ffmpeg/libswscale/swscale.c
Aurelien Jacobs 79973335d3 add support for yuva420p colorspace (yuv420p + alpha)
Originally committed as revision 24601 to svn://svn.mplayerhq.hu/mplayer/trunk/libswscale
2007-09-24 15:11:49 +00:00

2981 lines
102 KiB
C

/*
* Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* the C code (not assembly, mmx, ...) of this file can be used
* under the LGPL license too
*/
/*
supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
{BGR,RGB}{1,4,8,15,16} support dithering
unscaled special converters (YV12=I420=IYUV, Y800=Y8)
YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
x -> x
YUV9 -> YV12
YUV9/YV12 -> Y800
Y800 -> YUV9/YV12
BGR24 -> BGR32 & RGB24 -> RGB32
BGR32 -> BGR24 & RGB32 -> RGB24
BGR15 -> BGR16
*/
/*
tested special converters (most are tested actually but i didnt write it down ...)
YV12 -> BGR16
YV12 -> YV12
BGR15 -> BGR16
BGR16 -> BGR16
YVU9 -> YV12
untested special converters
YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
YV12/I420 -> YV12/I420
YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
BGR24 -> BGR32 & RGB24 -> RGB32
BGR32 -> BGR24 & RGB32 -> RGB24
BGR24 -> YV12
*/
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <unistd.h>
#include "config.h"
#include <assert.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
#include "swscale.h"
#include "swscale_internal.h"
#include "x86_cpu.h"
#include "bswap.h"
#include "rgb2rgb.h"
#include "libavcodec/opt.h"
#undef MOVNTQ
#undef PAVGB
//#undef HAVE_MMX2
//#define HAVE_3DNOW
//#undef HAVE_MMX
//#undef ARCH_X86
//#define WORDS_BIGENDIAN
#define DITHER1XBPP
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
#define RET 0xC3 //near return opcode for X86
#ifdef MP_DEBUG
#define ASSERT(x) assert(x);
#else
#define ASSERT(x) ;
#endif
#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846
#endif
#define isSupportedIn(x) ( \
(x)==PIX_FMT_YUV420P \
|| (x)==PIX_FMT_YUVA420P \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_RGB32 \
|| (x)==PIX_FMT_BGR24 \
|| (x)==PIX_FMT_BGR565 \
|| (x)==PIX_FMT_BGR555 \
|| (x)==PIX_FMT_BGR32 \
|| (x)==PIX_FMT_RGB24 \
|| (x)==PIX_FMT_RGB565 \
|| (x)==PIX_FMT_RGB555 \
|| (x)==PIX_FMT_GRAY8 \
|| (x)==PIX_FMT_YUV410P \
|| (x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
|| (x)==PIX_FMT_YUV444P \
|| (x)==PIX_FMT_YUV422P \
|| (x)==PIX_FMT_YUV411P \
|| (x)==PIX_FMT_PAL8 \
|| (x)==PIX_FMT_BGR8 \
|| (x)==PIX_FMT_RGB8 \
|| (x)==PIX_FMT_BGR4_BYTE \
|| (x)==PIX_FMT_RGB4_BYTE \
|| (x)==PIX_FMT_YUV440P \
)
#define isSupportedOut(x) ( \
(x)==PIX_FMT_YUV420P \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_YUV444P \
|| (x)==PIX_FMT_YUV422P \
|| (x)==PIX_FMT_YUV411P \
|| isRGB(x) \
|| isBGR(x) \
|| (x)==PIX_FMT_NV12 \
|| (x)==PIX_FMT_NV21 \
|| (x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
|| (x)==PIX_FMT_GRAY8 \
|| (x)==PIX_FMT_YUV410P \
)
#define isPacked(x) ( \
(x)==PIX_FMT_PAL8 \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| isRGB(x) \
|| isBGR(x) \
)
#define RGB2YUV_SHIFT 16
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
extern const int32_t Inverse_Table_6_9[8][4];
/*
NOTES
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
TODO
more intelligent misalignment avoidance for the horizontal scaler
write special vertical cubic upscale version
Optimize C code (yv12 / minmax)
add support for packed pixel yuv input & output
add support for Y8 output
optimize bgr24 & bgr32
add BGR4 output support
write special BGR->BGR scaler
*/
#if defined(ARCH_X86) && defined (CONFIG_GPL)
static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL;
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
static uint64_t __attribute__((aligned(8))) dither4[2]={
0x0103010301030103LL,
0x0200020002000200LL,};
static uint64_t __attribute__((aligned(8))) dither8[2]={
0x0602060206020602LL,
0x0004000400040004LL,};
static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
#ifdef FAST_BGR2YV12
static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
#else
static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
#endif /* FAST_BGR2YV12 */
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8))) = 0x8080808080808080ULL;
static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
#endif /* defined(ARCH_X86) */
// clipping helper table for C implementations:
static unsigned char clip_table[768];
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
extern const uint8_t dither_2x2_4[2][8];
extern const uint8_t dither_2x2_8[2][8];
extern const uint8_t dither_8x8_32[8][8];
extern const uint8_t dither_8x8_73[8][8];
extern const uint8_t dither_8x8_220[8][8];
static const char * sws_context_to_name(void * ptr) {
return "swscaler";
}
#define OFFSET(x) offsetof(SwsContext, x)
#define DEFAULT 0
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "sws_flags", "scaler/cpu flags", OFFSET(flags), FF_OPT_TYPE_FLAGS, DEFAULT, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "fast_bilinear", "fast bilinear", 0, FF_OPT_TYPE_CONST, SWS_FAST_BILINEAR, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "bilinear", "bilinear", 0, FF_OPT_TYPE_CONST, SWS_BILINEAR, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "bicubic", "bicubic", 0, FF_OPT_TYPE_CONST, SWS_BICUBIC, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "experimental", "experimental", 0, FF_OPT_TYPE_CONST, SWS_X, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "neighbor", "nearest neighbor", 0, FF_OPT_TYPE_CONST, SWS_POINT, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "area", "averaging area", 0, FF_OPT_TYPE_CONST, SWS_AREA, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "bicublin", "luma bicubic, chroma bilinear", 0, FF_OPT_TYPE_CONST, SWS_BICUBLIN, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "gauss", "gaussian", 0, FF_OPT_TYPE_CONST, SWS_GAUSS, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "sinc", "sinc", 0, FF_OPT_TYPE_CONST, SWS_SINC, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "lanczos", "lanczos", 0, FF_OPT_TYPE_CONST, SWS_LANCZOS, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "spline", "natural bicubic spline", 0, FF_OPT_TYPE_CONST, SWS_SPLINE, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "print_info", "print info", 0, FF_OPT_TYPE_CONST, SWS_PRINT_INFO, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "accurate_rnd", "accurate rounding", 0, FF_OPT_TYPE_CONST, SWS_ACCURATE_RND, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "mmx", "MMX SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_MMX, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "mmx2", "MMX2 SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_MMX2, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "3dnow", "3DNOW SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_3DNOW, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "altivec", "AltiVec SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_ALTIVEC, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "bfin", "Blackfin SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_BFIN, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "full_chroma_int", "full chroma interpolation", 0 , FF_OPT_TYPE_CONST, SWS_FULL_CHR_H_INT, INT_MIN, INT_MAX, VE, "sws_flags" },
{ "full_chroma_inp", "full chroma input", 0 , FF_OPT_TYPE_CONST, SWS_FULL_CHR_H_INP, INT_MIN, INT_MAX, VE, "sws_flags" },
{ NULL }
};
#undef VE
#undef DEFAULT
static AVClass sws_context_class = { "SWScaler", sws_context_to_name, options };
char *sws_format_name(enum PixelFormat format)
{
switch (format) {
case PIX_FMT_YUV420P:
return "yuv420p";
case PIX_FMT_YUVA420P:
return "yuva420p";
case PIX_FMT_YUYV422:
return "yuyv422";
case PIX_FMT_RGB24:
return "rgb24";
case PIX_FMT_BGR24:
return "bgr24";
case PIX_FMT_YUV422P:
return "yuv422p";
case PIX_FMT_YUV444P:
return "yuv444p";
case PIX_FMT_RGB32:
return "rgb32";
case PIX_FMT_YUV410P:
return "yuv410p";
case PIX_FMT_YUV411P:
return "yuv411p";
case PIX_FMT_RGB565:
return "rgb565";
case PIX_FMT_RGB555:
return "rgb555";
case PIX_FMT_GRAY16BE:
return "gray16be";
case PIX_FMT_GRAY16LE:
return "gray16le";
case PIX_FMT_GRAY8:
return "gray8";
case PIX_FMT_MONOWHITE:
return "mono white";
case PIX_FMT_MONOBLACK:
return "mono black";
case PIX_FMT_PAL8:
return "Palette";
case PIX_FMT_YUVJ420P:
return "yuvj420p";
case PIX_FMT_YUVJ422P:
return "yuvj422p";
case PIX_FMT_YUVJ444P:
return "yuvj444p";
case PIX_FMT_XVMC_MPEG2_MC:
return "xvmc_mpeg2_mc";
case PIX_FMT_XVMC_MPEG2_IDCT:
return "xvmc_mpeg2_idct";
case PIX_FMT_UYVY422:
return "uyvy422";
case PIX_FMT_UYYVYY411:
return "uyyvyy411";
case PIX_FMT_RGB32_1:
return "rgb32x";
case PIX_FMT_BGR32_1:
return "bgr32x";
case PIX_FMT_BGR32:
return "bgr32";
case PIX_FMT_BGR565:
return "bgr565";
case PIX_FMT_BGR555:
return "bgr555";
case PIX_FMT_BGR8:
return "bgr8";
case PIX_FMT_BGR4:
return "bgr4";
case PIX_FMT_BGR4_BYTE:
return "bgr4 byte";
case PIX_FMT_RGB8:
return "rgb8";
case PIX_FMT_RGB4:
return "rgb4";
case PIX_FMT_RGB4_BYTE:
return "rgb4 byte";
case PIX_FMT_NV12:
return "nv12";
case PIX_FMT_NV21:
return "nv21";
case PIX_FMT_YUV440P:
return "yuv440p";
default:
return "Unknown format";
}
}
#if defined(ARCH_X86) && defined (CONFIG_GPL)
void in_asm_used_var_warning_killer()
{
volatile int i= bF8+bFC+w10+
bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
if (i) i=0;
}
#endif
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
{
//FIXME Optimize (just quickly writen not opti..)
