mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-25 00:33:26 +00:00
42e2319ba9
Simply moves and templates the actual transforms to support an additional data type. Unlike the float version, which is equal or better than libfftw3f, double precision output is bit identical with libfftw3.
644 lines
26 KiB
C
644 lines
26 KiB
C
/*
|
|
* Copyright (c) 2019 Lynne <dev@lynne.ee>
|
|
* Power of two FFT:
|
|
* Copyright (c) 2008 Loren Merritt
|
|
* Copyright (c) 2002 Fabrice Bellard
|
|
* Partly based on libdjbfft by D. J. Bernstein
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/* All costabs for a type are defined here */
|
|
COSTABLE(16);
|
|
COSTABLE(32);
|
|
COSTABLE(64);
|
|
COSTABLE(128);
|
|
COSTABLE(256);
|
|
COSTABLE(512);
|
|
COSTABLE(1024);
|
|
COSTABLE(2048);
|
|
COSTABLE(4096);
|
|
COSTABLE(8192);
|
|
COSTABLE(16384);
|
|
COSTABLE(32768);
|
|
COSTABLE(65536);
|
|
COSTABLE(131072);
|
|
DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_53))[4];
|
|
|
|
static FFTSample * const cos_tabs[18] = {
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
TX_NAME(ff_cos_16),
|
|
TX_NAME(ff_cos_32),
|
|
TX_NAME(ff_cos_64),
|
|
TX_NAME(ff_cos_128),
|
|
TX_NAME(ff_cos_256),
|
|
TX_NAME(ff_cos_512),
|
|
TX_NAME(ff_cos_1024),
|
|
TX_NAME(ff_cos_2048),
|
|
TX_NAME(ff_cos_4096),
|
|
TX_NAME(ff_cos_8192),
|
|
TX_NAME(ff_cos_16384),
|
|
TX_NAME(ff_cos_32768),
|
|
TX_NAME(ff_cos_65536),
|
|
TX_NAME(ff_cos_131072),
|
|
};
|
|
|
|
static av_always_inline void init_cos_tabs_idx(int index)
|
|
{
|
|
int m = 1 << index;
|
|
double freq = 2*M_PI/m;
|
|
FFTSample *tab = cos_tabs[index];
|
|
for(int i = 0; i <= m/4; i++)
|
|
tab[i] = cos(i*freq);
|
|
for(int i = 1; i < m/4; i++)
|
|
tab[m/2 - i] = tab[i];
|
|
}
|
|
|
|
#define INIT_FF_COS_TABS_FUNC(index, size) \
|
|
static av_cold void init_cos_tabs_ ## size (void) \
|
|
{ \
|
|
init_cos_tabs_idx(index); \
|
|
}
|
|
|
|
INIT_FF_COS_TABS_FUNC(4, 16)
|
|
INIT_FF_COS_TABS_FUNC(5, 32)
|
|
INIT_FF_COS_TABS_FUNC(6, 64)
|
|
INIT_FF_COS_TABS_FUNC(7, 128)
|
|
INIT_FF_COS_TABS_FUNC(8, 256)
|
|
INIT_FF_COS_TABS_FUNC(9, 512)
|
|
INIT_FF_COS_TABS_FUNC(10, 1024)
|
|
INIT_FF_COS_TABS_FUNC(11, 2048)
|
|
INIT_FF_COS_TABS_FUNC(12, 4096)
|
|
INIT_FF_COS_TABS_FUNC(13, 8192)
|
|
INIT_FF_COS_TABS_FUNC(14, 16384)
|
|
INIT_FF_COS_TABS_FUNC(15, 32768)
|
|
INIT_FF_COS_TABS_FUNC(16, 65536)
|
|
INIT_FF_COS_TABS_FUNC(17, 131072)
|
|
|
|
static av_cold void ff_init_53_tabs(void)
|
|
{
|
|
TX_NAME(ff_cos_53)[0] = (FFTComplex){ cos(2 * M_PI / 12), cos(2 * M_PI / 12) };
|
|
