ffmpeg/libavcodec/vvc/ctu.h

487 lines
13 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* VVC CTU(Coding Tree Unit) parser
*
* Copyright (C) 2022 Nuo Mi
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_VVC_CTU_H
#define AVCODEC_VVC_CTU_H
#include "libavcodec/cabac.h"
#include "libavutil/mem_internal.h"
#include "dec.h"
#define MAX_CTU_SIZE 128
#define MAX_CU_SIZE MAX_CTU_SIZE
#define MIN_CU_SIZE 4
#define MIN_CU_LOG2 2
#define MAX_CU_DEPTH 7
#define MAX_PARTS_IN_CTU ((MAX_CTU_SIZE >> MIN_CU_LOG2) * (MAX_CTU_SIZE >> MIN_CU_LOG2))
#define MIN_PU_SIZE 4
#define MAX_TB_SIZE 64
#define MIN_TU_SIZE 4
#define MAX_TUS_IN_CU 64
#define MAX_QP 63
#define MAX_PB_SIZE 128
#define MAX_SCALING_RATIO 8
#define EDGE_EMU_BUFFER_STRIDE ((MAX_PB_SIZE + 32) * MAX_SCALING_RATIO)
#define CHROMA_EXTRA_BEFORE 1
#define CHROMA_EXTRA_AFTER 2
#define CHROMA_EXTRA 3
#define LUMA_EXTRA_BEFORE 3
#define LUMA_EXTRA_AFTER 4
#define LUMA_EXTRA 7
#define BILINEAR_EXTRA_BEFORE 0
#define BILINEAR_EXTRA_AFTER 1
#define BILINEAR_EXTRA 1
#define SCALED_INT(pos) ((pos) >> 10)
#define MAX_CONTROL_POINTS 3
#define AFFINE_MIN_BLOCK_SIZE 4
#define MRG_MAX_NUM_CANDS 6
#define MAX_NUM_HMVP_CANDS 5
#define SAO_PADDING_SIZE 1
#define ALF_PADDING_SIZE 8
#define ALF_BLOCK_SIZE 4
#define ALF_BORDER_LUMA 3
#define ALF_BORDER_CHROMA 2
#define ALF_VB_POS_ABOVE_LUMA 4
#define ALF_VB_POS_ABOVE_CHROMA 2
#define ALF_GRADIENT_STEP 2
#define ALF_GRADIENT_BORDER 2
#define ALF_GRADIENT_SIZE ((MAX_CU_SIZE + ALF_GRADIENT_BORDER * 2) / ALF_GRADIENT_STEP)
#define ALF_NUM_DIR 4
/**
* Value of the luma sample at position (x, y) in the 2D array tab.
*/
#define SAMPLE(tab, x, y) ((tab)[(y) * s->pps->width + (x)])
#define SAMPLE_CTB(tab, x, y) ((tab)[(y) * min_cb_width + (x)])
#define CTB(tab, x, y) ((tab)[(y) * fc->ps.pps->ctb_width + (x)])
enum SAOType {
SAO_NOT_APPLIED = 0,
SAO_BAND,
SAO_EDGE,
};
enum SAOEOClass {
SAO_EO_HORIZ = 0,
SAO_EO_VERT,
SAO_EO_135D,
SAO_EO_45D,
};
typedef struct NeighbourAvailable {
int cand_left;
int cand_up;
int cand_up_left;
int cand_up_right;
int cand_up_right_sap;
} NeighbourAvailable;
enum IspType{
ISP_NO_SPLIT,
ISP_HOR_SPLIT,
ISP_VER_SPLIT,
};
typedef enum VVCSplitMode {
SPLIT_NONE,
SPLIT_TT_HOR,
SPLIT_BT_HOR,
SPLIT_TT_VER,
SPLIT_BT_VER,
SPLIT_QT,
} VVCSplitMode;
typedef enum MtsIdx {
MTS_DCT2_DCT2,
MTS_DST7_DST7,
MTS_DST7_DCT8,
MTS_DCT8_DST7,
MTS_DCT8_DCT8,
} MtsIdx;
typedef struct TransformBlock {
uint8_t has_coeffs;
uint8_t c_idx;
uint8_t ts; ///< transform_skip_flag
int x0;
int y0;
int tb_width;
int tb_height;
int log2_tb_width;
int log2_tb_height;
int max_scan_x;
int max_scan_y;
int min_scan_x;
int min_scan_y;
int qp;
int rect_non_ts_flag;
int bd_shift;
int bd_offset;
int *coeffs;
} TransformBlock;
typedef enum VVCTreeType {
SINGLE_TREE,
DUAL_TREE_LUMA,
DUAL_TREE_CHROMA,
} VVCTreeType;
typedef struct TransformUnit {
int x0;
int y0;
int width;
int height;
uint8_t joint_cbcr_residual_flag; ///< tu_joint_cbcr_residual_flag
uint8_t coded_flag[VVC_MAX_SAMPLE_ARRAYS]; ///< tu_y_coded_flag, tu_cb_coded_flag, tu_cr_coded_flag
uint8_t nb_tbs;
TransformBlock tbs[VVC_MAX_SAMPLE_ARRAYS];
struct TransformUnit *next; ///< RefStruct reference
} TransformUnit;
typedef enum PredMode {