int i;
for (i=0; i<dstW; i++)
{
int val=1<<18;
int j;
for (j=0; j<lumFilterSize; j++)
val += lumSrc[j][i] * lumFilter[j];
dest[i]= av_clip_uint8(val>>19);
}
if (uDest != NULL)
for (i=0; i<chrDstW; i++)
{
int u=1<<18;
int v=1<<18;
int j;
for (j=0; j<chrFilterSize; j++)
{
u += chrSrc[j][i] * chrFilter[j];
v += chrSrc[j][i + 2048] * chrFilter[j];
}
uDest[i]= av_clip_uint8(u>>19);
vDest[i]= av_clip_uint8(v>>19);
}
}
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
{
//FIXME Optimize (just quickly writen not opti..)
int i;
for (i=0; i<dstW; i++)
{
int val=1<<18;
int j;
for (j=0; j<lumFilterSize; j++)
val += lumSrc[j][i] * lumFilter[j];
dest[i]= av_clip_uint8(val>>19);
}
if (uDest == NULL)
return;
if (dstFormat == PIX_FMT_NV12)
for (i=0; i<chrDstW; i++)
{
int u=1<<18;
int v=1<<18;
int j;
for (j=0; j<chrFilterSize; j++)
{
u += chrSrc[j][i] * chrFilter[j];
v += chrSrc[j][i + 2048] * chrFilter[j];
}
uDest[2*i]= av_clip_uint8(u>>19);
uDest[2*i+1]= av_clip_uint8(v>>19);
}
else
for (i=0; i<chrDstW; i++)
{
int u=1<<18;
int v=1<<18;
int j;
for (j=0; j<chrFilterSize; j++)
{
u += chrSrc[j][i] * chrFilter[j];
v += chrSrc[j][i + 2048] * chrFilter[j];
}
uDest[2*i]= av_clip_uint8(v>>19);
uDest[2*i+1]= av_clip_uint8(u>>19);
}
}
#define YSCALE_YUV_2_PACKEDX_C(type) \
for (i=0; i<(dstW>>1); i++){\
int j;\
int Y1 = 1<<18;\
int Y2 = 1<<18;\
int U = 1<<18;\
int V = 1<<18;\
type av_unused *r, *b, *g;\
const int i2= 2*i;\
\
for (j=0; j<lumFilterSize; j++)\
{\
Y1 += lumSrc[j][i2] * lumFilter[j];\
Y2 += lumSrc[j][i2+1] * lumFilter[j];\
}\
for (j=0; j<chrFilterSize; j++)\
{\
U += chrSrc[j][i] * chrFilter[j];\
V += chrSrc[j][i+2048] * chrFilter[j];\
}\
Y1>>=19;\
Y2>>=19;\
U >>=19;\
V >>=19;\
if ((Y1|Y2|U|V)&256)\
{\
if (Y1>255) Y1=255; \
else if (Y1<0)Y1=0; \
if (Y2>255) Y2=255; \
else if (Y2<0)Y2=0; \
if (U>255) U=255; \
else if (U<0) U=0; \
if (V>255) V=255; \
else if (V<0) V=0; \
}
#define YSCALE_YUV_2_RGBX_C(type) \
YSCALE_YUV_2_PACKEDX_C(type) \
r = (type *)c->table_rV[V]; \
g = (type *)(c->table_gU[U] + c->table_gV[V]); \
b = (type *)c->table_bU[U]; \
#define YSCALE_YUV_2_PACKED2_C \
for (i=0; i<(dstW>>1); i++){ \
const int i2= 2*i; \
int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19; \
#define YSCALE_YUV_2_RGB2_C(type) \
YSCALE_YUV_2_PACKED2_C\
type *r, *b, *g;\
r = (type *)c->table_rV[V];\
g = (type *)(c->table_gU[U] + c->table_gV[V]);\
b = (type *)c->table_bU[U];\
#define YSCALE_YUV_2_PACKED1_C \
for (i=0; i<(dstW>>1); i++){\
const int i2= 2*i;\
int Y1= buf0[i2 ]>>7;\
int Y2= buf0[i2+1]>>7;\
int U= (uvbuf1[i ])>>7;\
int V= (uvbuf1[i+2048])>>7;\
#define YSCALE_YUV_2_RGB1_C(type) \
YSCALE_YUV_2_PACKED1_C\
type *r, *b, *g;\
r = (type *)c->table_rV[V];\
g = (type *)(c->table_gU[U] + c->table_gV[V]);\
b = (type *)c->table_bU[U];\
#define YSCALE_YUV_2_PACKED1B_C \
for (i=0; i<(dstW>>1); i++){\
const int i2= 2*i;\
int Y1= buf0[i2 ]>>7;\
int Y2= buf0[i2+1]>>7;\
int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
#define YSCALE_YUV_2_RGB1B_C(type) \
YSCALE_YUV_2_PACKED1B_C\
type *r, *b, *g;\
r = (type *)c->table_rV[V];\
g = (type *)(c->table_gU[U] + c->table_gV[V]);\
b = (type *)c->table_bU[U];\
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
switch(c->dstFormat)\
{\
case PIX_FMT_RGB32:\
case PIX_FMT_BGR32:\
func(uint32_t)\
((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
} \
break;\
case PIX_FMT_RGB24:\
func(uint8_t)\
((uint8_t*)dest)[0]= r[Y1];\
((uint8_t*)dest)[1]= g[Y1];\
((uint8_t*)dest)[2]= b[Y1];\
((uint8_t*)dest)[3]= r[Y2];\
((uint8_t*)dest)[4]= g[Y2];\
((uint8_t*)dest)[5]= b[Y2];\
dest+=6;\
}\
break;\
case PIX_FMT_BGR24:\
func(uint8_t)\
((uint8_t*)dest)[0]= b[Y1];\
((uint8_t*)dest)[1]= g[Y1];\
((uint8_t*)dest)[2]= r[Y1];\
((uint8_t*)dest)[3]= b[Y2];\
((uint8_t*)dest)[4]= g[Y2];\
((uint8_t*)dest)[5]= r[Y2];\
dest+=6;\
}\
break;\
case PIX_FMT_RGB565:\
case PIX_FMT_BGR565:\
{\
const int dr1= dither_2x2_8[y&1 ][0];\
const int dg1= dither_2x2_4[y&1 ][0];\
const int db1= dither_2x2_8[(y&1)^1][0];\
const int dr2= dither_2x2_8[y&1 ][1];\
const int dg2= dither_2x2_4[y&1 ][1];\
const int db2= dither_2x2_8[(y&1)^1][1];\
func(uint16_t)\
((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
}\
}\
break;\
case PIX_FMT_RGB555:\
case PIX_FMT_BGR555:\
{\
const int dr1= dither_2x2_8[y&1 ][0];\
const int dg1= dither_2x2_8[y&1 ][1];\
const int db1= dither_2x2_8[(y&1)^1][0];\
const int dr2= dither_2x2_8[y&1 ][1];\
const int dg2= dither_2x2_8[y&1 ][0];\
const int db2= dither_2x2_8[(y&1)^1][1];\
func(uint16_t)\
((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
}\
}\
break;\
case PIX_FMT_RGB8:\
case PIX_FMT_BGR8:\
{\
const uint8_t * const d64= dither_8x8_73[y&7];\
const uint8_t * const d32= dither_8x8_32[y&7];\
func(uint8_t)\
((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
}\
}\
break;\
case PIX_FMT_RGB4:\
case PIX_FMT_BGR4:\
{\
const uint8_t * const d64= dither_8x8_73 [y&7];\
const uint8_t * const d128=dither_8x8_220[y&7];\
func(uint8_t)\
((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
+ ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
}\
}\
break;\
case PIX_FMT_RGB4_BYTE:\
case PIX_FMT_BGR4_BYTE:\
{\
const uint8_t * const d64= dither_8x8_73 [y&7];\
const uint8_t * const d128=dither_8x8_220[y&7];\
func(uint8_t)\
((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
}\
}\
break;\
case PIX_FMT_MONOBLACK:\
{\
const uint8_t * const d128=dither_8x8_220[y&7];\
uint8_t *g= c->table_gU[128] + c->table_gV[128];\
for (i=0; i<dstW-7; i+=8){\
int acc;\
acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
((uint8_t*)dest)[0]= acc;\
dest++;\
}\
\
/*\
((uint8_t*)dest)-= dstW>>4;\
{\
int acc=0;\
int left=0;\
static int top[1024];\
static int last_new[1024][1024];\
static int last_in3[1024][1024];\
static int drift[1024][1024];\
int topLeft=0;\
int shift=0;\
int count=0;\
const uint8_t * const d128=dither_8x8_220[y&7];\
int error_new=0;\
int error_in3=0;\
int f=0;\
\
for (i=dstW>>1; i<dstW; i++){\
int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
int in2 = (76309 * (in - 16) + 32768) >> 16;\