TX_NAME(ff_cos_53)[1] = (FFTComplex){ 0.5, 0.5 };
|
|
TX_NAME(ff_cos_53)[2] = (FFTComplex){ cos(2 * M_PI / 5), sin(2 * M_PI / 5) };
|
|
TX_NAME(ff_cos_53)[3] = (FFTComplex){ cos(2 * M_PI / 10), sin(2 * M_PI / 10) };
|
|
}
|
|
|
|
static CosTabsInitOnce cos_tabs_init_once[] = {
|
|
{ ff_init_53_tabs, AV_ONCE_INIT },
|
|
{ NULL },
|
|
{ NULL },
|
|
{ NULL },
|
|
{ init_cos_tabs_16, AV_ONCE_INIT },
|
|
{ init_cos_tabs_32, AV_ONCE_INIT },
|
|
{ init_cos_tabs_64, AV_ONCE_INIT },
|
|
{ init_cos_tabs_128, AV_ONCE_INIT },
|
|
{ init_cos_tabs_256, AV_ONCE_INIT },
|
|
{ init_cos_tabs_512, AV_ONCE_INIT },
|
|
{ init_cos_tabs_1024, AV_ONCE_INIT },
|
|
{ init_cos_tabs_2048, AV_ONCE_INIT },
|
|
{ init_cos_tabs_4096, AV_ONCE_INIT },
|
|
{ init_cos_tabs_8192, AV_ONCE_INIT },
|
|
{ init_cos_tabs_16384, AV_ONCE_INIT },
|
|
{ init_cos_tabs_32768, AV_ONCE_INIT },
|
|
{ init_cos_tabs_65536, AV_ONCE_INIT },
|
|
{ init_cos_tabs_131072, AV_ONCE_INIT },
|
|
};
|
|
|
|
static av_cold void init_cos_tabs(int index)
|
|
{
|
|
ff_thread_once(&cos_tabs_init_once[index].control,
|
|
cos_tabs_init_once[index].func);
|
|
}
|
|
|
|
static av_always_inline void fft3(FFTComplex *out, FFTComplex *in,
|
|
ptrdiff_t stride)
|
|
{
|
|
FFTComplex tmp[2];
|
|
|
|
tmp[0].re = in[1].im - in[2].im;
|
|
tmp[0].im = in[1].re - in[2].re;
|
|
tmp[1].re = in[1].re + in[2].re;
|
|
tmp[1].im = in[1].im + in[2].im;
|
|
|
|
out[0*stride].re = in[0].re + tmp[1].re;
|
|
out[0*stride].im = in[0].im + tmp[1].im;
|
|
|
|
tmp[0].re *= TX_NAME(ff_cos_53)[0].re;
|
|
tmp[0].im *= TX_NAME(ff_cos_53)[0].im;
|
|
tmp[1].re *= TX_NAME(ff_cos_53)[1].re;
|
|
tmp[1].im *= TX_NAME(ff_cos_53)[1].re;
|
|
|
|
out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re;
|
|
out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im;
|
|
out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re;
|
|
out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im;
|
|
}
|
|
|
|
#define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \
|
|
static av_always_inline void NAME(FFTComplex *out, FFTComplex *in, \
|
|
ptrdiff_t stride) \
|
|
{ \
|
|
FFTComplex z0[4], t[6]; \
|
|
\
|
|
t[0].re = in[1].re + in[4].re; \
|
|
t[0].im = in[1].im + in[4].im; \
|
|
t[1].im = in[1].re - in[4].re; \
|
|
t[1].re = in[1].im - in[4].im; \
|
|
t[2].re = in[2].re + in[3].re; \
|
|
t[2].im = in[2].im + in[3].im; \
|
|
t[3].im = in[2].re - in[3].re; \
|
|
t[3].re = in[2].im - in[3].im; \
|
|
\
|
|
out[D0*stride].re = in[0].re + in[1].re + in[2].re + \
|
|
in[3].re + in[4].re; \
|
|
out[D0*stride].im = in[0].im + in[1].im + in[2].im + \
