mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2025-01-01 04:12:14 +00:00
6643eaaa30
Reviewed-by: Anton Khirnov <anton@khirnov.net> Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
995 lines
37 KiB
C
995 lines
37 KiB
C
/*
|
|
* Copyright (c) 2001-2003 The FFmpeg project
|
|
*
|
|
* first version by Francois Revol (revol@free.fr)
|
|
* fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
|
|
* by Mike Melanson (melanson@pcisys.net)
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "libavutil/opt.h"
|
|
|
|
#include "avcodec.h"
|
|
#include "put_bits.h"
|
|
#include "bytestream.h"
|
|
#include "adpcm.h"
|
|
#include "adpcm_data.h"
|
|
#include "internal.h"
|
|
|
|
/**
|
|
* @file
|
|
* ADPCM encoders
|
|
* See ADPCM decoder reference documents for codec information.
|
|
*/
|
|
|
|
typedef struct TrellisPath {
|
|
int nibble;
|
|
int prev;
|
|
} TrellisPath;
|
|
|
|
typedef struct TrellisNode {
|
|
uint32_t ssd;
|
|
int path;
|
|
int sample1;
|
|
int sample2;
|
|
int step;
|
|
} TrellisNode;
|
|
|
|
typedef struct ADPCMEncodeContext {
|
|
AVClass *class;
|
|
int block_size;
|
|
|
|
ADPCMChannelStatus status[6];
|
|
TrellisPath *paths;
|
|
TrellisNode *node_buf;
|
|
TrellisNode **nodep_buf;
|
|
uint8_t *trellis_hash;
|
|
} ADPCMEncodeContext;
|
|
|
|
#define FREEZE_INTERVAL 128
|
|
|
|
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
|
|
{
|
|
ADPCMEncodeContext *s = avctx->priv_data;
|
|
uint8_t *extradata;
|
|
int i;
|
|
|
|
if (avctx->channels > 2) {
|
|
av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
/*
|
|
* AMV's block size has to match that of the corresponding video
|
|
* stream. Relax the POT requirement.
|
|
*/
|
|
if (avctx->codec->id != AV_CODEC_ID_ADPCM_IMA_AMV &&
|
|
(s->block_size & (s->block_size - 1))) {
|
|
av_log(avctx, AV_LOG_ERROR, "block size must be power of 2\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
if (avctx->trellis) {
|
|
int frontier, max_paths;
|
|
|
|
if ((unsigned)avctx->trellis > 16U) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_SSI ||
|
|
avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_APM ||
|
|
avctx->codec->id == AV_CODEC_ID_ADPCM_ARGO) {
|
|
/*
|
|
* The current trellis implementation doesn't work for extended
|
|
* runs of samples without periodic resets. Disallow it.
|
|
*/
|
|
av_log(avctx, AV_LOG_ERROR, "trellis not supported\n");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
frontier = 1 << avctx->trellis;
|
|
max_paths = frontier * FREEZE_INTERVAL;
|
|
if (!FF_ALLOC_TYPED_ARRAY(s->paths, max_paths) ||
|
|
!FF_ALLOC_TYPED_ARRAY(s->node_buf, 2 * frontier) ||
|
|
!FF_ALLOC_TYPED_ARRAY(s->nodep_buf, 2 * frontier) ||
|
|
!FF_ALLOC_TYPED_ARRAY(s->trellis_hash, 65536))
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
|
|
|
|
switch (avctx->codec->id) {
|
|
case AV_CODEC_ID_ADPCM_IMA_WAV:
|
|
/* each 16 bits sample gives one nibble
|
|
and we have 4 bytes per channel overhead */
|
|
avctx->frame_size = (s->block_size - 4 * avctx->channels) * 8 /
|
|
(4 * avctx->channels) + 1;
|
|
/* seems frame_size isn't taken into account...
