ffmpeg/libavcodec/lagarith.c

739 lines
23 KiB
C

/*
* Lagarith lossless decoder
* Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Lagarith lossless decoder
* @author Nathan Caldwell
*/
#include <inttypes.h>
#include "avcodec.h"
#include "get_bits.h"
#include "mathops.h"
#include "lagarithrac.h"
#include "lossless_videodsp.h"
#include "thread.h"
enum LagarithFrameType {
FRAME_RAW = 1, /**< uncompressed */
FRAME_U_RGB24 = 2, /**< unaligned RGB24 */
FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */
FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */
FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */
FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */
FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */
FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */
FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */
FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */
};
typedef struct LagarithContext {
AVCodecContext *avctx;
LLVidDSPContext llviddsp;
int zeros; /**< number of consecutive zero bytes encountered */
int zeros_rem; /**< number of zero bytes remaining to output */
} LagarithContext;
/**
* Compute the 52-bit mantissa of 1/(double)denom.
* This crazy format uses floats in an entropy coder and we have to match x86
* rounding exactly, thus ordinary floats aren't portable enough.
* @param denom denominator
* @return 52-bit mantissa
* @see softfloat_mul
*/
static uint64_t softfloat_reciprocal(uint32_t denom)
{
int shift = av_log2(denom - 1) + 1;
uint64_t ret = (1ULL << 52) / denom;
uint64_t err = (1ULL << 52) - ret * denom;
ret <<= shift;
err <<= shift;
err += denom / 2;
return ret + err / denom;
}
/**
* (uint32_t)(x*f), where f has the given mantissa, and exponent 0
* Used in combination with softfloat_reciprocal computes x/(double)denom.
* @param x 32-bit integer factor
* @param mantissa mantissa of f with exponent 0
* @return 32-bit integer value (x*f)
* @see softfloat_reciprocal
*/
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
{
uint64_t l = x * (mantissa & 0xffffffff);
uint64_t h = x * (mantissa >> 32);
h += l >> 32;
l &= 0xffffffff;
l += 1LL << av_log2(h >> 21);
h += l >> 32;
return h >> 20;
}
static uint8_t lag_calc_zero_run(int8_t x)
{
return (x * 2) ^ (x >> 7);
}
static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
{
static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
int i;
int bit = 0;
int bits = 0;
int prevbit = 0;
unsigned val;
for (i = 0; i < 7; i++) {
if (prevbit && bit)
break;
prevbit = bit;
bit = get_bits1(gb);
if (bit && !prevbit)
bits += series[i];
}
bits--;
if (bits < 0 || bits > 31) {
*value = 0;
return -1;
} else if (bits == 0) {
*value = 0;
return 0;
}
val = get_bits_long(gb, bits);
val |= 1U << bits;
*value = val - 1;
return 0;
}
static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
{
int i, j, scale_factor;
unsigned prob, cumulative_target;
unsigned cumul_prob = 0;
unsigned scaled_cumul_prob = 0;
int nnz = 0;
rac->prob[0] = 0;
rac->prob[257] = UINT_MAX;
/* Read probabilities from bitstream */
for (i = 1; i < 257; i++) {
if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
return -1;
}
if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
return -1;
}
cumul_prob += rac->prob[i];
if (!rac->prob[i]) {
if (lag_decode_prob(gb, &prob)) {
av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
return -1;
}
if (prob > 256 - i)
prob = 256 - i;
for (j = 0; j < prob; j++)
rac->prob[++i] = 0;
}else {
nnz++;
}
}
if (!cumul_prob) {
av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
return -1;
}
if (nnz == 1 && (show_bits_long(gb, 32) & 0xFFFFFF)) {
return AVERROR_INVALIDDATA;
}
/* Scale probabilities so cumulative probability is an even power of 2. */
scale_factor = av_log2(cumul_prob);
if (cumul_prob & (cumul_prob - 1)) {
uint64_t mul = softfloat_reciprocal(cumul_prob);
for (i = 1; i <= 128; i++) {
rac->prob[i] = softfloat_mul(rac->prob[i], mul);
scaled_cumul_prob += rac->prob[i];
}
if (scaled_cumul_prob <= 0) {
av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
return AVERROR_INVALIDDATA;
}
for (; i < 257; i++) {
rac->prob[i] = softfloat_mul(rac->prob[i], mul);
scaled_cumul_prob += rac->prob[i];
}
scale_factor++;
if (scale_factor >= 32U)
return AVERROR_INVALIDDATA;
cumulative_target = 1U << scale_factor;
if (scaled_cumul_prob > cumulative_target) {
av_log(rac->avctx, AV_LOG_ERROR,
"Scaled probabilities are larger than target!\n");
return -1;
}
scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
if (rac->prob[i]) {
rac->prob[i]++;
scaled_cumul_prob--;
}
/* Comment from reference source:
* if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
* // since the compression change is negligible and fixing it
* // breaks backwards compatibility
* b =- (signed int)b;
* b &= 0xFF;
* } else {
* b++;
* b &= 0x7f;
* }
*/
}
}
if (scale_factor > 23)
return AVERROR_INVALIDDATA;
rac->scale = scale_factor;
/* Fill probability array with cumulative probability for each symbol. */
for (i = 1; i < 257; i++)
rac->prob[i] += rac->prob[i - 1];
return 0;
}
static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
uint8_t *diff, int w, int *left,
int *left_top)
{
/* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
* However the &0xFF on the gradient predictor yields incorrect output
* for lagarith.