|
|
in[3].im + in[4].im; \
|
|
\
|
|
t[4].re = TX_NAME(ff_cos_53)[2].re * t[2].re; \
|
|
t[4].im = TX_NAME(ff_cos_53)[2].re * t[2].im; \
|
|
t[4].re -= TX_NAME(ff_cos_53)[3].re * t[0].re; \
|
|
t[4].im -= TX_NAME(ff_cos_53)[3].re * t[0].im; \
|
|
t[0].re = TX_NAME(ff_cos_53)[2].re * t[0].re; \
|
|
t[0].im = TX_NAME(ff_cos_53)[2].re * t[0].im; \
|
|
t[0].re -= TX_NAME(ff_cos_53)[3].re * t[2].re; \
|
|
t[0].im -= TX_NAME(ff_cos_53)[3].re * t[2].im; \
|
|
t[5].re = TX_NAME(ff_cos_53)[2].im * t[3].re; \
|
|
t[5].im = TX_NAME(ff_cos_53)[2].im * t[3].im; \
|
|
t[5].re -= TX_NAME(ff_cos_53)[3].im * t[1].re; \
|
|
t[5].im -= TX_NAME(ff_cos_53)[3].im * t[1].im; \
|
|
t[1].re = TX_NAME(ff_cos_53)[2].im * t[1].re; \
|
|
t[1].im = TX_NAME(ff_cos_53)[2].im * t[1].im; \
|
|
t[1].re += TX_NAME(ff_cos_53)[3].im * t[3].re; \
|
|
t[1].im += TX_NAME(ff_cos_53)[3].im * t[3].im; \
|
|
\
|
|
z0[0].re = t[0].re - t[1].re; \
|
|
z0[0].im = t[0].im - t[1].im; \
|
|
z0[1].re = t[4].re + t[5].re; \
|
|
z0[1].im = t[4].im + t[5].im; \
|
|
\
|
|
z0[2].re = t[4].re - t[5].re; \
|
|
z0[2].im = t[4].im - t[5].im; \
|
|
z0[3].re = t[0].re + t[1].re; \
|
|
z0[3].im = t[0].im + t[1].im; \
|
|
\
|
|
out[D1*stride].re = in[0].re + z0[3].re; \
|
|
out[D1*stride].im = in[0].im + z0[0].im; \
|
|
out[D2*stride].re = in[0].re + z0[2].re; \
|
|
out[D2*stride].im = in[0].im + z0[1].im; \
|
|
out[D3*stride].re = in[0].re + z0[1].re; \
|
|
out[D3*stride].im = in[0].im + z0[2].im; \
|
|
out[D4*stride].re = in[0].re + z0[0].re; \
|
|
out[D4*stride].im = in[0].im + z0[3].im; \
|
|
}
|
|
|
|
DECL_FFT5(fft5, 0, 1, 2, 3, 4)
|
|
DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9)
|
|
DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4)
|
|
DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14)
|
|
|
|
static av_always_inline void fft15(FFTComplex *out, FFTComplex *in,
|
|
ptrdiff_t stride)
|
|
{
|
|
FFTComplex tmp[15];
|
|
|
|
for (int i = 0; i < 5; i++)
|
|
fft3(tmp + i, in + i*3, 5);
|
|
|
|
fft5_m1(out, tmp + 0, stride);
|
|
fft5_m2(out, tmp + 5, stride);
|
|
fft5_m3(out, tmp + 10, stride);
|
|
}
|
|
|
|
#define BUTTERFLIES(a0,a1,a2,a3) {\
|
|
BF(t3, t5, t5, t1);\
|
|
BF(a2.re, a0.re, a0.re, t5);\
|
|
BF(a3.im, a1.im, a1.im, t3);\
|
|
BF(t4, t6, t2, t6);\
|
|
BF(a3.re, a1.re, a1.re, t4);\
|
|
BF(a2.im, a0.im, a0.im, t6);\
|
|
}
|
|
|
|
// force loading all the inputs before storing any.
|
|
// this is slightly slower for small data, but avoids store->load aliasing
|
|
// for addresses separated by large powers of 2.
