mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-30 11:22:14 +00:00
213 lines
8.2 KiB
C
213 lines
8.2 KiB
C
/*
|
|
* Header file for hardcoded Parametric Stereo tables
|
|
*
|
|
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef AACPS_TABLEGEN_H
|
|
#define AACPS_TABLEGEN_H
|
|
|
|
#include <stdint.h>
|
|
|
|
#if CONFIG_HARDCODED_TABLES
|
|
#define ps_tableinit()
|
|
#include "libavcodec/aacps_tables.h"
|
|
#else
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/mathematics.h"
|
|
#define NR_ALLPASS_BANDS20 30
|
|
#define NR_ALLPASS_BANDS34 50
|
|
#define PS_AP_LINKS 3
|
|
static float pd_re_smooth[8*8*8];
|
|
static float pd_im_smooth[8*8*8];
|
|
static float HA[46][8][4];
|
|
static float HB[46][8][4];
|
|
static float f20_0_8 [ 8][7][2];
|
|
static float f34_0_12[12][7][2];
|
|
static float f34_1_8 [ 8][7][2];
|
|
static float f34_2_4 [ 4][7][2];
|
|
static float Q_fract_allpass[2][50][3][2];
|
|
static float phi_fract[2][50][2];
|
|
|
|
static const float g0_Q8[] = {
|
|
0.00746082949812f, 0.02270420949825f, 0.04546865930473f, 0.07266113929591f,
|
|
0.09885108575264f, 0.11793710567217f, 0.125f
|
|
};
|
|
|
|
static const float g0_Q12[] = {
|
|
0.04081179924692f, 0.03812810994926f, 0.05144908135699f, 0.06399831151592f,
|
|
0.07428313801106f, 0.08100347892914f, 0.08333333333333f
|
|
};
|
|
|
|
static const float g1_Q8[] = {
|
|
0.01565675600122f, 0.03752716391991f, 0.05417891378782f, 0.08417044116767f,
|
|
0.10307344158036f, 0.12222452249753f, 0.125f
|
|
};
|
|
|
|
static const float g2_Q4[] = {
|
|
-0.05908211155639f, -0.04871498374946f, 0.0f, 0.07778723915851f,
|
|
0.16486303567403f, 0.23279856662996f, 0.25f
|
|
};
|
|
|
|
static void make_filters_from_proto(float (*filter)[7][2], const float *proto, int bands)
|
|
{
|
|
int q, n;
|
|
for (q = 0; q < bands; q++) {
|
|
for (n = 0; n < 7; n++) {
|
|
double theta = 2 * M_PI * (q + 0.5) * (n - 6) / bands;
|
|
filter[q][n][0] = proto[n] * cos(theta);
|
|
filter[q][n][1] = proto[n] * -sin(theta);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ps_tableinit(void)
|
|
{
|
|
static const float ipdopd_sin[] = { 0, M_SQRT1_2, 1, M_SQRT1_2, 0, -M_SQRT1_2, -1, -M_SQRT1_2 };
|
|
static const float ipdopd_cos[] = { 1, M_SQRT1_2, 0, -M_SQRT1_2, -1, -M_SQRT1_2, 0, M_SQRT1_2 };
|
|
int pd0, pd1, pd2;
|
|
|
|
static const float iid_par_dequant[] = {
|
|
//iid_par_dequant_default
|
|
0.05623413251903, 0.12589254117942, 0.19952623149689, 0.31622776601684,
|
|
0.44668359215096, 0.63095734448019, 0.79432823472428, 1,
|
|
1.25892541179417, 1.58489319246111, 2.23872113856834, 3.16227766016838,
|
|
5.01187233627272, 7.94328234724282, 17.7827941003892,
|
|
//iid_par_dequant_fine
|
|
0.00316227766017, 0.00562341325190, 0.01, 0.01778279410039,
|
|
0.03162277660168, 0.05623413251903, 0.07943282347243, 0.11220184543020,
|
|
0.15848931924611, 0.22387211385683, 0.31622776601684, 0.39810717055350,
|
|
0.50118723362727, 0.63095734448019, 0.79432823472428, 1,
|
|
1.25892541179417, 1.58489319246111, 1.99526231496888, 2.51188643150958,
|
|
3.16227766016838, 4.46683592150963, 6.30957344480193, 8.91250938133745,
|
|
12.5892541179417, 17.7827941003892, 31.6227766016838, 56.2341325190349,
|
|
100, 177.827941003892, 316.227766016837,
|
|
};
|
|
static const float icc_invq[] = {
|
|
1, 0.937, 0.84118, 0.60092, 0.36764, 0, -0.589, -1
|
|
};
|
|
static const float acos_icc_invq[] = {
|
|
0, 0.35685527, 0.57133466, 0.92614472, 1.1943263, M_PI/2, 2.2006171, M_PI
|
|
};
|
|
int iid, icc;
|
|
|
|
int k, m;
|
|
static const int8_t f_center_20[] = {
|
|
-3, -1, 1, 3, 5, 7, 10, 14, 18, 22,
|
|
};
|
|
