ffmpeg/libswresample/rematrix.c

416 lines
14 KiB
C

/*
* Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
*
* This file is part of libswresample
*
* libswresample is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libswresample is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with libswresample; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "swresample_internal.h"
#include "libavutil/audioconvert.h"
#include "libavutil/avassert.h"
#define ONE (1.0)
#define R(x) x
#define SAMPLE float
#define COEFF float
#define INTER float
#define RENAME(x) x ## _float
#include "rematrix_template.c"
#undef SAMPLE
#undef RENAME
#undef R
#undef ONE
#undef COEFF
#undef INTER
#define ONE (1.0)
#define R(x) x
#define SAMPLE double
#define COEFF double
#define INTER double
#define RENAME(x) x ## _double
#include "rematrix_template.c"
#undef SAMPLE
#undef RENAME
#undef R
#undef ONE
#undef COEFF
#undef INTER
#define ONE (-32768)
#define R(x) (((x) + 16384)>>15)
#define SAMPLE int16_t
#define COEFF int
#define INTER int
#define RENAME(x) x ## _s16
#include "rematrix_template.c"
#define FRONT_LEFT 0
#define FRONT_RIGHT 1
#define FRONT_CENTER 2
#define LOW_FREQUENCY 3
#define BACK_LEFT 4
#define BACK_RIGHT 5
#define FRONT_LEFT_OF_CENTER 6
#define FRONT_RIGHT_OF_CENTER 7
#define BACK_CENTER 8
#define SIDE_LEFT 9
#define SIDE_RIGHT 10
#define TOP_CENTER 11
#define TOP_FRONT_LEFT 12
#define TOP_FRONT_CENTER 13
#define TOP_FRONT_RIGHT 14
#define TOP_BACK_LEFT 15
#define TOP_BACK_CENTER 16
#define TOP_BACK_RIGHT 17
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
{
int nb_in, nb_out, in, out;
if (!s || s->in_convert) // s needs to be allocated but not initialized
return AVERROR(EINVAL);
memset(s->matrix, 0, sizeof(s->matrix));
nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
for (out = 0; out < nb_out; out++) {
for (in = 0; in < nb_in; in++)
s->matrix[out][in] = matrix[in];
matrix += stride;
}
s->rematrix_custom = 1;
return 0;
}
static int even(int64_t layout){
if(!layout) return 1;
if(layout&(layout-1)) return 1;
return 0;
}
static int sane_layout(int64_t layout){
if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
return 0;
if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
return 0;
if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
return 0;
if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
return 0;
if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)))
return 0;
if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX)
return 0;
return 1;
}
static int auto_matrix(SwrContext *s)
{
int i, j, out_i;
double matrix[64][64]={{0}};
int64_t unaccounted= s->in_ch_layout & ~s->out_ch_layout;
double maxcoef=0;
memset(s->matrix, 0, sizeof(s->matrix));
for(i=0; i<64; i++){
if(s->in_ch_layout & s->out_ch_layout & (1LL<<i))
matrix[i][i]= 1.0;
}
if(!sane_layout(s->in_ch_layout)){
av_log(s, AV_LOG_ERROR, "Input channel layout isnt supported\n");
return AVERROR(EINVAL);
}
if(!sane_layout(s->out_ch_layout)){
av_log(s, AV_LOG_ERROR, "Output channel layout isnt supported\n");
return AVERROR(EINVAL);
}
//FIXME implement dolby surround
//FIXME implement full ac3
if(unaccounted & AV_CH_FRONT_CENTER){
if((s->out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2;
}else
av_assert0(0);
}
if(unaccounted & AV_CH_LAYOUT_STEREO){
if(s->out_ch_layout & AV_CH_FRONT_CENTER){
matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2;
if(s->in_ch_layout & AV_CH_FRONT_CENTER)
matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2);
}else
av_assert0(0);
}
if(unaccounted & AV_CH_BACK_CENTER){
if(s->out_ch_layout & AV_CH_BACK_LEFT){
matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
}else if(s->out_ch_layout & AV_CH_SIDE_LEFT){
matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
}else if(s->out_ch_layout & AV_CH_FRONT_LEFT){
matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2;
matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2;
}else if(s->out_ch_layout & AV_CH_FRONT_CENTER){
matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2;
}else
av_assert0(0);
}
if(unaccounted & AV_CH_BACK_LEFT){
if(s->out_ch_layout & AV_CH_BACK_CENTER){
matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
}else if(s->out_ch_layout & AV_CH_SIDE_LEFT){
if(s->in_ch_layout & AV_CH_SIDE_LEFT){
matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
}else{
matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
}
}else if(s->out_ch_layout & AV_CH_FRONT_LEFT){
matrix[ FRONT_LEFT][ BACK_LEFT]+= s->slev;
matrix[FRONT_RIGHT][BACK_RIGHT]+= s->slev;
}else if(s->out_ch_layout & AV_CH_FRONT_CENTER){
matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2;
matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2;
}else
av_assert0(0);
}
if(unaccounted & AV_CH_SIDE_LEFT){
if(s->out_ch_layout & AV_CH_BACK_LEFT){
/* if back channels do not exist in the input, just copy side
channels to back channels, otherwise mix side into back */
if (s->in_ch_layout & AV_CH_BACK_LEFT) {
matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
} else {
matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
}
}else if(s->out_ch_layout & AV_CH_BACK_CENTER){
matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
}else if(s->out_ch_layout & AV_CH_FRONT_LEFT){