|
|
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
|
|
FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
|
|
BF(t3, t5, t5, t1);\
|
|
BF(a2.re, a0.re, r0, t5);\
|
|
BF(a3.im, a1.im, i1, t3);\
|
|
BF(t4, t6, t2, t6);\
|
|
BF(a3.re, a1.re, r1, t4);\
|
|
BF(a2.im, a0.im, i0, t6);\
|
|
}
|
|
|
|
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
|
|
CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
|
|
CMUL(t5, t6, a3.re, a3.im, wre, wim);\
|
|
BUTTERFLIES(a0,a1,a2,a3)\
|
|
}
|
|
|
|
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
|
|
t1 = a2.re;\
|
|
t2 = a2.im;\
|
|
t5 = a3.re;\
|
|
t6 = a3.im;\
|
|
BUTTERFLIES(a0,a1,a2,a3)\
|
|
}
|
|
|
|
/* z[0...8n-1], w[1...2n-1] */
|
|
#define PASS(name)\
|
|
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
|
|
{\
|
|
FFTSample t1, t2, t3, t4, t5, t6;\
|
|
int o1 = 2*n;\
|
|
int o2 = 4*n;\
|
|
int o3 = 6*n;\
|
|
const FFTSample *wim = wre+o1;\
|
|
n--;\
|
|
\
|
|
TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
|
|
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
|
|
do {\
|
|
z += 2;\
|
|
wre += 2;\
|
|
wim -= 2;\
|
|
TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
|
|
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
|
|
} while(--n);\
|
|
}
|
|
|
|
PASS(pass)
|
|
#undef BUTTERFLIES
|
|
#define BUTTERFLIES BUTTERFLIES_BIG
|
|
PASS(pass_big)
|
|
|
|
#define DECL_FFT(n,n2,n4)\
|
|
static void fft##n(FFTComplex *z)\
|
|
{\
|
|
fft##n2(z);\
|
|
fft##n4(z+n4*2);\
|
|
fft##n4(z+n4*3);\
|
|
pass(z,TX_NAME(ff_cos_##n),n4/2);\
|
|
}
|
|
|
|
static void fft4(FFTComplex *z)
|
|
{
|
|
FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
|
|
|
|
BF(t3, t1, z[0].re, z[1].re);
|
|
BF(t8, t6, z[3].re, z[2].re);
|
|
BF(z[2].re, z[0].re, t1, t6);
|
|
BF(t4, t2, z[0].im, z[1].im);
|
|
BF(t7, t5, z[2].im, z[3].im);
|
|
BF(z[3].im, z[1].im, t4, t8);
|
|
BF(z[3].re, z[1].re, t3, t7);
|
|
BF(z[2].im, z[0].im, t2, t5);
|
|
}
|
|
|
|
static void fft8(FFTComplex *z)
|
|
{
|
|
FFTSample t1, t2, t3, t4, t5, t6;
|
|
|
|
fft4(z);
|
|
|
|
BF(t1, z[5].re, z[4].re, -z[5].re);
|
|
BF(t2, z[5].im, z[4].im, -z[5].im);
|
|
BF(t5, z[7].re, z[6].re, -z[7].re);
|
|
BF(t6, z[7].im, z[6].im, -z[7].im);
|
|
|
|
BUTTERFLIES(z[0],z[2],z[4],z[6]);
|
|
TRANSFORM(z[1],z[3],z[5],z[7],M_SQRT1_2,M_SQRT1_2);
|
|
}
|
|
|
|
static void fft16(FFTComplex *z)
|
|
{
|
|
FFTSample t1, t2, t3, t4, t5, t6;
|
|
FFTSample cos_16_1 = TX_NAME(ff_cos_16)[1];
|
|
FFTSample cos_16_3 = TX_NAME(ff_cos_16)[3];
|
|
|
|
fft8(z);
|
|
fft4(z+8);
|
|
fft4(z+12);
|
|
|
|
TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
|
|
TRANSFORM(z[2],z[6],z[10],z[14],M_SQRT1_2,M_SQRT1_2);
|
|
TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
|
|
TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
|
|
}
|
|
|
|
DECL_FFT(32,16,8)
|
|
DECL_FFT(64,32,16)
|
|
DECL_FFT(128,64,32)
|
|
DECL_FFT(256,128,64)
|
|
DECL_FFT(512,256,128)
|
|
#define pass pass_big
|
|
DECL_FFT(1024,512,256)
|
|
DECL_FFT(2048,1024,512)
|
|
DECL_FFT(4096,2048,1024)
