT) {
|
|
memcpy(s->line_buf + (ring_y - LINE_BUF_HEIGHT) * owidth,
|
|
new_line, owidth);
|
|
}
|
|
}
|
|
/* apply vertical filter */
|
|
phase_y = get_phase(src_y);
|
|
#ifdef HAVE_MMX
|
|
/* desactivated MMX because loss of precision */
|
|
if ((mm_flags & MM_MMX) && NB_TAPS == 4 && 0)
|
|
v_resample4_mmx(output, owidth,
|
|
s->line_buf + (ring_y - NB_TAPS + 1) * owidth, owidth,
|
|
&s->v_filters[phase_y][0]);
|
|
else
|
|
#endif
|
|
#ifdef HAVE_ALTIVEC
|
|
if ((mm_flags & MM_ALTIVEC) && NB_TAPS == 4 && FILTER_BITS <= 6)
|
|
v_resample16_altivec(output, owidth,
|
|
s->line_buf + (ring_y - NB_TAPS + 1) * owidth, owidth,
|
|
&s->v_filters[phase_y][0]);
|
|
else
|
|
#endif
|
|
v_resample(output, owidth,
|
|
s->line_buf + (ring_y - NB_TAPS + 1) * owidth, owidth,
|
|
&s->v_filters[phase_y][0]);
|
|
|
|
src_y += s->v_incr;
|
|
|
|
output += owrap;
|
|
}
|
|
}
|
|
|
|
/* XXX: the following filter is quite naive, but it seems to suffice
|
|
for 4 taps */
|
|
static void build_filter(int16_t *filter, float factor)
|
|
{
|
|
int ph, i, v;
|
|
float x, y, tab[NB_TAPS], norm, mult;
|
|
|
|
/* if upsampling, only need to interpolate, no filter */
|
|
if (factor > 1.0)
|
|
factor = 1.0;
|
|
|
|
for(ph=0;ph<NB_PHASES;ph++) {
|
|
norm = 0;
|
|
for(i=0;i<NB_TAPS;i++) {
|
|
|
|
x = M_PI * ((float)(i - FCENTER) - (float)ph / NB_PHASES) * factor;
|
|
if (x == 0)
|
|
y = 1.0;
|
|
else
|
|
y = sin(x) / x;
|
|
tab[i] = y;
|
|
norm += y;
|
|
}
|
|
|
|
/* normalize so that an uniform color remains the same */
|
|
mult = (float)(1 << FILTER_BITS) / norm;
|
|
for(i=0;i<NB_TAPS;i++) {
|
|
v = (int)(tab[i] * mult);
|
|
filter[ph * NB_TAPS + i] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
ImgReSampleContext *img_resample_init(int owidth, int oheight,
|
|
int iwidth, int iheight)
|
|
{
|
|
return img_resample_full_init(owidth, oheight, iwidth, iheight,
|
|
0, 0, 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
ImgReSampleContext *img_resample_full_init(int owidth, int oheight,
|
|
int iwidth, int iheight,
|
|
int topBand, int bottomBand,
|
|
int leftBand, int rightBand,
|
|
int padtop, int padbottom,
|
|
int padleft, int padright)
|
|
{
|
|
ImgReSampleContext *s;
|
|
|
|
s = av_mallocz(sizeof(ImgReSampleContext));
|
|
if (!s)
|
|
return NULL;
|
|
s->line_buf = av_mallocz(owidth * (LINE_BUF_HEIGHT + NB_TAPS));
|
|
if (!s->line_buf)
|
|
goto fail;
|
|
|
|
s->owidth = owidth;
|
|
s->oheight = oheight;
|
|
s->iwidth = iwidth;
|
|
s->iheight = iheight;
|
|
|
|
s->topBand = topBand;
|
|
s->bottomBand = bottomBand;
|
|
s->leftBand = leftBand;
|
|
s->rightBand = rightBand;
|
|
|
|
s->padtop = padtop;
|
|
s->padbottom = padbottom;
|
|
s->padleft = padleft;
|
|
s->padright = padright;
|
|
|
|
s->pad_owidth = owidth - (padleft + padright);
|
|
s->pad_oheight = oheight - (padtop + padbottom);
|
|
|
|
s->h_incr = ((iwidth - leftBand - rightBand) * POS_FRAC) / s->pad_owidth;
|
|
s->v_incr = ((iheight - topBand - bottomBand) * POS_FRAC) / s->pad_oheight;
|
|
|
|
build_filter(&s->h_filters[0][0], (float) s->pad_owidth /
|
|
(float) (iwidth - leftBand - rightBand));
|
|
build_filter(&s->v_filters[0][0], (float) s->pad_oheight /
|
|
(float) (iheight - topBand - bottomBand));
|
|
|
|
return s;
|
|
fail:
|
|
av_free(s);
|
|
return NULL;
|
|
}
|
|
|
|
void img_resample(ImgReSampleContext *s,
|
|
AVPicture *output, const AVPicture *input)
|
|
{
|
|
int i, shift;
|
|
uint8_t* optr;
|
|
|
|
for (i=0;i<3;i++) {
|
|
shift = (i == 0) ? 0 : 1;
|
|
|
|
optr = output->data[i] + (((output->linesize[i] *
|
|
s->padtop) + s->padleft) >> shift);
|
|
|
|
component_resample(s, optr, output->linesize[i],
|
|
s->pad_owidth >> shift, s->pad_oheight >> shift,
|
|