|
|
have to buffer the samples :-( */
|
|
avctx->block_align = s->block_size;
|
|
avctx->bits_per_coded_sample = 4;
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_IMA_QT:
|
|
avctx->frame_size = 64;
|
|
avctx->block_align = 34 * avctx->channels;
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_MS:
|
|
/* each 16 bits sample gives one nibble
|
|
and we have 7 bytes per channel overhead */
|
|
avctx->frame_size = (s->block_size - 7 * avctx->channels) * 2 / avctx->channels + 2;
|
|
avctx->bits_per_coded_sample = 4;
|
|
avctx->block_align = s->block_size;
|
|
if (!(avctx->extradata = av_malloc(32 + AV_INPUT_BUFFER_PADDING_SIZE)))
|
|
return AVERROR(ENOMEM);
|
|
avctx->extradata_size = 32;
|
|
extradata = avctx->extradata;
|
|
bytestream_put_le16(&extradata, avctx->frame_size);
|
|
bytestream_put_le16(&extradata, 7); /* wNumCoef */
|
|
for (i = 0; i < 7; i++) {
|
|
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
|
|
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
|
|
}
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_YAMAHA:
|
|
avctx->frame_size = s->block_size * 2 / avctx->channels;
|
|
avctx->block_align = s->block_size;
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_SWF:
|
|
if (avctx->sample_rate != 11025 &&
|
|
avctx->sample_rate != 22050 &&
|
|
avctx->sample_rate != 44100) {
|
|
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
|
|
"22050 or 44100\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
avctx->frame_size = 4096; /* Hardcoded according to the SWF spec. */
|
|
avctx->block_align = (2 + avctx->channels * (22 + 4 * (avctx->frame_size - 1)) + 7) / 8;
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_IMA_SSI:
|
|
case AV_CODEC_ID_ADPCM_IMA_ALP:
|
|
avctx->frame_size = s->block_size * 2 / avctx->channels;
|
|
avctx->block_align = s->block_size;
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_IMA_AMV:
|
|
if (avctx->sample_rate != 22050) {
|
|
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 22050\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
if (avctx->channels != 1) {
|
|
av_log(avctx, AV_LOG_ERROR, "Only mono is supported\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
avctx->frame_size = s->block_size;
|
|
avctx->block_align = 8 + (FFALIGN(avctx->frame_size, 2) / 2);
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_IMA_APM:
|
|
avctx->frame_size = s->block_size * 2 / avctx->channels;
|
|
avctx->block_align = s->block_size;
|
|
|
|
if (!(avctx->extradata = av_mallocz(28 + AV_INPUT_BUFFER_PADDING_SIZE)))
|
|
return AVERROR(ENOMEM);
|
|
avctx->extradata_size = 28;
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_ARGO:
|
|
avctx->frame_size = 32;
|
|
avctx->block_align = 17 * avctx->channels;
|
|
break;
|
|
default:
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
|
|
{
|
|
ADPCMEncodeContext *s = avctx->priv_data;
|
|
av_freep(&s->paths);
|
|
av_freep(&s->node_buf);
|
|
av_freep(&s->nodep_buf);
|
|
av_freep(&s->trellis_hash);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
|
|
int16_t sample)
|
|
{
|
|
int delta = sample - c->prev_sample;
|
|
int nibble = FFMIN(7, abs(delta) * 4 /
|
|
ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
|
|
c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
|
|
ff_adpcm_yamaha_difflookup[nibble]) / 8);
|
|
c->prev_sample = av_clip_int16(c->prev_sample);
|
|
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
|
|
return nibble;
|
|
}
|
|
|
|
static inline uint8_t adpcm_ima_alp_compress_sample(ADPCMChannelStatus *c, int16_t sample)
|
|
{
|
|
const int delta = sample - c->prev_sample;
|
|
const int step = ff_adpcm_step_table[c->step_index];
|
|
const int sign = (delta < 0) * 8;
|
|
|
|
int nibble = FFMIN(abs(delta) * 4 / step, 7);
|
|
int diff = (step * nibble) >> 2;
|
|
if (sign)
|
|
diff = -diff;
|
|
|
|
nibble = sign | nibble;
|
|
|
|
c->prev_sample += diff;
|
|
c->prev_sample = av_clip_int16(c->prev_sample);
|
|
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
|
|
return nibble;
|
|
}
|
|
|
|
static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
|
|
int16_t sample)
|
|
{
|
|
int delta = sample - c->prev_sample;
|
|
int diff, step = ff_adpcm_step_table[c->step_index];
|
|
int nibble = 8*(delta < 0);
|
|
|
|
delta= abs(delta);
|
|
diff = delta + (step >> 3);
|
|
|
|
if (delta >= step) {
|
|
nibble |= 4;
|
|
delta -= step;
|
|
}
|
|
step >>= 1;
|
|
if (delta >= step) {
|
|
nibble |= 2;
|
|
delta -= step;
|
|
}
|
|
step >>= 1;
|
|
if (delta >= step) {
|
|
nibble |= 1;
|
|
delta -= step;
|
|
}
|
|
diff -= delta;
|
|
|
|
if (nibble & 8)