|
|
DECL_FFT(8192,4096,2048)
|
|
DECL_FFT(16384,8192,4096)
|
|
DECL_FFT(32768,16384,8192)
|
|
DECL_FFT(65536,32768,16384)
|
|
DECL_FFT(131072,65536,32768)
|
|
|
|
static void (* const fft_dispatch[])(FFTComplex*) = {
|
|
fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
|
|
fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
|
|
};
|
|
|
|
#define DECL_COMP_FFT(N) \
|
|
static void compound_fft_##N##xM(AVTXContext *s, void *_out, \
|
|
void *_in, ptrdiff_t stride) \
|
|
{ \
|
|
const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m; \
|
|
FFTComplex *in = _in; \
|
|
FFTComplex *out = _out; \
|
|
FFTComplex fft##N##in[N]; \
|
|
void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m) - 2]; \
|
|
\
|
|
for (int i = 0; i < m; i++) { \
|
|
for (int j = 0; j < N; j++) \
|
|
fft##N##in[j] = in[in_map[i*N + j]]; \
|
|
fft##N(s->tmp + s->revtab[i], fft##N##in, m); \
|
|
} \
|
|
\
|
|
for (int i = 0; i < N; i++) \
|
|
fftp(s->tmp + m*i); \
|
|
\
|
|
for (int i = 0; i < N*m; i++) \
|
|
out[i] = s->tmp[out_map[i]]; \
|
|
}
|
|
|
|
DECL_COMP_FFT(3)
|
|
DECL_COMP_FFT(5)
|
|
DECL_COMP_FFT(15)
|
|
|
|
static void monolithic_fft(AVTXContext *s, void *_out, void *_in,
|
|
ptrdiff_t stride)
|
|
{
|
|
FFTComplex *in = _in;
|
|
FFTComplex *out = _out;
|
|
int m = s->m, mb = av_log2(m) - 2;
|
|
for (int i = 0; i < m; i++)
|
|
out[s->revtab[i]] = in[i];
|
|
fft_dispatch[mb](out);
|
|
}
|
|
|
|
#define DECL_COMP_IMDCT(N) \
|
|
static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \
|
|
ptrdiff_t stride) \
|
|
{ \
|
|
FFTComplex fft##N##in[N]; \
|
|
FFTComplex *z = _dst, *exp = s->exptab; \
|
|
const int m = s->m, len8 = N*m >> 1; \
|
|
const int *in_map = s->pfatab, *out_map = in_map + N*m; \
|
|
const FFTSample *src = _src, *in1, *in2; \
|
|
void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2]; \
|
|
\
|
|
stride /= sizeof(*src); /* To convert it from bytes */ \
|
|
in1 = src; \
|
|
in2 = src + ((N*m*2) - 1) * stride; \
|
|
\
|
|
for (int i = 0; i < m; i++) { \
|
|
for (int j = 0; j < N; j++) { \
|
|
const int k = in_map[i*N + j]; \
|
|
FFTComplex tmp = { in2[-k*stride], in1[k*stride] }; \
|
|
CMUL3(fft##N##in[j], tmp, exp[k >> 1]); \
|
|
} \
|
|
fft##N(s->tmp + s->revtab[i], fft##N##in, m); \
|
|
} \
|
|
\
|
|
for (int i = 0; i < N; i++) \
|
|
fftp(s->tmp + m*i); \
|
|
\
|
|
for (int i = 0; i < len8; i++) { \
|
|
const int i0 = len8 + i, i1 = len8 - i - 1; \
|
|
const int s0 = out_map[i0], s1 = out_map[i1]; \
|
|
FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \
|
|
FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \
|
|
\
|
|
CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \
|
|
CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \
|
|
} \
|
|
}
|
|
|
|
DECL_COMP_IMDCT(3)
|
|
DECL_COMP_IMDCT(5)
|
|
DECL_COMP_IMDCT(15)
|
|
|
|
#define DECL_COMP_MDCT(N) \
|
|
static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \
|
|
ptrdiff_t stride) \
|
|
{ \
|
|
FFTSample *src = _src, *dst = _dst; \
|
|