int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
+ (last_new[y][i] - in3)*f/256;\
int new= old> 128 ? 255 : 0;\
\
error_new+= FFABS(last_new[y][i] - new);\
error_in3+= FFABS(last_in3[y][i] - in3);\
f= error_new - error_in3*4;\
if (f<0) f=0;\
if (f>256) f=256;\
\
topLeft= top[i];\
left= top[i]= old - new;\
last_new[y][i]= new;\
last_in3[y][i]= in3;\
\
acc+= acc + (new&1);\
if ((i&7)==6){\
((uint8_t*)dest)[0]= acc;\
((uint8_t*)dest)++;\
}\
}\
}\
*/\
}\
break;\
case PIX_FMT_YUYV422:\
func2\
((uint8_t*)dest)[2*i2+0]= Y1;\
((uint8_t*)dest)[2*i2+1]= U;\
((uint8_t*)dest)[2*i2+2]= Y2;\
((uint8_t*)dest)[2*i2+3]= V;\
} \
break;\
case PIX_FMT_UYVY422:\
func2\
((uint8_t*)dest)[2*i2+0]= U;\
((uint8_t*)dest)[2*i2+1]= Y1;\
((uint8_t*)dest)[2*i2+2]= V;\
((uint8_t*)dest)[2*i2+3]= Y2;\
} \
break;\
}\
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
uint8_t *dest, int dstW, int y)
{
int i;
switch(c->dstFormat)
{
case PIX_FMT_BGR32:
case PIX_FMT_RGB32:
YSCALE_YUV_2_RGBX_C(uint32_t)
((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
}
break;
case PIX_FMT_RGB24:
YSCALE_YUV_2_RGBX_C(uint8_t)
((uint8_t*)dest)[0]= r[Y1];
((uint8_t*)dest)[1]= g[Y1];
((uint8_t*)dest)[2]= b[Y1];
((uint8_t*)dest)[3]= r[Y2];
((uint8_t*)dest)[4]= g[Y2];
((uint8_t*)dest)[5]= b[Y2];
dest+=6;
}
break;
case PIX_FMT_BGR24:
YSCALE_YUV_2_RGBX_C(uint8_t)
((uint8_t*)dest)[0]= b[Y1];
((uint8_t*)dest)[1]= g[Y1];
((uint8_t*)dest)[2]= r[Y1];
((uint8_t*)dest)[3]= b[Y2];
((uint8_t*)dest)[4]= g[Y2];
((uint8_t*)dest)[5]= r[Y2];
dest+=6;
}
break;
case PIX_FMT_RGB565:
case PIX_FMT_BGR565:
{
const int dr1= dither_2x2_8[y&1 ][0];
const int dg1= dither_2x2_4[y&1 ][0];
const int db1= dither_2x2_8[(y&1)^1][0];
const int dr2= dither_2x2_8[y&1 ][1];
const int dg2= dither_2x2_4[y&1 ][1];
const int db2= dither_2x2_8[(y&1)^1][1];
YSCALE_YUV_2_RGBX_C(uint16_t)
((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
}
}
break;
case PIX_FMT_RGB555:
case PIX_FMT_BGR555:
{
const int dr1= dither_2x2_8[y&1 ][0];
const int dg1= dither_2x2_8[y&1 ][1];
const int db1= dither_2x2_8[(y&1)^1][0];
const int dr2= dither_2x2_8[y&1 ][1];
const int dg2= dither_2x2_8[y&1 ][0];
const int db2= dither_2x2_8[(y&1)^1][1];
YSCALE_YUV_2_RGBX_C(uint16_t)
((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
}
}
break;
case PIX_FMT_RGB8:
case PIX_FMT_BGR8:
{
const uint8_t * const d64= dither_8x8_73[y&7];
const uint8_t * const d32= dither_8x8_32[y&7];
YSCALE_YUV_2_RGBX_C(uint8_t)
((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
}
}
break;
case PIX_FMT_RGB4:
case PIX_FMT_BGR4:
{
const uint8_t * const d64= dither_8x8_73 [y&7];
const uint8_t * const d128=dither_8x8_220[y&7];
YSCALE_YUV_2_RGBX_C(uint8_t)
((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
+((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
}
}
break;
case PIX_FMT_RGB4_BYTE:
case PIX_FMT_BGR4_BYTE:
{
const uint8_t * const d64= dither_8x8_73 [y&7];
const uint8_t * const d128=dither_8x8_220[y&7];
YSCALE_YUV_2_RGBX_C(uint8_t)
((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
}
}
break;
case PIX_FMT_MONOBLACK:
{
const uint8_t * const d128=dither_8x8_220[y&7];
uint8_t *g= c->table_gU[128] + c->table_gV[128];
int acc=0;
for (i=0; i<dstW-1; i+=2){
int j;
int Y1=1<<18;
int Y2=1<<18;
for (j=0; j<lumFilterSize; j++)
{
Y1 += lumSrc[j][i] * lumFilter[j];
Y2 += lumSrc[j][i+1] * lumFilter[j];
}
Y1>>=19;
Y2>>=19;
if ((Y1|Y2)&256)
{
if (Y1>255) Y1=255;
else if (Y1<0)Y1=0;
if (Y2>255) Y2=255;
else if (Y2<0)Y2=0;
}
acc+= acc + g[Y1+d128[(i+0)&7]];
acc+= acc + g[Y2+d128[(i+1)&7]];
if ((i&7)==6){
((uint8_t*)dest)[0]= acc;
dest++;
}
}
}
break;
case PIX_FMT_YUYV422:
YSCALE_YUV_2_PACKEDX_C(void)
((uint8_t*)dest)[2*i2+0]= Y1;
((uint8_t*)dest)[2*i2+1]= U;
((uint8_t*)dest)[2*i2+2]= Y2;
((uint8_t*)dest)[2*i2+3]= V;
}
break;
case PIX_FMT_UYVY422:
YSCALE_YUV_2_PACKEDX_C(void)
((uint8_t*)dest)[2*i2+0]= U;
((uint8_t*)dest)[2*i2+1]= Y1;
((uint8_t*)dest)[2*i2+2]= V;
((uint8_t*)dest)[2*i2+3]= Y2;
}
break;
}
}
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
//Plain C versions
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
#define COMPILE_C
#endif
#ifdef ARCH_POWERPC
#if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
#define COMPILE_ALTIVEC
#endif //HAVE_ALTIVEC
#endif //ARCH_POWERPC
#if defined(ARCH_X86)
#if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
#define COMPILE_MMX
#endif
#if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
#define COMPILE_MMX2
#endif
#if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
#define COMPILE_3DNOW
#endif
#endif //ARCH_X86 || ARCH_X86_64
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#ifdef COMPILE_C
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#undef HAVE_ALTIVEC
#define RENAME(a) a ## _C
#include "swscale_template.c"
#endif
#ifdef ARCH_POWERPC
#ifdef COMPILE_ALTIVEC
#undef RENAME
#define HAVE_ALTIVEC
#define RENAME(a) a ## _altivec
#include "swscale_template.c"
#endif
#endif //ARCH_POWERPC
#if defined(ARCH_X86)
//X86 versions
/*
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define ARCH_X86
#define RENAME(a) a ## _X86
#include "swscale_template.c"
*/
//MMX versions
#ifdef COMPILE_MMX
#undef RENAME
#define HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define RENAME(a) a ## _MMX
#include "swscale_template.c"
#endif
//MMX2 versions
#ifdef COMPILE_MMX2
#undef RENAME
#define HAVE_MMX
#define HAVE_MMX2
#undef HAVE_3DNOW
#define RENAME(a) a ## _MMX2
#include "swscale_template.c"
#endif
//3DNOW versions
#ifdef COMPILE_3DNOW
#undef RENAME
#define HAVE_MMX
#undef HAVE_MMX2
#define HAVE_3DNOW
#define RENAME(a) a ## _3DNow
#include "swscale_template.c"
#endif
#endif //ARCH_X86 || ARCH_X86_64
// minor note: the HAVE_xyz is messed up after that line so don't use it
static double getSplineCoeff(double a, double b, double c, double d, double dist)
{
// printf("%f %f %f %f %f\n", a,b,c,d,dist);
if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
else return getSplineCoeff( 0.0,
b+ 2.0*c + 3.0*d,
c + 3.0*d,
-b- 3.0*c - 6.0*d,
dist-1.0);
}
static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