|
|
c->prev_sample -= diff;
|
|
else
|
|
c->prev_sample += diff;
|
|
|
|
c->prev_sample = av_clip_int16(c->prev_sample);
|
|
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
|
|
|
|
return nibble;
|
|
}
|
|
|
|
static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
|
|
int16_t sample)
|
|
{
|
|
int predictor, nibble, bias;
|
|
|
|
predictor = (((c->sample1) * (c->coeff1)) +
|
|
(( c->sample2) * (c->coeff2))) / 64;
|
|
|
|
nibble = sample - predictor;
|
|
if (nibble >= 0)
|
|
bias = c->idelta / 2;
|
|
else
|
|
bias = -c->idelta / 2;
|
|
|
|
nibble = (nibble + bias) / c->idelta;
|
|
nibble = av_clip_intp2(nibble, 3) & 0x0F;
|
|
|
|
predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
|
|
|
|
c->sample2 = c->sample1;
|
|
c->sample1 = av_clip_int16(predictor);
|
|
|
|
c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
|
|
if (c->idelta < 16)
|
|
c->idelta = 16;
|
|
|
|
return nibble;
|
|
}
|
|
|
|
static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
|
|
int16_t sample)
|
|
{
|
|
int nibble, delta;
|
|
|
|
if (!c->step) {
|
|
c->predictor = 0;
|
|
c->step = 127;
|
|
}
|
|
|
|
delta = sample - c->predictor;
|
|
|
|
nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
|
|
|
|
c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
|
|
c->predictor = av_clip_int16(c->predictor);
|
|
c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
|
|
c->step = av_clip(c->step, 127, 24576);
|
|
|
|
return nibble;
|
|
}
|
|
|
|
static void adpcm_compress_trellis(AVCodecContext *avctx,
|
|
const int16_t *samples, uint8_t *dst,
|
|
ADPCMChannelStatus *c, int n, int stride)
|
|
{
|
|
//FIXME 6% faster if frontier is a compile-time constant
|
|
ADPCMEncodeContext *s = avctx->priv_data;
|
|
const int frontier = 1 << avctx->trellis;
|
|
const int version = avctx->codec->id;
|
|
TrellisPath *paths = s->paths, *p;
|
|
TrellisNode *node_buf = s->node_buf;
|
|
TrellisNode **nodep_buf = s->nodep_buf;
|
|
TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
|
|
TrellisNode **nodes_next = nodep_buf + frontier;
|
|
int pathn = 0, froze = -1, i, j, k, generation = 0;
|
|
uint8_t *hash = s->trellis_hash;
|
|
memset(hash, 0xff, 65536 * sizeof(*hash));
|
|
|
|
memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
|
|
nodes[0] = node_buf + frontier;
|
|
nodes[0]->ssd = 0;
|
|
nodes[0]->path = 0;
|
|
nodes[0]->step = c->step_index;
|
|
nodes[0]->sample1 = c->sample1;
|
|
nodes[0]->sample2 = c->sample2;
|
|
if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
|
|
version == AV_CODEC_ID_ADPCM_IMA_QT ||
|
|
version == AV_CODEC_ID_ADPCM_IMA_AMV ||
|
|
version == AV_CODEC_ID_ADPCM_SWF)
|
|
nodes[0]->sample1 = c->prev_sample;
|
|
if (version == AV_CODEC_ID_ADPCM_MS)
|
|
nodes[0]->step = c->idelta;
|
|
if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
|
|
if (c->step == 0) {
|
|
nodes[0]->step = 127;
|
|
nodes[0]->sample1 = 0;
|
|
} else {
|
|
nodes[0]->step = c->step;
|
|
nodes[0]->sample1 = c->predictor;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
TrellisNode *t = node_buf + frontier*(i&1);
|
|
TrellisNode **u;
|
|
int sample = samples[i * stride];
|
|
int heap_pos = 0;
|
|
memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
|
|
for (j = 0; j < frontier && nodes[j]; j++) {
|
|
// higher j have higher ssd already, so they're likely
|
|
// to yield a suboptimal next sample too
|
|
const int range = (j < frontier / 2) ? 1 : 0;
|
|
const int step = nodes[j]->step;
|
|
int nidx;
|
|
if (version == AV_CODEC_ID_ADPCM_MS) {
|
|
const int predictor = ((nodes[j]->sample1 * c->coeff1) +
|
|
(nodes[j]->sample2 * c->coeff2)) / 64;
|
|
const int div = (sample - predictor) / step;
|
|
const int nmin = av_clip(div-range, -8, 6);
|
|
const int nmax = av_clip(div+range, -7, 7);
|
|
for (nidx = nmin; nidx <= nmax; nidx++) {
|
|
const int nibble = nidx & 0xf;
|
|
int dec_sample = predictor + nidx * step;
|
|
#define STORE_NODE(NAME, STEP_INDEX)\
|
|
int d;\
|
|
uint32_t ssd;\
|
|
int pos;\
|
|
TrellisNode *u;\
|
|
uint8_t *h;\
|
|
dec_sample = av_clip_int16(dec_sample);\
|
|
d = sample - dec_sample;\
|
|
ssd = nodes[j]->ssd + d*(unsigned)d;\
|
|
/* Check for wraparound, skip such samples completely. \
|
|
* Note, changing ssd to a 64 bit variable would be \
|
|
* simpler, avoiding this check, but it's slower on \
|
|
* x86 32 bit at the moment. */\
|
|
if (ssd < nodes[j]->ssd)\
|
|
goto next_##NAME;\
|
|
/* Collapse any two states with the same previous sample value. \
|
|
* One could also distinguish states by step and by 2nd to last
|
|
* sample, but the effects of that are negligible.