*/
int i;
uint8_t l, lt;
l = *left;
lt = *left_top;
for (i = 0; i < w; i++) {
l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
lt = src1[i];
dst[i] = l;
}
*left = l;
*left_top = lt;
}
static void lag_pred_line(LagarithContext *l, uint8_t *buf,
int width, int stride, int line)
{
int L, TL;
if (!line) {
/* Left prediction only for first line */
L = l->llviddsp.add_left_pred(buf, buf, width, 0);
} else {
/* Left pixel is actually prev_row[width] */
L = buf[width - stride - 1];
if (line == 1) {
/* Second line, left predict first pixel, the rest of the line is median predicted
* NOTE: In the case of RGB this pixel is top predicted */
TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
} else {
/* Top left is 2 rows back, last pixel */
TL = buf[width - (2 * stride) - 1];
}
add_lag_median_prediction(buf, buf - stride, buf,
width, &L, &TL);
}
}
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
int width, int stride, int line,
int is_luma)
{
int L, TL;
if (!line) {
L= buf[0];
if (is_luma)
buf[0] = 0;
l->llviddsp.add_left_pred(buf, buf, width, 0);
if (is_luma)
buf[0] = L;
return;
}
if (line == 1) {
const int HEAD = is_luma ? 4 : 2;
int i;
L = buf[width - stride - 1];
TL = buf[HEAD - stride - 1];
for (i = 0; i < HEAD; i++) {
L += buf[i];
buf[i] = L;
}
for (; i < width; i++) {
L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
TL = buf[i - stride];
buf[i] = L;
}
} else {
TL = buf[width - (2 * stride) - 1];
L = buf[width - stride - 1];
l->llviddsp.add_median_pred(buf, buf - stride, buf, width, &L, &TL);
}
}
static int lag_decode_line(LagarithContext *l, lag_rac *rac,
uint8_t *dst, int width, int stride,
int esc_count)
{
int i = 0;
int ret = 0;
if (!esc_count)
esc_count = -1;
/* Output any zeros remaining from the previous run */
handle_zeros:
if (l->zeros_rem) {
int count = FFMIN(l->zeros_rem, width - i);
memset(dst + i, 0, count);
i += count;
l->zeros_rem -= count;
}
while (i < width) {
dst[i] = lag_get_rac(rac);
ret++;
if (dst[i])
l->zeros = 0;
else
l->zeros++;
i++;
if (l->zeros == esc_count) {
int index = lag_get_rac(rac);
ret++;
l->zeros = 0;
l->zeros_rem = lag_calc_zero_run(index);
goto handle_zeros;
}
}
return ret;
}
static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
const uint8_t *src, const uint8_t *src_end,
int width, int esc_count)
{
int i = 0;
int count;
uint8_t zero_run = 0;
const uint8_t *src_start = src;
uint8_t mask1 = -(esc_count < 2);
uint8_t mask2 = -(esc_count < 3);
uint8_t *end = dst + (width - 2);
avpriv_request_sample(l->avctx, "zero_run_line");
memset(dst, 0, width);
output_zeros:
if (l->zeros_rem) {
count = FFMIN(l->zeros_rem, width - i);
if (end - dst < count) {
av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
return AVERROR_INVALIDDATA;
}
memset(dst, 0, count);