int srcW, int dstW, int filterAlign, int one, int flags,
SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
{
int i;
int filterSize;
int filter2Size;
int minFilterSize;
double *filter=NULL;
double *filter2=NULL;
#if defined(ARCH_X86)
if (flags & SWS_CPU_CAPS_MMX)
asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
#endif
// Note the +1 is for the MMXscaler which reads over the end
*filterPos = av_malloc((dstW+1)*sizeof(int16_t));
if (FFABS(xInc - 0x10000) <10) // unscaled
{
int i;
filterSize= 1;
filter= av_malloc(dstW*sizeof(double)*filterSize);
for (i=0; i<dstW*filterSize; i++) filter[i]=0;
for (i=0; i<dstW; i++)
{
filter[i*filterSize]=1;
(*filterPos)[i]=i;
}
}
else if (flags&SWS_POINT) // lame looking point sampling mode
{
int i;
int xDstInSrc;
filterSize= 1;
filter= av_malloc(dstW*sizeof(double)*filterSize);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++)
{
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
(*filterPos)[i]= xx;
filter[i]= 1.0;
xDstInSrc+= xInc;
}
}
else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
{
int i;
int xDstInSrc;
if (flags&SWS_BICUBIC) filterSize= 4;
else if (flags&SWS_X ) filterSize= 4;
else filterSize= 2; // SWS_BILINEAR / SWS_AREA
filter= av_malloc(dstW*sizeof(double)*filterSize);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++)
{
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
int j;
(*filterPos)[i]= xx;
//Bilinear upscale / linear interpolate / Area averaging
for (j=0; j<filterSize; j++)
{
double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
double coeff= 1.0 - d;
if (coeff<0) coeff=0;
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= xInc;
}
}
else
{
double xDstInSrc;
double sizeFactor, filterSizeInSrc;
const double xInc1= (double)xInc / (double)(1<<16);
if (flags&SWS_BICUBIC) sizeFactor= 4.0;
else if (flags&SWS_X) sizeFactor= 8.0;
else if (flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
else if (flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
else if (flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
else if (flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
else if (flags&SWS_BILINEAR) sizeFactor= 2.0;
else {
sizeFactor= 0.0; //GCC warning killer
ASSERT(0)
}
if (xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
if (filterSize > srcW-2) filterSize=srcW-2;
filter= av_malloc(dstW*sizeof(double)*filterSize);
xDstInSrc= xInc1 / 2.0 - 0.5;
for (i=0; i<dstW; i++)
{
int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
int j;
(*filterPos)[i]= xx;
for (j=0; j<filterSize; j++)
{
double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
double coeff;
if (flags & SWS_BICUBIC)
{
double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
if (d<1.0)
coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
else if (d<2.0)
coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
else
coeff=0.0;
}
/* else if (flags & SWS_X)
{
double p= param ? param*0.01 : 0.3;
coeff = d ? sin(d*PI)/(d*PI) : 1.0;
coeff*= pow(2.0, - p*d*d);
}*/
else if (flags & SWS_X)
{
double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
if (d<1.0)
coeff = cos(d*PI);
else
coeff=-1.0;
if (coeff<0.0) coeff= -pow(-coeff, A);
else coeff= pow( coeff, A);
coeff= coeff*0.5 + 0.5;
}
else if (flags & SWS_AREA)
{
double srcPixelSize= 1.0/xInc1;
if (d + srcPixelSize/2 < 0.5) coeff= 1.0;
else if (d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
else coeff=0.0;
}
else if (flags & SWS_GAUSS)
{
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = pow(2.0, - p*d*d);
}
else if (flags & SWS_SINC)
{
coeff = d ? sin(d*PI)/(d*PI) : 1.0;
}
else if (flags & SWS_LANCZOS)
{
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
if (d>p) coeff=0;
}
else if (flags & SWS_BILINEAR)
{
coeff= 1.0 - d;
if (coeff<0) coeff=0;
}
else if (flags & SWS_SPLINE)
{
double p=-2.196152422706632;
coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
}
else {
coeff= 0.0; //GCC warning killer
ASSERT(0)
}
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= xInc1;
}
}
/* apply src & dst Filter to filter -> filter2
av_free(filter);
*/
ASSERT(filterSize>0)
filter2Size= filterSize;
if (srcFilter) filter2Size+= srcFilter->length - 1;
if (dstFilter) filter2Size+= dstFilter->length - 1;
ASSERT(filter2Size>0)
filter2= av_malloc(filter2Size*dstW*sizeof(double));
for (i=0; i<dstW; i++)
{
int j;
SwsVector scaleFilter;
SwsVector *outVec;
scaleFilter.coeff= filter + i*filterSize;
scaleFilter.length= filterSize;
if (srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
else outVec= &scaleFilter;
ASSERT(outVec->length == filter2Size)
//FIXME dstFilter
for (j=0; j<outVec->length; j++)
{
filter2[i*filter2Size + j]= outVec->coeff[j];
}
(*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
if (outVec != &scaleFilter) sws_freeVec(outVec);
}
av_free(filter); filter=NULL;
/* try to reduce the filter-size (step1 find size and shift left) */
// Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
minFilterSize= 0;
for (i=dstW-1; i>=0; i--)
{
int min= filter2Size;
int j;
double cutOff=0.0;
/* get rid off near zero elements on the left by shifting left */
for (j=0; j<filter2Size; j++)
{
int k;
cutOff += FFABS(filter2[i*filter2Size]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
/* preserve monotonicity because the core can't handle the filter otherwise */
if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
// Move filter coeffs left
for (k=1; k<filter2Size; k++)
filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
filter2[i*filter2Size + k - 1]= 0.0;
(*filterPos)[i]++;
}
cutOff=0.0;
/* count near zeros on the right */
for (j=filter2Size-1; j>0; j--)
{
cutOff += FFABS(filter2[i*filter2Size + j]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
min--;
}
if (min>minFilterSize) minFilterSize= min;
}
if (flags & SWS_CPU_CAPS_ALTIVEC) {
// we can handle the special case 4,
// so we don't want to go to the full 8
if (minFilterSize < 5)
filterAlign = 4;
// we really don't want to waste our time
// doing useless computation, so fall-back on
// the scalar C code for very small filter.