|
|
* Since nodes in the previous generation are iterated
|
|
* through a heap, they're roughly ordered from better to
|
|
* worse, but not strictly ordered. Therefore, an earlier
|
|
* node with the same sample value is better in most cases
|
|
* (and thus the current is skipped), but not strictly
|
|
* in all cases. Only skipping samples where ssd >=
|
|
* ssd of the earlier node with the same sample gives
|
|
* slightly worse quality, though, for some reason. */ \
|
|
h = &hash[(uint16_t) dec_sample];\
|
|
if (*h == generation)\
|
|
goto next_##NAME;\
|
|
if (heap_pos < frontier) {\
|
|
pos = heap_pos++;\
|
|
} else {\
|
|
/* Try to replace one of the leaf nodes with the new \
|
|
* one, but try a different slot each time. */\
|
|
pos = (frontier >> 1) +\
|
|
(heap_pos & ((frontier >> 1) - 1));\
|
|
if (ssd > nodes_next[pos]->ssd)\
|
|
goto next_##NAME;\
|
|
heap_pos++;\
|
|
}\
|
|
*h = generation;\
|
|
u = nodes_next[pos];\
|
|
if (!u) {\
|
|
av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\
|
|
u = t++;\
|
|
nodes_next[pos] = u;\
|
|
u->path = pathn++;\
|
|
}\
|
|
u->ssd = ssd;\
|
|
u->step = STEP_INDEX;\
|
|
u->sample2 = nodes[j]->sample1;\
|
|
u->sample1 = dec_sample;\
|
|
paths[u->path].nibble = nibble;\
|
|
paths[u->path].prev = nodes[j]->path;\
|
|
/* Sift the newly inserted node up in the heap to \
|
|
* restore the heap property. */\
|
|
while (pos > 0) {\
|
|
int parent = (pos - 1) >> 1;\
|
|
if (nodes_next[parent]->ssd <= ssd)\
|
|
break;\
|
|
FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
|
|
pos = parent;\
|
|
}\
|
|
next_##NAME:;
|
|
STORE_NODE(ms, FFMAX(16,
|
|
(ff_adpcm_AdaptationTable[nibble] * step) >> 8));
|
|
}
|
|
} else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
|
|
version == AV_CODEC_ID_ADPCM_IMA_QT ||
|
|
version == AV_CODEC_ID_ADPCM_IMA_AMV ||
|
|
version == AV_CODEC_ID_ADPCM_SWF) {
|
|
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
|
|
const int predictor = nodes[j]->sample1;\
|
|
const int div = (sample - predictor) * 4 / STEP_TABLE;\
|
|
int nmin = av_clip(div - range, -7, 6);\
|
|
int nmax = av_clip(div + range, -6, 7);\
|
|
if (nmin <= 0)\
|
|
nmin--; /* distinguish -0 from +0 */\
|
|
if (nmax < 0)\
|
|
nmax--;\
|
|
for (nidx = nmin; nidx <= nmax; nidx++) {\
|
|
const int nibble = nidx < 0 ? 7 - nidx : nidx;\
|
|
int dec_sample = predictor +\
|
|
(STEP_TABLE *\
|
|
ff_adpcm_yamaha_difflookup[nibble]) / 8;\
|
|
STORE_NODE(NAME, STEP_INDEX);\
|
|
}
|
|
LOOP_NODES(ima, ff_adpcm_step_table[step],
|
|
av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
|
|
} else { //AV_CODEC_ID_ADPCM_YAMAHA
|
|
LOOP_NODES(yamaha, step,
|
|
av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
|
|
127, 24576));
|
|
#undef LOOP_NODES
|
|
#undef STORE_NODE
|
|
}
|
|
}
|
|
|
|
u = nodes;
|
|
nodes = nodes_next;
|
|
nodes_next = u;
|
|
|
|
generation++;
|
|
if (generation == 255) {
|
|
memset(hash, 0xff, 65536 * sizeof(*hash));
|
|
generation = 0;
|
|
}
|
|
|
|
// prevent overflow
|
|
if (nodes[0]->ssd > (1 << 28)) {
|
|
for (j = 1; j < frontier && nodes[j]; j++)
|
|
nodes[j]->ssd -= nodes[0]->ssd;
|
|
nodes[0]->ssd = 0;
|
|
}
|
|
|
|
// merge old paths to save memory
|
|
if (i == froze + FREEZE_INTERVAL) {
|
|
p = &paths[nodes[0]->path];
|
|
for (k = i; k > froze; k--) {
|
|
dst[k] = p->nibble;
|
|
p = &paths[p->prev];
|
|
}
|
|
froze = i;
|
|
pathn = 0;
|
|
// other nodes might use paths that don't coincide with the frozen one.