input->data[i] + (input->linesize[i] *
|
|
(s->topBand >> shift)) + (s->leftBand >> shift),
|
|
input->linesize[i], ((s->iwidth - s->leftBand -
|
|
s->rightBand) >> shift),
|
|
(s->iheight - s->topBand - s->bottomBand) >> shift);
|
|
}
|
|
}
|
|
|
|
void img_resample_close(ImgReSampleContext *s)
|
|
{
|
|
av_free(s->line_buf);
|
|
av_free(s);
|
|
}
|
|
|
|
#ifdef TEST
|
|
|
|
void *av_mallocz(int size)
|
|
{
|
|
void *ptr;
|
|
ptr = malloc(size);
|
|
memset(ptr, 0, size);
|
|
return ptr;
|
|
}
|
|
|
|
void av_free(void *ptr)
|
|
{
|
|
/* XXX: this test should not be needed on most libcs */
|
|
if (ptr)
|
|
free(ptr);
|
|
}
|
|
|
|
/* input */
|
|
#define XSIZE 256
|
|
#define YSIZE 256
|
|
uint8_t img[XSIZE * YSIZE];
|
|
|
|
/* output */
|
|
#define XSIZE1 512
|
|
#define YSIZE1 512
|
|
uint8_t img1[XSIZE1 * YSIZE1];
|
|
uint8_t img2[XSIZE1 * YSIZE1];
|
|
|
|
void save_pgm(const char *filename, uint8_t *img, int xsize, int ysize)
|
|
{
|
|
FILE *f;
|
|
f=fopen(filename,"w");
|
|
fprintf(f,"P5\n%d %d\n%d\n", xsize, ysize, 255);
|
|
fwrite(img,1, xsize * ysize,f);
|
|
fclose(f);
|
|
}
|
|
|
|
static void dump_filter(int16_t *filter)
|
|
{
|
|
int i, ph;
|
|
|
|
for(ph=0;ph<NB_PHASES;ph++) {
|
|
printf("%2d: ", ph);
|
|
for(i=0;i<NB_TAPS;i++) {
|
|
printf(" %5.2f", filter[ph * NB_TAPS + i] / 256.0);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_MMX
|
|
int mm_flags;
|
|
#endif
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
int x, y, v, i, xsize, ysize;
|
|
ImgReSampleContext *s;
|
|
float fact, factors[] = { 1/2.0, 3.0/4.0, 1.0, 4.0/3.0, 16.0/9.0, 2.0 };
|
|
char buf[256];
|
|
|
|
/* build test image */
|
|
for(y=0;y<YSIZE;y++) {
|
|
for(x=0;x<XSIZE;x++) {
|
|
if (x < XSIZE/2 && y < YSIZE/2) {
|
|
if (x < XSIZE/4 && y < YSIZE/4) {
|
|
if ((x % 10) <= 6 &&
|
|
(y % 10) <= 6)
|
|
v = 0xff;
|
|
else
|
|
v = 0x00;
|
|
} else if (x < XSIZE/4) {
|
|
if (x & 1)
|
|
v = 0xff;
|
|
else
|
|
v = 0;
|
|
} else if (y < XSIZE/4) {
|
|
if (y & 1)
|
|
v = 0xff;
|
|
else
|
|
v = 0;
|
|
} else {
|
|
if (y < YSIZE*3/8) {
|
|
if ((y+x) & 1)
|
|
v = 0xff;
|
|
else
|
|
v = 0;
|
|
} else {
|
|
if (((x+3) % 4) <= 1 &&
|
|
((y+3) % 4) <= 1)
|
|
v = 0xff;
|
|
else
|
|
v = 0x00;
|
|
}
|
|
}
|
|
} else if (x < XSIZE/2) {
|
|
v = ((x - (XSIZE/2)) * 255) / (XSIZE/2);
|
|
} else if (y < XSIZE/2) {
|
|
v = ((y - (XSIZE/2)) * 255) / (XSIZE/2);
|
|
} else {
|
|
v = ((x + y - XSIZE) * 255) / XSIZE;
|
|
}
|
|
img[(YSIZE - y) * XSIZE + (XSIZE - x)] = v;
|
|
}
|
|
}
|
|
save_pgm("/tmp/in.pgm", img, XSIZE, YSIZE);
|
|
for(i=0;i<sizeof(factors)/sizeof(float);i++) {
|
|
fact = factors[i];
|
|
xsize = (int)(XSIZE * fact);
|
|
ysize = (int)((YSIZE - 100) * fact);
|
|
s = img_resample_full_init(xsize, ysize, XSIZE, YSIZE, 50 ,50, 0, 0);
|
|
printf("Factor=%0.2f\n", fact);
|
|
dump_filter(&s->h_filters[0][0]);
|
|
component_resample(s, img1, xsize, xsize, ysize,
|
|
img + 50 * XSIZE, XSIZE, XSIZE, YSIZE - 100);
|
|
img_resample_close(s);
|
|
|
|
sprintf(buf, "/tmp/out%d.pgm", i);
|
|
save_pgm(buf, img1, xsize, ysize);
|
|
}
|
|
|
|
/* mmx test */
|
|
#ifdef HAVE_MMX
|
|
printf("MMX test\n");
|
|
fact = 0.72;
|
|
xsize = (int)(XSIZE * fact);
|
|
ysize = (int)(YSIZE * fact);
|
|
mm_flags = MM_MMX;
|
|
s = img_resample_init(xsize, ysize, XSIZE, YSIZE);
|
|
component_resample(s, img1, xsize, xsize, ysize,
|
|
img, XSIZE, XSIZE, YSIZE);
|
|
|
|
mm_flags = 0;
|
|
s = img_resample_init(xsize, ysize, XSIZE, YSIZE);
|
|
component_resample(s, img2, xsize, xsize, ysize,
|
|
img, XSIZE, XSIZE, YSIZE);
|
|
if (memcmp(img1, img2, xsize * ysize) != 0) {
|
|
fprintf(stderr, "mmx error\n");
|
|
exit(1);
|
|
}
|
|
printf("MMX OK\n");
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#endif
|