// vectorizing is worth it only if you have
// decent-sized vector.
if (minFilterSize < 3)
filterAlign = 1;
}
if (flags & SWS_CPU_CAPS_MMX) {
// special case for unscaled vertical filtering
if (minFilterSize == 1 && filterAlign == 2)
filterAlign= 1;
}
ASSERT(minFilterSize > 0)
filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
ASSERT(filterSize > 0)
filter= av_malloc(filterSize*dstW*sizeof(double));
if (filterSize >= MAX_FILTER_SIZE)
return -1;
*outFilterSize= filterSize;
if (flags&SWS_PRINT_INFO)
av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
/* try to reduce the filter-size (step2 reduce it) */
for (i=0; i<dstW; i++)
{
int j;
for (j=0; j<filterSize; j++)
{
if (j>=filter2Size) filter[i*filterSize + j]= 0.0;
else filter[i*filterSize + j]= filter2[i*filter2Size + j];
}
}
av_free(filter2); filter2=NULL;
//FIXME try to align filterpos if possible
//fix borders
for (i=0; i<dstW; i++)
{
int j;
if ((*filterPos)[i] < 0)
{
// Move filter coeffs left to compensate for filterPos
for (j=1; j<filterSize; j++)
{
int left= FFMAX(j + (*filterPos)[i], 0);
filter[i*filterSize + left] += filter[i*filterSize + j];
filter[i*filterSize + j]=0;
}
(*filterPos)[i]= 0;
}
if ((*filterPos)[i] + filterSize > srcW)
{
int shift= (*filterPos)[i] + filterSize - srcW;
// Move filter coeffs right to compensate for filterPos
for (j=filterSize-2; j>=0; j--)
{
int right= FFMIN(j + shift, filterSize-1);
filter[i*filterSize +right] += filter[i*filterSize +j];
filter[i*filterSize +j]=0;
}
(*filterPos)[i]= srcW - filterSize;
}
}
// Note the +1 is for the MMXscaler which reads over the end
/* align at 16 for AltiVec (needed by hScale_altivec_real) */
*outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
/* Normalize & Store in outFilter */
for (i=0; i<dstW; i++)
{
int j;
double error=0;
double sum=0;
double scale= one;
for (j=0; j<filterSize; j++)
{
sum+= filter[i*filterSize + j];
}
scale/= sum;
for (j=0; j<*outFilterSize; j++)
{
double v= filter[i*filterSize + j]*scale + error;
int intV= floor(v + 0.5);
(*outFilter)[i*(*outFilterSize) + j]= intV;
error = v - intV;
}
}
(*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
for (i=0; i<*outFilterSize; i++)
{
int j= dstW*(*outFilterSize);
(*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
}
av_free(filter);
return 0;
}
#ifdef COMPILE_MMX2
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
{
uint8_t *fragmentA;
long imm8OfPShufW1A;
long imm8OfPShufW2A;
long fragmentLengthA;
uint8_t *fragmentB;
long imm8OfPShufW1B;
long imm8OfPShufW2B;
long fragmentLengthB;
int fragmentPos;
int xpos, i;
// create an optimized horizontal scaling routine
//code fragment
asm volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
"punpcklbw %%mm7, %%mm1 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm1, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea 0b, %0 \n\t"
"lea 1b, %1 \n\t"
"lea 2b, %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea 9b, %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
"=r" (fragmentLengthA)
);
asm volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm0, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea 0b, %0 \n\t"
"lea 1b, %1 \n\t"
"lea 2b, %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea 9b, %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
"=r" (fragmentLengthB)
);
xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
fragmentPos=0;
for (i=0; i<dstW/numSplits; i++)
{
int xx=xpos>>16;
if ((i&3) == 0)
{
int a=0;
int b=((xpos+xInc)>>16) - xx;
int c=((xpos+xInc*2)>>16) - xx;
int d=((xpos+xInc*3)>>16) - xx;
filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
filterPos[i/2]= xx;
if (d+1<4)
{
int maxShift= 3-(d+1);
int shift=0;
memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
funnyCode[fragmentPos + imm8OfPShufW1B]=
(a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
funnyCode[fragmentPos + imm8OfPShufW2B]=
a | (b<<2) | (c<<4) | (d<<6);
if (i+3>=dstW) shift=maxShift; //avoid overread
else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
if (shift && i>=shift)
{
funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
filterPos[i/2]-=shift;
}
fragmentPos+= fragmentLengthB;
}
else
{
int maxShift= 3-d;
int shift=0;
memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
funnyCode[fragmentPos + imm8OfPShufW1A]=
funnyCode[fragmentPos + imm8OfPShufW2A]=
a | (b<<2) | (c<<4) | (d<<6);
if (i+4>=dstW) shift=maxShift; //avoid overread
else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
if (shift && i>=shift)
{
funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
filterPos[i/2]-=shift;
}
fragmentPos+= fragmentLengthA;
}
funnyCode[fragmentPos]= RET;
}
xpos+=xInc;
}
filterPos[i/2]= xpos>>16; // needed to jump to the next part
}
#endif /* COMPILE_MMX2 */
static void globalInit(void){
// generating tables:
int i;
for (i=0; i<768; i++){
int c= av_clip_uint8(i-256);
clip_table[i]=c;
}
}
static SwsFunc getSwsFunc(int flags){
#if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
#if defined(ARCH_X86)
// ordered per speed fasterst first
if (flags & SWS_CPU_CAPS_MMX2)
return swScale_MMX2;
else if (flags & SWS_CPU_CAPS_3DNOW)
return swScale_3DNow;
else if (flags & SWS_CPU_CAPS_MMX)
return swScale_MMX;
else
return swScale_C;
#else
#ifdef ARCH_POWERPC
if (flags & SWS_CPU_CAPS_ALTIVEC)
return swScale_altivec;
else
return swScale_C;
#endif
return swScale_C;
#endif /* defined(ARCH_X86) */
#else //RUNTIME_CPUDETECT
#ifdef HAVE_MMX2
return swScale_MMX2;
#elif defined (HAVE_3DNOW)
return swScale_3DNow;
#elif defined (HAVE_MMX)
return swScale_MMX;
#elif defined (HAVE_ALTIVEC)
return swScale_altivec;
#else
return swScale_C;
#endif
#endif //!RUNTIME_CPUDETECT
}
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
/* Copy Y plane */
if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
memcpy(dst, src[0], srcSliceH*dstStride[0]);
else
{
int i;
uint8_t *srcPtr= src[0];
uint8_t *dstPtr= dst;
for (i=0; i<srcSliceH; i++)
{
memcpy(dstPtr, srcPtr, c->srcW);
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
}
dst = dstParam[1] + dstStride[1]*srcSliceY/2;
if (c->dstFormat == PIX_FMT_NV12)
interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
else
interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
return srcSliceH;
}
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
return srcSliceH;
}
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dstParam[], int dstStride[]){
uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
return srcSliceH;
}
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
const int srcFormat= c->srcFormat;
const int dstFormat= c->dstFormat;
const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
const int dstId= fmt_depth(dstFormat) >> 2;
void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
/* BGR -> BGR */
if ( (isBGR(srcFormat) && isBGR(dstFormat))
|| (isRGB(srcFormat) && isRGB(dstFormat))){
switch(srcId | (dstId<<4)){
case 0x34: conv= rgb16to15; break;
case 0x36: conv= rgb24to15; break;
case 0x38: conv= rgb32to15; break;
case 0x43: conv= rgb15to16; break;
case 0x46: conv= rgb24to16; break;
case 0x48: conv= rgb32to16; break;
case 0x63: conv= rgb15to24; break;
case 0x64: conv= rgb16to24; break;
case 0x68: conv= rgb32to24; break;
case 0x83: conv= rgb15to32; break;
case 0x84: conv= rgb16to32; break;
case 0x86: conv= rgb24to32; break;
default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
}
}else if ( (isBGR(srcFormat) && isRGB(dstFormat))
|| (isRGB(srcFormat) && isBGR(dstFormat))){
switch(srcId | (dstId<<4)){
case 0x33: conv= rgb15tobgr15; break;
case 0x34: conv= rgb16tobgr15; break;
case 0x36: conv= rgb24tobgr15; break;
case 0x38: conv= rgb32tobgr15; break;
case 0x43: conv= rgb15tobgr16; break;
case 0x44: conv= rgb16tobgr16; break;
case 0x46: conv= rgb24tobgr16; break;
case 0x48: conv= rgb32tobgr16; break;
case 0x63: conv= rgb15tobgr24; break;
case 0x64: conv= rgb16tobgr24; break;
case 0x66: conv= rgb24tobgr24; break;
case 0x68: conv= rgb32tobgr24; break;
case 0x83: conv= rgb15tobgr32; break;
case 0x84: conv= rgb16tobgr32; break;
case 0x86: conv= rgb24tobgr32; break;
case 0x88: conv= rgb32tobgr32; break;
default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
}
}else{
av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat));
}
if(conv)
{
if (dstStride[0]*srcBpp == srcStride[0]*dstBpp)
conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
else
{
int i;
uint8_t *srcPtr= src[0];
uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
for (i=0; i<srcSliceH; i++)
{
conv(srcPtr, dstPtr, c->srcW*srcBpp);
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
}
}
return srcSliceH;
}
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
rgb24toyv12(
src[0],
dst[0]+ srcSliceY *dstStride[0],