|
|
// checking which nodes do so is too slow, so just kill them all.
|
|
// this also slightly improves quality, but I don't know why.
|
|
memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
|
|
}
|
|
}
|
|
|
|
p = &paths[nodes[0]->path];
|
|
for (i = n - 1; i > froze; i--) {
|
|
dst[i] = p->nibble;
|
|
p = &paths[p->prev];
|
|
}
|
|
|
|
c->predictor = nodes[0]->sample1;
|
|
c->sample1 = nodes[0]->sample1;
|
|
c->sample2 = nodes[0]->sample2;
|
|
c->step_index = nodes[0]->step;
|
|
c->step = nodes[0]->step;
|
|
c->idelta = nodes[0]->step;
|
|
}
|
|
|
|
static inline int adpcm_argo_compress_nibble(const ADPCMChannelStatus *cs, int16_t s,
|
|
int shift, int flag)
|
|
{
|
|
int nibble;
|
|
|
|
if (flag)
|
|
nibble = 4 * s - 8 * cs->sample1 + 4 * cs->sample2;
|
|
else
|
|
nibble = 4 * s - 4 * cs->sample1;
|
|
|
|
return (nibble >> shift) & 0x0F;
|
|
}
|
|
|
|
static int64_t adpcm_argo_compress_block(ADPCMChannelStatus *cs, PutBitContext *pb,
|
|
const int16_t *samples, int nsamples,
|
|
int shift, int flag)
|
|
{
|
|
int64_t error = 0;
|
|
|
|
if (pb) {
|
|
put_bits(pb, 4, shift - 2);
|
|
put_bits(pb, 1, 0);
|
|
put_bits(pb, 1, !!flag);
|
|
put_bits(pb, 2, 0);
|
|
}
|
|
|
|
for (int n = 0; n < nsamples; n++) {
|
|
/* Compress the nibble, then expand it to see how much precision we've lost. */
|
|
int nibble = adpcm_argo_compress_nibble(cs, samples[n], shift, flag);
|
|
int16_t sample = ff_adpcm_argo_expand_nibble(cs, nibble, shift, flag);
|
|
|
|
error += abs(samples[n] - sample);
|
|
|
|
if (pb)
|
|
put_bits(pb, 4, nibble);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
|
|
const AVFrame *frame, int *got_packet_ptr)
|
|
{
|
|
int n, i, ch, st, pkt_size, ret;
|
|
const int16_t *samples;
|
|
int16_t **samples_p;
|
|
uint8_t *dst;
|
|
ADPCMEncodeContext *c = avctx->priv_data;
|
|
uint8_t *buf;
|
|
|
|
samples = (const int16_t *)frame->data[0];
|
|
samples_p = (int16_t **)frame->extended_data;
|
|
st = avctx->channels == 2;
|
|
|
|
if (avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_SSI ||
|
|
avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_ALP ||
|
|
avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_APM)
|
|
pkt_size = (frame->nb_samples * avctx->channels) / 2;
|
|
else
|
|
pkt_size = avctx->block_align;
|
|
if ((ret = ff_alloc_packet2(avctx, avpkt, pkt_size, 0)) < 0)
|
|
return ret;
|
|
dst = avpkt->data;
|
|
|
|
switch(avctx->codec->id) {
|
|
case AV_CODEC_ID_ADPCM_IMA_WAV:
|
|
{
|
|
int blocks, j;
|
|
|
|
blocks = (frame->nb_samples - 1) / 8;
|
|
|
|
for (ch = 0; ch < avctx->channels; ch++) {
|
|
ADPCMChannelStatus *status = &c->status[ch];
|
|
status->prev_sample = samples_p[ch][0];
|
|
/* status->step_index = 0;
|
|
XXX: not sure how to init the state machine */
|
|
bytestream_put_le16(&dst, status->prev_sample);
|
|
*dst++ = status->step_index;
|
|
*dst++ = 0; /* unknown */
|
|
}
|
|
|
|
/* stereo: 4 bytes (8 samples) for left, 4 bytes for right */
|
|
if (avctx->trellis > 0) {
|
|
if (!FF_ALLOC_TYPED_ARRAY(buf, avctx->channels * blocks * 8))
|
|
return AVERROR(ENOMEM);
|
|
for (ch = 0; ch < avctx->channels; ch++) {
|
|
adpcm_compress_trellis(avctx, &samples_p[ch][1],
|
|
buf + ch * blocks * 8, &c->status[ch],
|
|
blocks * 8, 1);
|
|
}
|
|
for (i = 0; i < blocks; i++) {
|
|
for (ch = 0; ch < avctx->channels; ch++) {
|
|
uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
|
|
for (j = 0; j < 8; j += 2)
|
|
*dst++ = buf1[j] | (buf1[j + 1] << 4);
|
|
}
|
|
}
|
|
av_free(buf);
|
|
} else {
|
|
for (i = 0; i < blocks; i++) {
|
|
for (ch = 0; ch < avctx->channels; ch++) {
|
|
ADPCMChannelStatus *status = &c->status[ch];
|
|
const int16_t *smp = &samples_p[ch][1 + i * 8];
|
|
for (j = 0; j < 8; j += 2) {
|
|