FFTComplex *exp = s->exptab, tmp, fft##N##in[N]; \
|
|
const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1; \
|
|
const int *in_map = s->pfatab, *out_map = in_map + N*m; \
|
|
void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2]; \
|
|
\
|
|
stride /= sizeof(*dst); \
|
|
\
|
|
for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \
|
|
for (int j = 0; j < N; j++) { \
|
|
const int k = in_map[i*N + j]; \
|
|
if (k < len4) { \
|
|
tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k]; \
|
|
tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k]; \
|
|
} else { \
|
|
tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k]; \
|
|
tmp.im = src[-len4 + k] - src[1*len3 - 1 - k]; \
|
|
} \
|
|
CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \
|
|
exp[k >> 1].re, exp[k >> 1].im); \
|
|
} \
|
|
fft##N(s->tmp + s->revtab[i], fft##N##in, m); \
|
|
} \
|
|
\
|
|
for (int i = 0; i < N; i++) \
|
|
fftp(s->tmp + m*i); \
|
|
\
|
|
for (int i = 0; i < len8; i++) { \
|
|
const int i0 = len8 + i, i1 = len8 - i - 1; \
|
|
const int s0 = out_map[i0], s1 = out_map[i1]; \
|
|
FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \
|
|
FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \
|
|
\
|
|
CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \
|
|
exp[i0].im, exp[i0].re); \
|
|
CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \
|
|
exp[i1].im, exp[i1].re); \
|
|
} \
|
|
}
|
|
|
|
DECL_COMP_MDCT(3)
|
|
DECL_COMP_MDCT(5)
|
|
DECL_COMP_MDCT(15)
|
|
|
|
static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src,
|
|
ptrdiff_t stride)
|
|
{
|
|
FFTComplex *z = _dst, *exp = s->exptab;
|
|
const int m = s->m, len8 = m >> 1;
|
|
const FFTSample *src = _src, *in1, *in2;
|
|
void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
|
|
|
|
stride /= sizeof(*src);
|
|
in1 = src;
|
|
in2 = src + ((m*2) - 1) * stride;
|
|
|
|
for (int i = 0; i < m; i++) {
|
|
FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] };
|
|
CMUL3(z[s->revtab[i]], tmp, exp[i]);
|
|
}
|
|
|
|
fftp(z);
|
|
|
|
for (int i = 0; i < len8; i++) {
|
|
const int i0 = len8 + i, i1 = len8 - i - 1;
|
|
FFTComplex src1 = { z[i1].im, z[i1].re };
|
|
FFTComplex src0 = { z[i0].im, z[i0].re };
|
|
|
|
CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);
|
|
CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);
|
|
}
|
|
}
|
|
|
|
static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src,
|
|
ptrdiff_t stride)
|
|
{
|
|
FFTSample *src = _src, *dst = _dst;
|
|
FFTComplex *exp = s->exptab, tmp, *z = _dst;
|
|
const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1;
|
|
void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
|
|
|
|
stride /= sizeof(*dst);
|
|
|
|
for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */
|
|
const int k = 2*i;
|
|
if (k < len4) {
|
|
tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k];
|
|
tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k];
|
|
} else {
|
|
tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k];