dst[1]+(srcSliceY>>1)*dstStride[1],
dst[2]+(srcSliceY>>1)*dstStride[2],
c->srcW, srcSliceH,
dstStride[0], dstStride[1], srcStride[0]);
return srcSliceH;
}
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
int i;
/* copy Y */
if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
else{
uint8_t *srcPtr= src[0];
uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
for (i=0; i<srcSliceH; i++)
{
memcpy(dstPtr, srcPtr, c->srcW);
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
}
if (c->dstFormat==PIX_FMT_YUV420P){
planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
}else{
planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
}
return srcSliceH;
}
/* unscaled copy like stuff (assumes nearly identical formats) */
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
if (isPacked(c->srcFormat))
{
if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
else
{
int i;
uint8_t *srcPtr= src[0];
uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
int length=0;
/* universal length finder */
while(length+c->srcW <= FFABS(dstStride[0])
&& length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
ASSERT(length!=0);
for (i=0; i<srcSliceH; i++)
{
memcpy(dstPtr, srcPtr, length);
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
}
}
else
{ /* Planar YUV or gray */
int plane;
for (plane=0; plane<3; plane++)
{
int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
{
if (!isGray(c->dstFormat))
memset(dst[plane], 128, dstStride[plane]*height);
}
else
{
if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
else
{
int i;
uint8_t *srcPtr= src[plane];
uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
for (i=0; i<height; i++)
{
memcpy(dstPtr, srcPtr, length);
srcPtr+= srcStride[plane];
dstPtr+= dstStride[plane];
}
}
}
}
}
return srcSliceH;
}
static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
int length= c->srcW;
int y= srcSliceY;
int height= srcSliceH;
int i, j;
uint8_t *srcPtr= src[0];
uint8_t *dstPtr= dst[0] + dstStride[0]*y;
if (!isGray(c->dstFormat)){
int height= -((-srcSliceH)>>c->chrDstVSubSample);
memset(dst[1], 128, dstStride[1]*height);
memset(dst[2], 128, dstStride[2]*height);
}
if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
for (i=0; i<height; i++)
{
for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
return srcSliceH;
}
static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
int length= c->srcW;
int y= srcSliceY;
int height= srcSliceH;
int i, j;
uint8_t *srcPtr= src[0];
uint8_t *dstPtr= dst[0] + dstStride[0]*y;
for (i=0; i<height; i++)
{
for (j=0; j<length; j++)
{
dstPtr[j<<1] = srcPtr[j];
dstPtr[(j<<1)+1] = srcPtr[j];
}
srcPtr+= srcStride[0];
dstPtr+= dstStride[0];
}
return srcSliceH;
}
static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
int length= c->srcW;
int y= srcSliceY;
int height= srcSliceH;
int i, j;
uint16_t *srcPtr= src[0];
uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
for (i=0; i<height; i++)
{
for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
srcPtr+= srcStride[0]/2;
dstPtr+= dstStride[0]/2;
}
return srcSliceH;
}
static void getSubSampleFactors(int *h, int *v, int format){
switch(format){
case PIX_FMT_UYVY422:
case PIX_FMT_YUYV422:
*h=1;
*v=0;
break;
case PIX_FMT_YUV420P:
case PIX_FMT_YUVA420P:
case PIX_FMT_GRAY16BE:
case PIX_FMT_GRAY16LE:
case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
case PIX_FMT_NV12:
case PIX_FMT_NV21:
*h=1;
*v=1;
break;
case PIX_FMT_YUV440P:
*h=0;
*v=1;
break;
case PIX_FMT_YUV410P:
*h=2;
*v=2;
break;
case PIX_FMT_YUV444P:
*h=0;
*v=0;
break;
case PIX_FMT_YUV422P:
*h=1;
*v=0;
break;
case PIX_FMT_YUV411P:
*h=2;
*v=0;
break;
default:
*h=0;
*v=0;
break;
}
}
static uint16_t roundToInt16(int64_t f){
int r= (f + (1<<15))>>16;
if (r<-0x7FFF) return 0x8000;
else if (r> 0x7FFF) return 0x7FFF;
else return r;
}
/**
* @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
* @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
* @return -1 if not supported
*/
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
int64_t crv = inv_table[0];
int64_t cbu = inv_table[1];
int64_t cgu = -inv_table[2];
int64_t cgv = -inv_table[3];
int64_t cy = 1<<16;
int64_t oy = 0;
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
c->brightness= brightness;
c->contrast = contrast;
c->saturation= saturation;
c->srcRange = srcRange;
c->dstRange = dstRange;
c->uOffset= 0x0400040004000400LL;
c->vOffset= 0x0400040004000400LL;
if (!srcRange){
cy= (cy*255) / 219;
oy= 16<<16;
}else{
crv= (crv*224) / 255;
cbu= (cbu*224) / 255;
cgu= (cgu*224) / 255;
cgv= (cgv*224) / 255;
}
cy = (cy *contrast )>>16;
crv= (crv*contrast * saturation)>>32;
cbu= (cbu*contrast * saturation)>>32;
cgu= (cgu*contrast * saturation)>>32;
cgv= (cgv*contrast * saturation)>>32;
oy -= 256*brightness;
c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
//FIXME factorize
#ifdef COMPILE_ALTIVEC
if (c->flags & SWS_CPU_CAPS_ALTIVEC)
yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
#endif
return 0;
}
/**
* @return -1 if not supported
*/
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
*inv_table = c->srcColorspaceTable;
*table = c->dstColorspaceTable;
*srcRange = c->srcRange;
*dstRange = c->dstRange;
*brightness= c->brightness;
*contrast = c->contrast;
*saturation= c->saturation;
return 0;
}
static int handle_jpeg(int *format)
{
switch (*format) {
case PIX_FMT_YUVJ420P:
*format = PIX_FMT_YUV420P;
return 1;
case PIX_FMT_YUVJ422P:
*format = PIX_FMT_YUV422P;
return 1;
case PIX_FMT_YUVJ444P:
*format = PIX_FMT_YUV444P;
return 1;
case PIX_FMT_YUVJ440P:
*format = PIX_FMT_YUV440P;
return 1;
default:
return 0;
}
}
SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
SwsContext *c;
int i;
int usesVFilter, usesHFilter;
int unscaled, needsDither;
int srcRange, dstRange;
SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
#if defined(ARCH_X86)
if (flags & SWS_CPU_CAPS_MMX)
asm volatile("emms\n\t"::: "memory");
#endif
#if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
#ifdef HAVE_MMX2
flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
#elif defined (HAVE_3DNOW)
flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
#elif defined (HAVE_MMX)
flags |= SWS_CPU_CAPS_MMX;
#elif defined (HAVE_ALTIVEC)
flags |= SWS_CPU_CAPS_ALTIVEC;
#elif defined (HAVE_BFIN)
flags |= SWS_CPU_CAPS_BFIN;
#endif
#endif /* RUNTIME_CPUDETECT */
if (clip_table[512] != 255) globalInit();
if (rgb15to16 == NULL) sws_rgb2rgb_init(flags);
unscaled = (srcW == dstW && srcH == dstH);
needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
&& (fmt_depth(dstFormat))<24
&& ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
srcRange = handle_jpeg(&srcFormat);
dstRange = handle_jpeg(&dstFormat);
if (!isSupportedIn(srcFormat))
{
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
return NULL;
}
if (!isSupportedOut(dstFormat))
{
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
return NULL;
}
/* sanity check */
if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
{
av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
srcW, srcH, dstW, dstH);
return NULL;
}
if (!dstFilter) dstFilter= &dummyFilter;
if (!srcFilter) srcFilter= &dummyFilter;
c= av_mallocz(sizeof(SwsContext));
c->av_class = &sws_context_class;
c->srcW= srcW;
c->srcH= srcH;
c->dstW= dstW;
c->dstH= dstH;
c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
c->flags= flags;
c->dstFormat= dstFormat;
c->srcFormat= srcFormat;
c->vRounder= 4* 0x0001000100010001ULL;
usesHFilter= usesVFilter= 0;
if (dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
if (dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
if (dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
if (dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
if (srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
if (srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
if (srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
if (srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
// reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
// drop some chroma lines if the user wants it
c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
c->chrSrcVSubSample+= c->vChrDrop;
// drop every 2. pixel for chroma calculation unless user wants full chroma
if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
&& srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
&& srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
&& srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE)
c->chrSrcHSubSample=1;
if (param){
c->param[0] = param[0];
c->param[1] = param[1];
}else{
c->param[0] =
c->param[1] = SWS_PARAM_DEFAULT;
}
c->chrIntHSubSample= c->chrDstHSubSample;
c->chrIntVSubSample= c->chrSrcVSubSample;
// Note the -((-x)>>y) is so that we always round toward +inf.