uint8_t v = adpcm_ima_compress_sample(status, smp[j ]);
|
|
v |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4;
|
|
*dst++ = v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case AV_CODEC_ID_ADPCM_IMA_QT:
|
|
{
|
|
PutBitContext pb;
|
|
init_put_bits(&pb, dst, pkt_size);
|
|
|
|
for (ch = 0; ch < avctx->channels; ch++) {
|
|
ADPCMChannelStatus *status = &c->status[ch];
|
|
put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7);
|
|
put_bits(&pb, 7, status->step_index);
|
|
if (avctx->trellis > 0) {
|
|
uint8_t buf[64];
|
|
adpcm_compress_trellis(avctx, &samples_p[ch][0], buf, status,
|
|
64, 1);
|
|
for (i = 0; i < 64; i++)
|
|
put_bits(&pb, 4, buf[i ^ 1]);
|
|
status->prev_sample = status->predictor;
|
|
} else {
|
|
for (i = 0; i < 64; i += 2) {
|
|
int t1, t2;
|
|
t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i ]);
|
|
t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]);
|
|
put_bits(&pb, 4, t2);
|
|
put_bits(&pb, 4, t1);
|
|
}
|
|
}
|
|
}
|
|
|
|
flush_put_bits(&pb);
|
|
break;
|
|
}
|
|
case AV_CODEC_ID_ADPCM_IMA_SSI:
|
|
{
|
|
PutBitContext pb;
|
|
init_put_bits(&pb, dst, pkt_size);
|
|
|
|
av_assert0(avctx->trellis == 0);
|
|
|
|
for (i = 0; i < frame->nb_samples; i++) {
|
|
for (ch = 0; ch < avctx->channels; ch++) {
|
|
put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++));
|
|
}
|
|
}
|
|
|
|
flush_put_bits(&pb);
|
|
break;
|
|
}
|
|
case AV_CODEC_ID_ADPCM_IMA_ALP:
|
|
{
|
|
PutBitContext pb;
|
|
init_put_bits(&pb, dst, pkt_size);
|
|
|
|
av_assert0(avctx->trellis == 0);
|
|
|
|
for (n = frame->nb_samples / 2; n > 0; n--) {
|
|
for (ch = 0; ch < avctx->channels; ch++) {
|
|
put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, *samples++));
|
|
put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, samples[st]));
|
|
}
|
|
samples += avctx->channels;
|
|
}
|
|
|
|
flush_put_bits(&pb);
|
|
break;
|
|
}
|
|
case AV_CODEC_ID_ADPCM_SWF:
|
|
{
|
|
PutBitContext pb;
|
|
init_put_bits(&pb, dst, pkt_size);
|
|
|
|
n = frame->nb_samples - 1;
|
|
|
|
// store AdpcmCodeSize
|
|
put_bits(&pb, 2, 2); // set 4-bit flash adpcm format
|
|
|
|
// init the encoder state
|
|
for (i = 0; i < avctx->channels; i++) {
|
|
// clip step so it fits 6 bits
|
|
c->status[i].step_index = av_clip_uintp2(c->status[i].step_index, 6);
|
|
put_sbits(&pb, 16, samples[i]);
|
|
put_bits(&pb, 6, c->status[i].step_index);
|
|
c->status[i].prev_sample = samples[i];
|
|
}
|
|
|
|
if (avctx->trellis > 0) {
|
|
if (!(buf = av_malloc(2 * n)))
|
|
return AVERROR(ENOMEM);
|
|
adpcm_compress_trellis(avctx, samples + avctx->channels, buf,
|
|
&c->status[0], n, avctx->channels);
|
|
if (avctx->channels == 2)
|
|
adpcm_compress_trellis(avctx, samples + avctx->channels + 1,
|
|
buf + n, &c->status[1], n,
|
|
avctx->channels);
|
|
for (i = 0; i < n; i++) {
|
|
put_bits(&pb, 4, buf[i]);
|
|
if (avctx->channels == 2)
|
|
put_bits(&pb, 4, buf[n + i]);
|
|
}
|
|
av_free(buf);
|
|
} else {
|
|
for (i = 1; i < frame->nb_samples; i++) {
|
|
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
|
|
samples[avctx->channels * i]));
|
|
if (avctx->channels == 2)
|
|
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
|
|
samples[2 * i + 1]));
|
|
}
|
|
}
|
|
flush_put_bits(&pb);
|
|
break;
|
|
}
|
|
case AV_CODEC_ID_ADPCM_MS:
|
|
for (i = 0; i < avctx->channels; i++) {
|
|
int predictor = 0;
|
|
*dst++ = predictor;
|
|
c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
|
|
c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
|
|
}
|
|
for (i = 0; i < avctx->channels; i++) {
|
|
if (c->status[i].idelta < 16)
|
|
c->status[i].idelta = 16;
|
|
bytestream_put_le16(&dst, c->status[i].idelta);
|
|
}
|
|
for (i = 0; i < avctx->channels; i++)
|
|