matrix[ FRONT_LEFT][ SIDE_LEFT]+= s->slev;
matrix[FRONT_RIGHT][SIDE_RIGHT]+= s->slev;
}else if(s->out_ch_layout & AV_CH_FRONT_CENTER){
matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2;
matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2;
}else
av_assert0(0);
}
if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
if(s->out_ch_layout & AV_CH_FRONT_LEFT){
matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
}else if(s->out_ch_layout & AV_CH_FRONT_CENTER){
matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2;
matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2;
}else
av_assert0(0);
}
/* mix LFE into front left/right or center */
if (unaccounted & AV_CH_LOW_FREQUENCY) {
if (s->out_ch_layout & AV_CH_FRONT_CENTER) {
matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level;
} else if (s->out_ch_layout & AV_CH_FRONT_LEFT) {
matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
} else
av_assert0(0);
}
for(out_i=i=0; i<64; i++){
double sum=0;
int in_i=0;
for(j=0; j<64; j++){
s->matrix[out_i][in_i]= matrix[i][j];
if(matrix[i][j]){
sum += fabs(matrix[i][j]);
}
if(s->in_ch_layout & (1ULL<<j))
in_i++;
}
maxcoef= FFMAX(maxcoef, sum);
if(s->out_ch_layout & (1ULL<<i))
out_i++;
}
if(s->rematrix_volume < 0)
maxcoef = -s->rematrix_volume;
if(( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
|| av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) && maxcoef > 1.0){
for(i=0; i<SWR_CH_MAX; i++)
for(j=0; j<SWR_CH_MAX; j++){
s->matrix[i][j] /= maxcoef;
}
}
if(s->rematrix_volume > 0){
for(i=0; i<SWR_CH_MAX; i++)
for(j=0; j<SWR_CH_MAX; j++){
s->matrix[i][j] *= s->rematrix_volume;
}
}
for(i=0; i<av_get_channel_layout_nb_channels(s->out_ch_layout); i++){
for(j=0; j<av_get_channel_layout_nb_channels(s->in_ch_layout); j++){
av_log(NULL, AV_LOG_DEBUG, "%f ", s->matrix[i][j]);
}
av_log(NULL, AV_LOG_DEBUG, "\n");
}
return 0;
}
int swri_rematrix_init(SwrContext *s){
int i, j;
int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
s->mix_any_f = NULL;
if (!s->rematrix_custom) {
int r = auto_matrix(s);
if (r)
return r;
}
if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(int));
s->native_one = av_mallocz(sizeof(int));
for (i = 0; i < nb_out; i++)
for (j = 0; j < nb_in; j++)
((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768);
*((int*)s->native_one) = 32768;
s->mix_1_1_f = copy_s16;
s->mix_2_1_f = sum2_s16;
s->mix_any_f = get_mix_any_func_s16(s);
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(float));
s->native_one = av_mallocz(sizeof(float));
for (i = 0; i < nb_out; i++)
for (j = 0; j < nb_in; j++)
((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
*((float*)s->native_one) = 1.0;
s->mix_1_1_f = copy_float;
s->mix_2_1_f = sum2_float;
s->mix_any_f = get_mix_any_func_float(s);
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(double));
s->native_one = av_mallocz(sizeof(double));
for (i = 0; i < nb_out; i++)
for (j = 0; j < nb_in; j++)
((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
*((double*)s->native_one) = 1.0;
s->mix_1_1_f = copy_double;
s->mix_2_1_f = sum2_double;
s->mix_any_f = get_mix_any_func_double(s);
}else
av_assert0(0);
//FIXME quantize for integeres
for (i = 0; i < SWR_CH_MAX; i++) {
int ch_in=0;
for (j = 0; j < SWR_CH_MAX; j++) {
s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
if(s->matrix[i][j])
s->matrix_ch[i][++ch_in]= j;
}
s->matrix_ch[i][0]= ch_in;
}
return 0;
}
void swri_rematrix_free(SwrContext *s){
av_freep(&s->native_matrix);
av_freep(&s->native_one);
}
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
int out_i, in_i, i, j;
if(s->mix_any_f) {
s->mix_any_f(out->ch, in->ch, s->native_matrix, len);
return 0;
}
av_assert0(out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
av_assert0(in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
for(out_i=0; out_i<out->ch_count; out_i++){
switch(s->matrix_ch[out_i][0]){
case 0:
if(mustcopy)
memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
break;
case 1:
in_i= s->matrix_ch[out_i][1];
if(s->matrix[out_i][in_i]!=1.0){
s->mix_1_1_f(out->ch[out_i], in->ch[in_i], s->native_matrix, in->ch_count*out_i + in_i, len);
}else if(mustcopy){
memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
}else{
out->ch[out_i]= in->ch[in_i];
}
break;
case 2: {
int in_i1 = s->matrix_ch[out_i][1];
int in_i2 = s->matrix_ch[out_i][2];
s->mix_2_1_f(out->ch[out_i], in->ch[in_i1], in->ch[in_i2], s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len);
break;}
default:
if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
for(i=0; i<len; i++){
float v=0;
for(j=0; j<s->matrix_ch[out_i][0]; j++){
in_i= s->matrix_ch[out_i][1+j];
v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
}
((float*)out->ch[out_i])[i]= v;
}
}else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
for(i=0; i<len; i++){
double v=0;
for(j=0; j<s->matrix_ch[out_i][0]; j++){
in_i= s->matrix_ch[out_i][1+j];
v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
}
((double*)out->ch[out_i])[i]= v;
}
}else{
for(i=0; i<len; i++){
int v=0;
for(j=0; j<s->matrix_ch[out_i][0]; j++){
in_i= s->matrix_ch[out_i][1+j];
v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
}
((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
}
}
}
}
return 0;
}