static const int8_t f_center_34[] = {
|
|
2, 6, 10, 14, 18, 22, 26, 30,
|
|
34,-10, -6, -2, 51, 57, 15, 21,
|
|
27, 33, 39, 45, 54, 66, 78, 42,
|
|
102, 66, 78, 90,102,114,126, 90,
|
|
};
|
|
static const float fractional_delay_links[] = { 0.43f, 0.75f, 0.347f };
|
|
const float fractional_delay_gain = 0.39f;
|
|
|
|
for (pd0 = 0; pd0 < 8; pd0++) {
|
|
float pd0_re = ipdopd_cos[pd0];
|
|
float pd0_im = ipdopd_sin[pd0];
|
|
for (pd1 = 0; pd1 < 8; pd1++) {
|
|
float pd1_re = ipdopd_cos[pd1];
|
|
float pd1_im = ipdopd_sin[pd1];
|
|
for (pd2 = 0; pd2 < 8; pd2++) {
|
|
float pd2_re = ipdopd_cos[pd2];
|
|
float pd2_im = ipdopd_sin[pd2];
|
|
float re_smooth = 0.25f * pd0_re + 0.5f * pd1_re + pd2_re;
|
|
float im_smooth = 0.25f * pd0_im + 0.5f * pd1_im + pd2_im;
|
|
float pd_mag = 1 / sqrt(im_smooth * im_smooth + re_smooth * re_smooth);
|
|
pd_re_smooth[pd0*64+pd1*8+pd2] = re_smooth * pd_mag;
|
|
pd_im_smooth[pd0*64+pd1*8+pd2] = im_smooth * pd_mag;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (iid = 0; iid < 46; iid++) {
|
|
float c = iid_par_dequant[iid]; ///< Linear Inter-channel Intensity Difference
|
|
float c1 = (float)M_SQRT2 / sqrtf(1.0f + c*c);
|
|
float c2 = c * c1;
|
|
for (icc = 0; icc < 8; icc++) {
|
|
/*if (PS_BASELINE || ps->icc_mode < 3)*/ {
|
|
float alpha = 0.5f * acos_icc_invq[icc];
|
|
float beta = alpha * (c1 - c2) * (float)M_SQRT1_2;
|
|
HA[iid][icc][0] = c2 * cosf(beta + alpha);
|
|
HA[iid][icc][1] = c1 * cosf(beta - alpha);
|
|
HA[iid][icc][2] = c2 * sinf(beta + alpha);
|
|
HA[iid][icc][3] = c1 * sinf(beta - alpha);
|
|
} /* else */ {
|
|
float alpha, gamma, mu, rho;
|
|
float alpha_c, alpha_s, gamma_c, gamma_s;
|
|
rho = FFMAX(icc_invq[icc], 0.05f);
|
|
alpha = 0.5f * atan2f(2.0f * c * rho, c*c - 1.0f);
|
|
mu = c + 1.0f / c;
|
|
mu = sqrtf(1 + (4 * rho * rho - 4)/(mu * mu));
|
|
gamma = atanf(sqrtf((1.0f - mu)/(1.0f + mu)));
|
|
if (alpha < 0) alpha += M_PI/2;
|
|
alpha_c = cosf(alpha);
|
|
alpha_s = sinf(alpha);
|
|
gamma_c = cosf(gamma);
|
|
gamma_s = sinf(gamma);
|
|
HB[iid][icc][0] = M_SQRT2 * alpha_c * gamma_c;
|
|
HB[iid][icc][1] = M_SQRT2 * alpha_s * gamma_c;
|
|
HB[iid][icc][2] = -M_SQRT2 * alpha_s * gamma_s;
|
|
HB[iid][icc][3] = M_SQRT2 * alpha_c * gamma_s;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (k = 0; k < NR_ALLPASS_BANDS20; k++) {
|
|
double f_center, theta;
|
|
if (k < FF_ARRAY_ELEMS(f_center_20))
|
|
f_center = f_center_20[k] * 0.125;
|
|
else
|
|
f_center = k - 6.5f;
|
|
for (m = 0; m < PS_AP_LINKS; m++) {
|
|
theta = -M_PI * fractional_delay_links[m] * f_center;
|
|
Q_fract_allpass[0][k][m][0] = cos(theta);
|
|
Q_fract_allpass[0][k][m][1] = sin(theta);
|
|
}
|
|
theta = -M_PI*fractional_delay_gain*f_center;
|
|
phi_fract[0][k][0] = cos(theta);
|
|
phi_fract[0][k][1] = sin(theta);
|
|
}
|
|
for (k = 0; k < NR_ALLPASS_BANDS34; k++) {
|
|
double f_center, theta;
|
|
if (k < FF_ARRAY_ELEMS(f_center_34))
|
|
f_center = f_center_34[k] / 24.;
|
|
else
|
|
f_center = k - 26.5f;
|
|
for (m = 0; m < PS_AP_LINKS; m++) {
|
|
theta = -M_PI * fractional_delay_links[m] * f_center;
|
|
Q_fract_allpass[1][k][m][0] = cos(theta);
|
|
Q_fract_allpass[1][k][m][1] = sin(theta);
|
|
}
|
|
theta = -M_PI*fractional_delay_gain*f_center;
|
|
phi_fract[1][k][0] = cos(theta);
|
|
phi_fract[1][k][1] = sin(theta);
|
|
}
|
|
|
|
make_filters_from_proto(f20_0_8, g0_Q8, 8);
|
|
make_filters_from_proto(f34_0_12, g0_Q12, 12);
|
|
make_filters_from_proto(f34_1_8, g1_Q8, 8);
|
|
make_filters_from_proto(f34_2_4, g2_Q4, 4);
|
|
}
|
|
#endif /* CONFIG_HARDCODED_TABLES */
|
|
|
|
#endif /* AACPS_TABLEGEN_H */
|