c->status[i].sample2= *samples++;
|
|
for (i = 0; i < avctx->channels; i++) {
|
|
c->status[i].sample1 = *samples++;
|
|
bytestream_put_le16(&dst, c->status[i].sample1);
|
|
}
|
|
for (i = 0; i < avctx->channels; i++)
|
|
bytestream_put_le16(&dst, c->status[i].sample2);
|
|
|
|
if (avctx->trellis > 0) {
|
|
n = avctx->block_align - 7 * avctx->channels;
|
|
if (!(buf = av_malloc(2 * n)))
|
|
return AVERROR(ENOMEM);
|
|
if (avctx->channels == 1) {
|
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
|
|
avctx->channels);
|
|
for (i = 0; i < n; i += 2)
|
|
*dst++ = (buf[i] << 4) | buf[i + 1];
|
|
} else {
|
|
adpcm_compress_trellis(avctx, samples, buf,
|
|
&c->status[0], n, avctx->channels);
|
|
adpcm_compress_trellis(avctx, samples + 1, buf + n,
|
|
&c->status[1], n, avctx->channels);
|
|
for (i = 0; i < n; i++)
|
|
*dst++ = (buf[i] << 4) | buf[n + i];
|
|
}
|
|
av_free(buf);
|
|
} else {
|
|
for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
|
|
int nibble;
|
|
nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
|
|
nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
|
|
*dst++ = nibble;
|
|
}
|
|
}
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_YAMAHA:
|
|
n = frame->nb_samples / 2;
|
|
if (avctx->trellis > 0) {
|
|
if (!(buf = av_malloc(2 * n * 2)))
|
|
return AVERROR(ENOMEM);
|
|
n *= 2;
|
|
if (avctx->channels == 1) {
|
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
|
|
avctx->channels);
|
|
for (i = 0; i < n; i += 2)
|
|
*dst++ = buf[i] | (buf[i + 1] << 4);
|
|
} else {
|
|
adpcm_compress_trellis(avctx, samples, buf,
|
|
&c->status[0], n, avctx->channels);
|
|
adpcm_compress_trellis(avctx, samples + 1, buf + n,
|
|
&c->status[1], n, avctx->channels);
|
|
for (i = 0; i < n; i++)
|
|
*dst++ = buf[i] | (buf[n + i] << 4);
|
|
}
|
|
av_free(buf);
|
|
} else
|
|
for (n *= avctx->channels; n > 0; n--) {
|
|
int nibble;
|
|
nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
|
|
nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
|
|
*dst++ = nibble;
|
|
}
|
|
break;
|
|
case AV_CODEC_ID_ADPCM_IMA_APM:
|
|
{
|
|
PutBitContext pb;
|
|
init_put_bits(&pb, dst, pkt_size);
|
|
|
|
av_assert0(avctx->trellis == 0);
|
|
|
|
for (n = frame->nb_samples / 2; n > 0; n--) {
|
|
for (ch = 0; ch < avctx->channels; ch++) {
|
|
put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++));
|
|
put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, samples[st]));
|
|
}
|
|
samples += avctx->channels;
|
|
}
|
|
|
|
flush_put_bits(&pb);
|
|
break;
|
|
}
|
|
case AV_CODEC_ID_ADPCM_IMA_AMV:
|
|
{
|
|
av_assert0(avctx->channels == 1);
|
|
|
|
c->status[0].prev_sample = *samples;
|
|
bytestream_put_le16(&dst, c->status[0].prev_sample);
|
|
bytestream_put_byte(&dst, c->status[0].step_index);
|
|
bytestream_put_byte(&dst, 0);
|
|
bytestream_put_le32(&dst, avctx->frame_size);
|
|
|
|
if (avctx->trellis > 0) {
|
|
n = frame->nb_samples >> 1;
|
|
|
|
if (!(buf = av_malloc(2 * n)))
|
|
return AVERROR(ENOMEM);
|
|
|
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], 2 * n, avctx->channels);
|
|
for (i = 0; i < n; i++)
|
|
bytestream_put_byte(&dst, (buf[2 * i] << 4) | buf[2 * i + 1]);
|
|
|
|
samples += 2 * n;
|
|
av_free(buf);
|
|
} else for (n = frame->nb_samples >> 1; n > 0; n--) {
|
|
int nibble;
|
|
nibble = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4;
|
|
nibble |= adpcm_ima_compress_sample(&c->status[0], *samples++) & 0x0F;
|
|
bytestream_put_byte(&dst, nibble);
|
|
}
|
|
|
|
if (avctx->frame_size & 1) {
|
|
int nibble = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4;
|
|
bytestream_put_byte(&dst, nibble);
|
|
}
|
|
break;
|
|
}
|
|
case AV_CODEC_ID_ADPCM_ARGO:
|
|
{
|
|
PutBitContext pb;
|
|
init_put_bits(&pb, dst, pkt_size);