l->zeros_rem -= count;
dst += count;
}
while (dst < end) {
i = 0;
while (!zero_run && dst + i < end) {
i++;
if (i+2 >= src_end - src)
return AVERROR_INVALIDDATA;
zero_run =
!(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
}
if (zero_run) {
zero_run = 0;
i += esc_count;
if (i > end - dst ||
i >= src_end - src)
return AVERROR_INVALIDDATA;
memcpy(dst, src, i);
dst += i;
l->zeros_rem = lag_calc_zero_run(src[i]);
src += i + 1;
goto output_zeros;
} else {
memcpy(dst, src, i);
src += i;
dst += i;
}
}
return src - src_start;
}
static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
int width, int height, int stride,
const uint8_t *src, int src_size)
{
int i = 0;
int read = 0;
uint32_t length;
uint32_t offset = 1;
int esc_count;
GetBitContext gb;
lag_rac rac;
const uint8_t *src_end = src + src_size;
int ret;
rac.avctx = l->avctx;
l->zeros = 0;
if(src_size < 2)
return AVERROR_INVALIDDATA;
esc_count = src[0];
if (esc_count < 4) {
length = width * height;
if(src_size < 5)
return AVERROR_INVALIDDATA;
if (esc_count && AV_RL32(src + 1) < length) {
length = AV_RL32(src + 1);
offset += 4;
}
if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
return ret;
if (lag_read_prob_header(&rac, &gb) < 0)
return -1;
ff_lag_rac_init(&rac, &gb, length - stride);
for (i = 0; i < height; i++) {
if (rac.overread > MAX_OVERREAD)
return AVERROR_INVALIDDATA;
read += lag_decode_line(l, &rac, dst + (i * stride), width,
stride, esc_count);
}
if (read > length)
av_log(l->avctx, AV_LOG_WARNING,
"Output more bytes than length (%d of %"PRIu32")\n", read,
length);
} else if (esc_count < 8) {
esc_count -= 4;
src ++;
src_size --;
if (esc_count > 0) {
/* Zero run coding only, no range coding. */
for (i = 0; i < height; i++) {
int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
src_end, width, esc_count);
if (res < 0)
return res;
src += res;
}
} else {
if (src_size < width * height)
return AVERROR_INVALIDDATA; // buffer not big enough
/* Plane is stored uncompressed */
for (i = 0; i < height; i++) {
memcpy(dst + (i * stride), src, width);
src += width;
}
}
} else if (esc_count == 0xff) {
/* Plane is a solid run of given value */
for (i = 0; i < height; i++)
memset(dst + i * stride, src[1], width);
/* Do not apply prediction.
Note: memset to 0 above, setting first value to src[1]
and applying prediction gives the same result. */
return 0;
} else {
av_log(l->avctx, AV_LOG_ERROR,
"Invalid zero run escape code! (%#x)\n", esc_count);
return -1;
}
if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
for (i = 0; i < height; i++) {
lag_pred_line(l, dst, width, stride, i);
dst += stride;
}
} else {
for (i = 0; i < height; i++) {
lag_pred_line_yuy2(l, dst, width, stride, i,
width == l->avctx->width);
dst += stride;
}
}
return 0;
}
/**
* Decode a frame.
