mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-21 06:50:44 +00:00
e44c11e9fa
Fixes several "‘static’ is not at beginning of declaration" warnings.
172 lines
6.0 KiB
C
172 lines
6.0 KiB
C
/*
|
|
* G.722 ADPCM audio encoder/decoder
|
|
*
|
|
* Copyright (c) CMU 1993 Computer Science, Speech Group
|
|
* Chengxiang Lu and Alex Hauptmann
|
|
* Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
|
|
* Copyright (c) 2009 Kenan Gillet
|
|
* Copyright (c) 2010 Martin Storsjo
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* G.722 ADPCM audio codec
|
|
*
|
|
* This G.722 decoder is a bit-exact implementation of the ITU G.722
|
|
* specification for all three specified bitrates - 64000bps, 56000bps
|
|
* and 48000bps. It passes the ITU tests.
|
|
*
|
|
* @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
|
|
* respectively of each byte are ignored.
|
|
*/
|
|
|
|
#include "mathops.h"
|
|
#include "g722.h"
|
|
|
|
static const int8_t sign_lookup[2] = { -1, 1 };
|
|
|
|
static const int16_t inv_log2_table[32] = {
|
|
2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
|
|
2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
|
|
2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
|
|
3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
|
|
};
|
|
static const int16_t high_log_factor_step[2] = { 798, -214 };
|
|
const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 };
|
|
/**
|
|
* low_log_factor_step[index] == wl[rl42[index]]
|
|
*/
|
|
static const int16_t low_log_factor_step[16] = {
|
|
-60, 3042, 1198, 538, 334, 172, 58, -30,
|
|
3042, 1198, 538, 334, 172, 58, -30, -60
|
|
};
|
|
const int16_t ff_g722_low_inv_quant4[16] = {
|
|
0, -2557, -1612, -1121, -786, -530, -323, -150,
|
|
2557, 1612, 1121, 786, 530, 323, 150, 0
|
|
};
|
|
const int16_t ff_g722_low_inv_quant6[64] = {
|
|
-17, -17, -17, -17, -3101, -2738, -2376, -2088,
|
|
-1873, -1689, -1535, -1399, -1279, -1170, -1072, -982,
|
|
-899, -822, -750, -682, -618, -558, -501, -447,
|
|
-396, -347, -300, -254, -211, -170, -130, -91,
|
|
3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399,
|
|
1279, 1170, 1072, 982, 899, 822, 750, 682,
|
|
618, 558, 501, 447, 396, 347, 300, 254,
|
|
211, 170, 130, 91, 54, 17, -54, -17
|
|
};
|
|
|
|
/**
|
|
* quadrature mirror filter (QMF) coefficients
|
|
*
|
|
* ITU-T G.722 Table 11
|
|
*/
|
|
static const int16_t qmf_coeffs[12] = {
|
|
3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
|
|
};
|
|
|
|
|
|
/**
|
|
* adaptive predictor
|
|
*
|
|
* @param cur_diff the dequantized and scaled delta calculated from the
|
|
* current codeword
|
|
*/
|
|
static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
|
|
{
|
|
int sg[2], limit, i, cur_qtzd_reconst;
|
|
|
|
const int cur_part_reconst = band->s_zero + cur_diff < 0;
|
|
|
|
sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
|
|
sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
|
|
band->part_reconst_mem[1] = band->part_reconst_mem[0];
|
|
band->part_reconst_mem[0] = cur_part_reconst;
|
|
|
|
band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
|
|
(sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
|
|
|
|
limit = 15360 - band->pole_mem[1];
|
|
band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
|
|
|
|
|
|
if (cur_diff) {
|
|
for (i = 0; i < 6; i++)
|
|
band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) +
|
|
((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128);
|
|
} else
|
|
for (i = 0; i < 6; i++)
|
|
band->zero_mem[i] = (band->zero_mem[i]*255) >> 8;
|
|
|
|
for (i = 5; i > 0; i--)
|
|
band->diff_mem[i] = band->diff_mem[i-1];
|
|
band->diff_mem[0] = av_clip_int16(cur_diff << 1);
|
|
|
|
band->s_zero = 0;
|
|
for (i = 5; i >= 0; i--)
|
|
band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15;
|
|
|
|
|
|
cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
|
|
band->s_predictor = av_clip_int16(band->s_zero +
|
|
(band->pole_mem[0] * cur_qtzd_reconst >> 15) +
|
|
(band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
|
|
band->prev_qtzd_reconst = cur_qtzd_reconst;
|
|
}
|
|
|
|
static inline int linear_scale_factor(const int log_factor)
|
|
{
|
|
const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
|
|
const int shift = log_factor >> 11;
|
|
return shift < 0 ? wd1 >> -shift : wd1 << shift;
|
|
}
|
|
|
|
void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
|
|
{
|
|
do_adaptive_prediction(band,
|
|
band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10);
|
|
|
|
// quantizer adaptation
|
|
band->log_factor = av_clip((band->log_factor * 127 >> 7) +
|
|
low_log_factor_step[ilow], 0, 18432);
|
|
band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
|
|
}
|
|
|
|
void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh,
|
|
const int ihigh)
|
|
{
|
|
do_adaptive_prediction(band, dhigh);
|
|
|
|
// quantizer adaptation
|
|
band->log_factor = av_clip((band->log_factor * 127 >> 7) +
|
|
high_log_factor_step[ihigh&1], 0, 22528);
|
|
band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
|
|
}
|
|
|
|
void ff_g722_apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2)
|
|
{
|
|
int i;
|
|
|
|
*xout1 = 0;
|
|
*xout2 = 0;
|
|
for (i = 0; i < 12; i++) {
|
|
MAC16(*xout2, prev_samples[2*i ], qmf_coeffs[i ]);
|
|
MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]);
|
|
}
|
|
}
|