|
|
|
|
av_assert0(frame->nb_samples == 32);
|
|
|
|
for (ch = 0; ch < avctx->channels; ch++) {
|
|
int64_t error = INT64_MAX, tmperr = INT64_MAX;
|
|
int shift = 2, flag = 0;
|
|
int saved1 = c->status[ch].sample1;
|
|
int saved2 = c->status[ch].sample2;
|
|
|
|
/* Find the optimal coefficients, bail early if we find a perfect result. */
|
|
for (int s = 2; s < 18 && tmperr != 0; s++) {
|
|
for (int f = 0; f < 2 && tmperr != 0; f++) {
|
|
c->status[ch].sample1 = saved1;
|
|
c->status[ch].sample2 = saved2;
|
|
tmperr = adpcm_argo_compress_block(c->status + ch, NULL, samples_p[ch],
|
|
frame->nb_samples, s, f);
|
|
if (tmperr < error) {
|
|
shift = s;
|
|
flag = f;
|
|
error = tmperr;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now actually do the encode. */
|
|
c->status[ch].sample1 = saved1;
|
|
c->status[ch].sample2 = saved2;
|
|
adpcm_argo_compress_block(c->status + ch, &pb, samples_p[ch],
|
|
frame->nb_samples, shift, flag);
|
|
}
|
|
|
|
flush_put_bits(&pb);
|
|
break;
|
|
}
|
|
default:
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
avpkt->size = pkt_size;
|
|
*got_packet_ptr = 1;
|
|
return 0;
|
|
}
|
|
|
|
static const enum AVSampleFormat sample_fmts[] = {
|
|
AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
|
|
};
|
|
|
|
static const enum AVSampleFormat sample_fmts_p[] = {
|
|
AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE
|
|
};
|
|
|
|
static const AVOption options[] = {
|
|
{
|
|
.name = "block_size",
|
|
.help = "set the block size",
|
|
.offset = offsetof(ADPCMEncodeContext, block_size),
|
|
.type = AV_OPT_TYPE_INT,
|
|
.default_val = {.i64 = 1024},
|
|
.min = 32,
|
|
.max = 8192, /* Is this a reasonable upper limit? */
|
|
.flags = AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
static const AVClass adpcm_encoder_class = {
|
|
.class_name = "ADPCM Encoder",
|
|
.item_name = av_default_item_name,
|
|
.option = options,
|
|
.version = LIBAVUTIL_VERSION_INT,
|
|
};
|
|
|
|
#define ADPCM_ENCODER(id_, name_, sample_fmts_, capabilities_, long_name_) \
|
|
AVCodec ff_ ## name_ ## _encoder = { \
|
|
.name = #name_, \
|
|
.long_name = NULL_IF_CONFIG_SMALL(long_name_), \
|
|
.type = AVMEDIA_TYPE_AUDIO, \
|
|
.id = id_, \
|
|
.priv_data_size = sizeof(ADPCMEncodeContext), \
|
|
.init = adpcm_encode_init, \
|
|
.encode2 = adpcm_encode_frame, \
|
|
.close = adpcm_encode_close, \
|
|
.sample_fmts = sample_fmts_, \
|
|
.capabilities = capabilities_, \
|
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_INIT_THREADSAFE, \
|
|
.priv_class = &adpcm_encoder_class, \
|
|
}
|
|
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_ARGO, adpcm_argo, sample_fmts_p, 0, "ADPCM Argonaut Games");
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, sample_fmts, 0, "ADPCM IMA AMV");
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_APM, adpcm_ima_apm, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Ubisoft APM");
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_ALP, adpcm_ima_alp, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA High Voltage Software ALP");
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, sample_fmts_p, 0, "ADPCM IMA QuickTime");
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_SSI, adpcm_ima_ssi, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Simon & Schuster Interactive");
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, 0, "ADPCM IMA WAV");
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_MS, adpcm_ms, sample_fmts, 0, "ADPCM Microsoft");
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_SWF, adpcm_swf, sample_fmts, 0, "ADPCM Shockwave Flash");
|
|
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, sample_fmts, 0, "ADPCM Yamaha");
|