c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
/* unscaled special Cases */
if (unscaled && !usesHFilter && !usesVFilter)
{
/* yv12_to_nv12 */
if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
{
c->swScale= PlanarToNV12Wrapper;
}
#ifdef CONFIG_GPL
/* yuv2bgr */
if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
{
c->swScale= yuv2rgb_get_func_ptr(c);
}
#endif
if ( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
{
c->swScale= yvu9toyv12Wrapper;
}
/* bgr24toYV12 */
if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
c->swScale= bgr24toyv12Wrapper;
/* rgb/bgr -> rgb/bgr (no dither needed forms) */
if ( (isBGR(srcFormat) || isRGB(srcFormat))
&& (isBGR(dstFormat) || isRGB(dstFormat))
&& srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
&& srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
&& srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
&& srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
&& srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
&& srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
&& srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
&& !needsDither)
c->swScale= rgb2rgbWrapper;
/* LQ converters if -sws 0 or -sws 4*/
if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
/* rgb/bgr -> rgb/bgr (dither needed forms) */
if ( (isBGR(srcFormat) || isRGB(srcFormat))
&& (isBGR(dstFormat) || isRGB(dstFormat))
&& needsDither)
c->swScale= rgb2rgbWrapper;
/* yv12_to_yuy2 */
if (srcFormat == PIX_FMT_YUV420P &&
(dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
{
if (dstFormat == PIX_FMT_YUYV422)
c->swScale= PlanarToYuy2Wrapper;
else
c->swScale= PlanarToUyvyWrapper;
}
}
#ifdef COMPILE_ALTIVEC
if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
((srcFormat == PIX_FMT_YUV420P &&
(dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
// unscaled YV12 -> packed YUV, we want speed
if (dstFormat == PIX_FMT_YUYV422)
c->swScale= yv12toyuy2_unscaled_altivec;
else
c->swScale= yv12touyvy_unscaled_altivec;
}
#endif
/* simple copy */
if ( srcFormat == dstFormat
|| (isPlanarYUV(srcFormat) && isGray(dstFormat))
|| (isPlanarYUV(dstFormat) && isGray(srcFormat)) )
{
c->swScale= simpleCopy;
}
/* gray16{le,be} conversions */
if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
{
c->swScale= gray16togray;
}
if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
{
c->swScale= graytogray16;
}
if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
{
c->swScale= gray16swap;
}
#ifdef ARCH_BFIN
if (flags & SWS_CPU_CAPS_BFIN)
ff_bfin_get_unscaled_swscale (c);
#endif
if (c->swScale){
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat));
return c;
}
}
if (flags & SWS_CPU_CAPS_MMX2)
{
c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
{
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
}
if (usesHFilter) c->canMMX2BeUsed=0;
}
else
c->canMMX2BeUsed=0;
c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
// but only for the FAST_BILINEAR mode otherwise do correct scaling
// n-2 is the last chrominance sample available
// this is not perfect, but no one should notice the difference, the more correct variant
// would be like the vertical one, but that would require some special code for the
// first and last pixel
if (flags&SWS_FAST_BILINEAR)
{
if (c->canMMX2BeUsed)
{
c->lumXInc+= 20;
c->chrXInc+= 20;
}
//we don't use the x86asm scaler if mmx is available
else if (flags & SWS_CPU_CAPS_MMX)
{
c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
}
}
/* precalculate horizontal scaler filter coefficients */
{
const int filterAlign=
(flags & SWS_CPU_CAPS_MMX) ? 4 :
(flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1;
initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
srcW , dstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
srcFilter->lumH, dstFilter->lumH, c->param);
initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
srcFilter->chrH, dstFilter->chrH, c->param);
#define MAX_FUNNY_CODE_SIZE 10000
#if defined(COMPILE_MMX2)
// can't downscale !!!
if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
{
#ifdef MAP_ANONYMOUS
c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
#else
c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
#endif
c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
}
#endif /* defined(COMPILE_MMX2) */
} // Init Horizontal stuff
/* precalculate vertical scaler filter coefficients */
{
const int filterAlign=
(flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
(flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1;
initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
srcH , dstH, filterAlign, (1<<12)-4,
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
srcFilter->lumV, dstFilter->lumV, c->param);
initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
srcFilter->chrV, dstFilter->chrV, c->param);
#ifdef HAVE_ALTIVEC
c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
int j;
short *p = (short *)&c->vYCoeffsBank[i];
for (j=0;j<8;j++)
p[j] = c->vLumFilter[i];
}
for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
int j;
short *p = (short *)&c->vCCoeffsBank[i];
for (j=0;j<8;j++)
p[j] = c->vChrFilter[i];
}
#endif
}
// Calculate Buffer Sizes so that they won't run out while handling these damn slices
c->vLumBufSize= c->vLumFilterSize;
c->vChrBufSize= c->vChrFilterSize;
for (i=0; i<dstH; i++)
{
int chrI= i*c->chrDstH / dstH;
int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
nextSlice>>= c->chrSrcVSubSample;
nextSlice<<= c->chrSrcVSubSample;
if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
}
// allocate pixbufs (we use dynamic allocation because otherwise we would need to
c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
//Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
/* align at 16 bytes for AltiVec */
for (i=0; i<c->vLumBufSize; i++)
c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
for (i=0; i<c->vChrBufSize; i++)
c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
//try to avoid drawing green stuff between the right end and the stride end
for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
ASSERT(c->chrDstH <= dstH)
if (flags&SWS_PRINT_INFO)
{
#ifdef DITHER1XBPP
char *dither= " dithered";
#else
char *dither= "";
#endif
if (flags&SWS_FAST_BILINEAR)
av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
else if (flags&SWS_BILINEAR)
av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
else if (flags&SWS_BICUBIC)
av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
else if (flags&SWS_X)
av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
else if (flags&SWS_POINT)
av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
else if (flags&SWS_AREA)
av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
else if (flags&SWS_BICUBLIN)
av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
else if (flags&SWS_GAUSS)
av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
else if (flags&SWS_SINC)
av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
else if (flags&SWS_LANCZOS)
av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
else if (flags&SWS_SPLINE)
av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
else
av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");
if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
av_log(c, AV_LOG_INFO, "from %s to%s %s ",
sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
else
av_log(c, AV_LOG_INFO, "from %s to %s ",
sws_format_name(srcFormat), sws_format_name(dstFormat));
if (flags & SWS_CPU_CAPS_MMX2)
av_log(c, AV_LOG_INFO, "using MMX2\n");
else if (flags & SWS_CPU_CAPS_3DNOW)
av_log(c, AV_LOG_INFO, "using 3DNOW\n");
else if (flags & SWS_CPU_CAPS_MMX)
av_log(c, AV_LOG_INFO, "using MMX\n");
else if (flags & SWS_CPU_CAPS_ALTIVEC)
av_log(c, AV_LOG_INFO, "using AltiVec\n");
else
av_log(c, AV_LOG_INFO, "using C\n");
}
if (flags & SWS_PRINT_INFO)
{
if (flags & SWS_CPU_CAPS_MMX)
{
if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
else
{
if (c->hLumFilterSize==4)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
else if (c->hLumFilterSize==8)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
else
av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
if (c->hChrFilterSize==4)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
else if (c->hChrFilterSize==8)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
else
av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
}
}
else
{
#if defined(ARCH_X86)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
#else
if (flags & SWS_FAST_BILINEAR)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
else
av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
#endif
}
if (isPlanarYUV(dstFormat))
{
if (c->vLumFilterSize==1)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else
av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
}
else
{
if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
"SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else
av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
}
if (dstFormat==PIX_FMT_BGR24)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
(flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
else if (dstFormat==PIX_FMT_RGB32)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else if (dstFormat==PIX_FMT_BGR565)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else if (dstFormat==PIX_FMT_BGR555)
av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
}
if (flags & SWS_PRINT_INFO)
{
av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
}
c->swScale= getSwsFunc(flags);
return c;
}
/**
* swscale warper, so we don't need to export the SwsContext.