|
|
tmp.im = src[-len4 + k] - src[1*len3 - 1 - k];
|
|
}
|
|
CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im,
|
|
exp[i].re, exp[i].im);
|
|
}
|
|
|
|
fftp(z);
|
|
|
|
for (int i = 0; i < len8; i++) {
|
|
const int i0 = len8 + i, i1 = len8 - i - 1;
|
|
FFTComplex src1 = { z[i1].re, z[i1].im };
|
|
FFTComplex src0 = { z[i0].re, z[i0].im };
|
|
|
|
CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,
|
|
exp[i0].im, exp[i0].re);
|
|
CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,
|
|
exp[i1].im, exp[i1].re);
|
|
}
|
|
}
|
|
|
|
static int gen_mdct_exptab(AVTXContext *s, int len4, double scale)
|
|
{
|
|
const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0;
|
|
|
|
if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab))))
|
|
return AVERROR(ENOMEM);
|
|
|
|
scale = sqrt(fabs(scale));
|
|
for (int i = 0; i < len4; i++) {
|
|
const double alpha = M_PI_2 * (i + theta) / len4;
|
|
s->exptab[i].re = cos(alpha) * scale;
|
|
s->exptab[i].im = sin(alpha) * scale;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int TX_NAME(ff_tx_init_mdct_fft)(AVTXContext *s, av_tx_fn *tx,
|
|
enum AVTXType type, int inv, int len,
|
|
const void *scale, uint64_t flags)
|
|
{
|
|
const int is_mdct = type == AV_TX_FLOAT_MDCT || type == AV_TX_DOUBLE_MDCT;
|
|
int err, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) + 1);
|
|
|
|
if (is_mdct)
|
|
len >>= 1;
|
|
|
|
#define CHECK_FACTOR(DST, FACTOR, SRC) \
|
|
if (DST == 1 && !(SRC % FACTOR)) { \
|
|
DST = FACTOR; \
|
|
SRC /= FACTOR; \
|
|
}
|
|
CHECK_FACTOR(n, 15, len)
|
|
CHECK_FACTOR(n, 5, len)
|
|
CHECK_FACTOR(n, 3, len)
|
|
#undef CHECK_NPTWO_FACTOR
|
|
|
|
/* len must be a power of two now */
|
|
if (!(len & (len - 1)) && len >= 4 && len <= max_ptwo) {
|
|
m = len;
|
|
len = 1;
|
|
}
|
|
|
|
s->n = n;
|
|
s->m = m;
|
|
s->inv = inv;
|
|
s->type = type;
|
|
|
|
/* Filter out direct 3, 5 and 15 transforms, too niche */
|
|
if (len > 1 || m == 1) {
|
|
av_log(NULL, AV_LOG_ERROR, "Unsupported transform size: n = %i, "
|
|
"m = %i, residual = %i!\n", n, m, len);
|
|
return AVERROR(EINVAL);
|
|
} else if (n > 1 && m > 1) { /* 2D transform case */
|
|
if ((err = ff_tx_gen_compound_mapping(s)))
|
|
return err;
|
|
if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp))))
|
|
return AVERROR(ENOMEM);
|
|
*tx = n == 3 ? compound_fft_3xM :
|
|
n == 5 ? compound_fft_5xM :
|
|
compound_fft_15xM;
|
|
if (is_mdct)
|
|
*tx = n == 3 ? inv ? compound_imdct_3xM : compound_mdct_3xM :
|
|
n == 5 ? inv ? compound_imdct_5xM : compound_mdct_5xM :
|
|
inv ? compound_imdct_15xM : compound_mdct_15xM;
|
|
} else { /* Direct transform case */
|
|
*tx = monolithic_fft;
|
|
if (is_mdct)
|
|
*tx = inv ? monolithic_imdct : monolithic_mdct;
|
|
}
|
|
|
|
if (n != 1)
|
|
init_cos_tabs(0);
|
|
if (m != 1) {
|
|
ff_tx_gen_ptwo_revtab(s);
|
|
for (int i = 4; i <= av_log2(m); i++)
|
|
init_cos_tabs(i);
|
|
}
|
|
|
|
if (is_mdct)
|
|
return gen_mdct_exptab(s, n*m, *((FFTSample *)scale));
|
|
|
|
return 0;
|
|
}
|