* @param avctx codec context
* @param data output AVFrame
* @param data_size size of output data or 0 if no picture is returned
* @param avpkt input packet
* @return number of consumed bytes on success or negative if decode fails
*/
static int lag_decode_frame(AVCodecContext *avctx,
void *data, int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
unsigned int buf_size = avpkt->size;
LagarithContext *l = avctx->priv_data;
ThreadFrame frame = { .f = data };
AVFrame *const p = data;
uint8_t frametype;
uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
uint32_t offs[4];
uint8_t *srcs[4];
int i, j, planes = 3;
int ret;
p->key_frame = 1;
p->pict_type = AV_PICTURE_TYPE_I;
frametype = buf[0];
offset_gu = AV_RL32(buf + 1);
offset_bv = AV_RL32(buf + 5);
switch (frametype) {
case FRAME_SOLID_RGBA:
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
case FRAME_SOLID_GRAY:
if (frametype == FRAME_SOLID_GRAY)
if (avctx->bits_per_coded_sample == 24) {
avctx->pix_fmt = AV_PIX_FMT_GBRP;
} else {
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
planes = 4;
}
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
if (frametype == FRAME_SOLID_RGBA) {
for (i = 0; i < avctx->height; i++) {
memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
memset(p->data[3] + i * p->linesize[3], buf[4], avctx->width);
}
} else {
for (i = 0; i < avctx->height; i++) {
for (j = 0; j < planes; j++)
memset(p->data[j] + i * p->linesize[j], buf[1], avctx->width);
}
}
break;
case FRAME_SOLID_COLOR:
if (avctx->bits_per_coded_sample == 24) {
avctx->pix_fmt = AV_PIX_FMT_GBRP;
} else {
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
}
if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
return ret;
for (i = 0; i < avctx->height; i++) {
memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
if (avctx->pix_fmt == AV_PIX_FMT_GBRAP)
memset(p->data[3] + i * p->linesize[3], 0xFFu, avctx->width);
}
break;
case FRAME_ARITH_RGBA:
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
planes = 4;
offset_ry += 4;
offs[3] = AV_RL32(buf + 9);
case FRAME_ARITH_RGB24:
case FRAME_U_RGB24:
if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
avctx->pix_fmt = AV_PIX_FMT_GBRP;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
offs[0] = offset_bv;
offs[1] = offset_gu;
offs[2] = offset_ry;
for (i = 0; i < planes; i++)
srcs[i] = p->data[i] + (avctx->height - 1) * p->linesize[i];
for (i = 0; i < planes; i++)
if (buf_size <= offs[i]) {
av_log(avctx, AV_LOG_ERROR,
"Invalid frame offsets\n");
return AVERROR_INVALIDDATA;
}
for (i = 0; i < planes; i++)
lag_decode_arith_plane(l, srcs[i],
avctx->width, avctx->height,
-p->linesize[i], buf + offs[i],
buf_size - offs[i]);
for (i = 0; i < avctx->height; i++) {
l->llviddsp.add_bytes(p->data[0] + i * p->linesize[0], p->data[1] + i * p->linesize[1], avctx->width);
l->llviddsp.add_bytes(p->data[2] + i * p->linesize[2], p->data[1] + i * p->linesize[1], avctx->width);
}
FFSWAP(uint8_t*, p->data[0], p->data[1]);
FFSWAP(int, p->linesize[0], p->linesize[1]);
FFSWAP(uint8_t*, p->data[2], p->data[1]);
FFSWAP(int, p->linesize[2], p->linesize[1]);
break;
case FRAME_ARITH_YUY2:
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
if (offset_ry >= buf_size ||
offset_gu >= buf_size ||
offset_bv >= buf_size) {
av_log(avctx, AV_LOG_ERROR,
"Invalid frame offsets\n");
return AVERROR_INVALIDDATA;
}
lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
p->linesize[0], buf + offset_ry,
buf_size - offset_ry);
lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
avctx->height, p->linesize[1],
buf + offset_gu, buf_size - offset_gu);
lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
avctx->height, p->linesize[2],
buf + offset_bv, buf_size - offset_bv);
break;
case FRAME_ARITH_YV12:
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
if (offset_ry >= buf_size ||
offset_gu >= buf_size ||
offset_bv >= buf_size) {
av_log(avctx, AV_LOG_ERROR,
"Invalid frame offsets\n");
return AVERROR_INVALIDDATA;
}
lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
p->linesize[0], buf + offset_ry,
buf_size - offset_ry);
lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
(avctx->height + 1) / 2, p->linesize[2],
buf + offset_gu, buf_size - offset_gu);
lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
(avctx->height + 1) / 2, p->linesize[1],
buf + offset_bv, buf_size - offset_bv);
break;
default:
av_log(avctx, AV_LOG_ERROR,
"Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
return AVERROR_PATCHWELCOME;
}
*got_frame = 1;
return buf_size;
}
static av_cold int lag_decode_init(AVCodecContext *avctx)
{
LagarithContext *l = avctx->priv_data;
l->avctx = avctx;
ff_llviddsp_init(&l->llviddsp);
return 0;
}
#if HAVE_THREADS
static av_cold int lag_decode_init_thread_copy(AVCodecContext *avctx)
{
LagarithContext *l = avctx->priv_data;
l->avctx = avctx;
return 0;
}
#endif
AVCodec ff_lagarith_decoder = {
.name = "lagarith",
.long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_LAGARITH,
.priv_data_size = sizeof(LagarithContext),
.init = lag_decode_init,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(lag_decode_init_thread_copy),
.decode = lag_decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
};