* assumes planar YUV to be in YUV order instead of YVU
*/
int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
int i;
uint8_t* src2[4]= {src[0], src[1], src[2]};
uint32_t pal[256];
if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
return 0;
}
if (c->sliceDir == 0) {
if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
}
if (c->srcFormat == PIX_FMT_PAL8){
for (i=0; i<256; i++){
int p= ((uint32_t*)(src[1]))[i];
int r= (p>>16)&0xFF;
int g= (p>> 8)&0xFF;
int b= p &0xFF;
int y= av_clip_uint8(((RY*r + GY*g + BY*b)>>RGB2YUV_SHIFT) + 16 );
int u= av_clip_uint8(((RU*r + GU*g + BU*b)>>RGB2YUV_SHIFT) + 128);
int v= av_clip_uint8(((RV*r + GV*g + BV*b)>>RGB2YUV_SHIFT) + 128);
pal[i]= y + (u<<8) + (v<<16);
}
src2[1]= pal;
}
// copy strides, so they can safely be modified
if (c->sliceDir == 1) {
// slices go from top to bottom
int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
} else {
// slices go from bottom to top => we flip the image internally
uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
src2[0] += (srcSliceH-1)*srcStride[0];
if (c->srcFormat != PIX_FMT_PAL8)
src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
}
}
/**
* swscale warper, so we don't need to export the SwsContext
*/
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]){
return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
}
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
float lumaSharpen, float chromaSharpen,
float chromaHShift, float chromaVShift,
int verbose)
{
SwsFilter *filter= av_malloc(sizeof(SwsFilter));
if (lumaGBlur!=0.0){
filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
}else{
filter->lumH= sws_getIdentityVec();
filter->lumV= sws_getIdentityVec();
}
if (chromaGBlur!=0.0){
filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
}else{
filter->chrH= sws_getIdentityVec();
filter->chrV= sws_getIdentityVec();
}
if (chromaSharpen!=0.0){
SwsVector *id= sws_getIdentityVec();
sws_scaleVec(filter->chrH, -chromaSharpen);
sws_scaleVec(filter->chrV, -chromaSharpen);
sws_addVec(filter->chrH, id);
sws_addVec(filter->chrV, id);
sws_freeVec(id);
}
if (lumaSharpen!=0.0){
SwsVector *id= sws_getIdentityVec();
sws_scaleVec(filter->lumH, -lumaSharpen);
sws_scaleVec(filter->lumV, -lumaSharpen);
sws_addVec(filter->lumH, id);
sws_addVec(filter->lumV, id);
sws_freeVec(id);
}
if (chromaHShift != 0.0)
sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
if (chromaVShift != 0.0)
sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
sws_normalizeVec(filter->chrH, 1.0);
sws_normalizeVec(filter->chrV, 1.0);
sws_normalizeVec(filter->lumH, 1.0);
sws_normalizeVec(filter->lumV, 1.0);
if (verbose) sws_printVec(filter->chrH);
if (verbose) sws_printVec(filter->lumH);
return filter;
}
/**
* returns a normalized gaussian curve used to filter stuff
* quality=3 is high quality, lowwer is lowwer quality
*/
SwsVector *sws_getGaussianVec(double variance, double quality){
const int length= (int)(variance*quality + 0.5) | 1;
int i;
double *coeff= av_malloc(length*sizeof(double));
double middle= (length-1)*0.5;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++)
{
double dist= i-middle;
coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
}
sws_normalizeVec(vec, 1.0);
return vec;
}
SwsVector *sws_getConstVec(double c, int length){
int i;
double *coeff= av_malloc(length*sizeof(double));
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++)
coeff[i]= c;
return vec;
}
SwsVector *sws_getIdentityVec(void){
return sws_getConstVec(1.0, 1);
}
double sws_dcVec(SwsVector *a){
int i;
double sum=0;
for (i=0; i<a->length; i++)
sum+= a->coeff[i];
return sum;
}
void sws_scaleVec(SwsVector *a, double scalar){
int i;
for (i=0; i<a->length; i++)
a->coeff[i]*= scalar;
}
void sws_normalizeVec(SwsVector *a, double height){
sws_scaleVec(a, height/sws_dcVec(a));
}
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
int length= a->length + b->length - 1;
double *coeff= av_malloc(length*sizeof(double));
int i, j;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++) coeff[i]= 0.0;
for (i=0; i<a->length; i++)
{
for (j=0; j<b->length; j++)
{
coeff[i+j]+= a->coeff[i]*b->coeff[j];
}
}
return vec;
}
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
int length= FFMAX(a->length, b->length);
double *coeff= av_malloc(length*sizeof(double));
int i;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++) coeff[i]= 0.0;
for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
return vec;
}
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
int length= FFMAX(a->length, b->length);
double *coeff= av_malloc(length*sizeof(double));
int i;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++) coeff[i]= 0.0;
for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
return vec;
}
/* shift left / or right if "shift" is negative */
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
int length= a->length + FFABS(shift)*2;
double *coeff= av_malloc(length*sizeof(double));
int i;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for (i=0; i<length; i++) coeff[i]= 0.0;
for (i=0; i<a->length; i++)
{
coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
}
return vec;
}
void sws_shiftVec(SwsVector *a, int shift){
SwsVector *shifted= sws_getShiftedVec(a, shift);
av_free(a->coeff);
a->coeff= shifted->coeff;
a->length= shifted->length;
av_free(shifted);
}
void sws_addVec(SwsVector *a, SwsVector *b){
SwsVector *sum= sws_sumVec(a, b);
av_free(a->coeff);
a->coeff= sum->coeff;
a->length= sum->length;
av_free(sum);
}
void sws_subVec(SwsVector *a, SwsVector *b){
SwsVector *diff= sws_diffVec(a, b);
av_free(a->coeff);
a->coeff= diff->coeff;
a->length= diff->length;
av_free(diff);
}
void sws_convVec(SwsVector *a, SwsVector *b){
SwsVector *conv= sws_getConvVec(a, b);
av_free(a->coeff);
a->coeff= conv->coeff;
a->length= conv->length;
av_free(conv);
}
SwsVector *sws_cloneVec(SwsVector *a){
double *coeff= av_malloc(a->length*sizeof(double));
int i;
SwsVector *vec= av_malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= a->length;
for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
return vec;
}
void sws_printVec(SwsVector *a){
int i;
double max=0;
double min=0;
double range;
for (i=0; i<a->length; i++)
if (a->coeff[i]>max) max= a->coeff[i];
for (i=0; i<a->length; i++)
if (a->coeff[i]<min) min= a->coeff[i];
range= max - min;
for (i=0; i<a->length; i++)
{
int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
av_log(NULL, AV_LOG_DEBUG, "|\n");
}
}
void sws_freeVec(SwsVector *a){
if (!a) return;
av_free(a->coeff);
a->coeff=NULL;
a->length=0;
av_free(a);
}
void sws_freeFilter(SwsFilter *filter){
if (!filter) return;
if (filter->lumH) sws_freeVec(filter->lumH);
if (filter->lumV) sws_freeVec(filter->lumV);
if (filter->chrH) sws_freeVec(filter->chrH);
if (filter->chrV) sws_freeVec(filter->chrV);
av_free(filter);
}
void sws_freeContext(SwsContext *c){
int i;
if (!c) return;
if (c->lumPixBuf)
{
for (i=0; i<c->vLumBufSize; i++)
{
av_free(c->lumPixBuf[i]);
c->lumPixBuf[i]=NULL;
}
av_free(c->lumPixBuf);
c->lumPixBuf=NULL;
}
if (c->chrPixBuf)
{
for (i=0; i<c->vChrBufSize; i++)
{
av_free(c->chrPixBuf[i]);
c->chrPixBuf[i]=NULL;
}
av_free(c->chrPixBuf);
c->chrPixBuf=NULL;
}
av_free(c->vLumFilter);
c->vLumFilter = NULL;
av_free(c->vChrFilter);
c->vChrFilter = NULL;
av_free(c->hLumFilter);
c->hLumFilter = NULL;
av_free(c->hChrFilter);
c->hChrFilter = NULL;
#ifdef HAVE_ALTIVEC
av_free(c->vYCoeffsBank);
c->vYCoeffsBank = NULL;
av_free(c->vCCoeffsBank);
c->vCCoeffsBank = NULL;
#endif
av_free(c->vLumFilterPos);
c->vLumFilterPos = NULL;
av_free(c->vChrFilterPos);
c->vChrFilterPos = NULL;
av_free(c->hLumFilterPos);
c->hLumFilterPos = NULL;
av_free(c->hChrFilterPos);
c->hChrFilterPos = NULL;
#if defined(ARCH_X86) && defined(CONFIG_GPL)
#ifdef MAP_ANONYMOUS
if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
#else
av_free(c->funnyYCode);
av_free(c->funnyUVCode);
#endif
c->funnyYCode=NULL;
c->funnyUVCode=NULL;
#endif /* defined(ARCH_X86) */
av_free(c->lumMmx2Filter);
c->lumMmx2Filter=NULL;
av_free(c->chrMmx2Filter);
c->chrMmx2Filter=NULL;
av_free(c->lumMmx2FilterPos);
c->lumMmx2FilterPos=NULL;
av_free(c->chrMmx2FilterPos);
c->chrMmx2FilterPos=NULL;
av_free(c->yuvTable);
c->yuvTable=NULL;
av_free(c);
}
/**
* Checks if context is valid or reallocs a new one instead.
* If context is NULL, just calls sws_getContext() to get a new one.
* Otherwise, checks if the parameters are the same already saved in context.
* If that is the case, returns the current context.
* Otherwise, frees context and gets a new one.
*
* Be warned that srcFilter, dstFilter are not checked, they are
* asumed to remain valid.
*/
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
int srcW, int srcH, int srcFormat,
int dstW, int dstH, int dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
{
if (context != NULL) {
if ((context->srcW != srcW) || (context->srcH != srcH) ||
(context->srcFormat != srcFormat) ||
(context->dstW != dstW) || (context->dstH != dstH) ||
(context->dstFormat != dstFormat) || (context->flags != flags) ||
(context->param != param))
{
sws_freeContext(context);
context = NULL;
}
}
if (context == NULL) {
return sws_getContext(srcW, srcH, srcFormat,
dstW, dstH, dstFormat, flags,
srcFilter, dstFilter, param);
}
return context;
}