MODE_INTER,
MODE_INTRA,
MODE_SKIP,
MODE_PLT,
MODE_IBC,
} PredMode;
typedef struct Mv {
int x; ///< horizontal component of motion vector
int y; ///< vertical component of motion vector
} Mv;
typedef struct MvField {
DECLARE_ALIGNED(8, Mv, mv)[2]; ///< mvL0, vvL1
int8_t ref_idx[2]; ///< refIdxL0, refIdxL1
uint8_t hpel_if_idx; ///< hpelIfIdx
uint8_t bcw_idx; ///< bcwIdx
uint8_t pred_flag;
uint8_t ciip_flag; ///< ciip_flag
} MvField;
typedef struct DMVRInfo {
DECLARE_ALIGNED(8, Mv, mv)[2]; ///< mvL0, vvL1
uint8_t dmvr_enabled;
} DMVRInfo;
typedef enum MotionModelIdc {
MOTION_TRANSLATION,
MOTION_4_PARAMS_AFFINE,
MOTION_6_PARAMS_AFFINE,
} MotionModelIdc;
typedef enum PredFlag {
PF_INTRA = 0x0,
PF_L0 = 0x1,
PF_L1 = 0x2,
PF_BI = 0x3,
PF_IBC = PF_L0 | 0x4,
} PredFlag;
typedef enum IntraPredMode {
INTRA_INVALID = -1,
INTRA_PLANAR = 0,
INTRA_DC,
INTRA_HORZ = 18,
INTRA_DIAG = 34,
INTRA_VERT = 50,
INTRA_VDIAG = 66,
INTRA_LT_CCLM = 81,
INTRA_L_CCLM,
INTRA_T_CCLM
} IntraPredMode;
typedef struct MotionInfo {
MotionModelIdc motion_model_idc; ///< MotionModelIdc
int8_t ref_idx[2]; ///< refIdxL0, refIdxL1
uint8_t hpel_if_idx; ///< hpelIfIdx
uint8_t bcw_idx; ///< bcwIdx
PredFlag pred_flag;
Mv mv[2][MAX_CONTROL_POINTS];
int num_sb_x, num_sb_y;
} MotionInfo;
typedef struct PredictionUnit {
uint8_t general_merge_flag;
uint8_t mmvd_merge_flag;
//InterPredIdc inter_pred_idc;
uint8_t inter_affine_flag;
//subblock predict
uint8_t merge_subblock_flag;
uint8_t merge_gpm_flag;
uint8_t gpm_partition_idx;
MvField gpm_mv[2];
int sym_mvd_flag;
MotionInfo mi;
// for regular prediction only
uint8_t dmvr_flag;
uint8_t bdof_flag;
int16_t diff_mv_x[2][AFFINE_MIN_BLOCK_SIZE * AFFINE_MIN_BLOCK_SIZE]; ///< diffMvLX
int16_t diff_mv_y[2][AFFINE_MIN_BLOCK_SIZE * AFFINE_MIN_BLOCK_SIZE]; ///< diffMvLX
int cb_prof_flag[2];
} PredictionUnit;
typedef struct CodingUnit {
VVCTreeType tree_type;
int x0;
int y0;
int cb_width;
int cb_height;
int ch_type;
int cqt_depth;
uint8_t coded_flag;
uint8_t sbt_flag;
uint8_t sbt_horizontal_flag;
uint8_t sbt_pos_flag;
int lfnst_idx;
MtsIdx mts_idx;
uint8_t act_enabled_flag;
uint8_t intra_luma_ref_idx; ///< IntraLumaRefLineIdx[][]
uint8_t intra_mip_flag; ///< intra_mip_flag
uint8_t skip_flag; ///< cu_skip_flag;
//inter
uint8_t ciip_flag;
// Inferred parameters
enum IspType isp_split_type; ///< IntraSubPartitionsSplitType
enum PredMode pred_mode; ///< PredMode
int num_intra_subpartitions;
IntraPredMode intra_pred_mode_y; ///< IntraPredModeY
IntraPredMode intra_pred_mode_c; ///< IntraPredModeC
int mip_chroma_direct_flag; ///< MipChromaDirectFlag
int bdpcm_flag[VVC_MAX_SAMPLE_ARRAYS]; ///< BdpcmFlag
int apply_lfnst_flag[VVC_MAX_SAMPLE_ARRAYS]; ///< ApplyLfnstFlag[]
struct {
TransformUnit *head; ///< RefStruct reference
TransformUnit *tail; ///< RefStruct reference
} tus;
int8_t qp[4]; ///< QpY, QpCb, QpCr, QpCbCr
PredictionUnit pu;
struct CodingUnit *next; ///< RefStruct reference
} CodingUnit;
typedef struct CTU {
CodingUnit *cus;
int max_y[2][VVC_MAX_REF_ENTRIES];
int max_y_idx[2];
int has_dmvr;
} CTU;
typedef struct ReconstructedArea {
int x;
int y;
int w;
int h;
} ReconstructedArea;
typedef struct VVCCabacState {
uint16_t state[2];
uint8_t shift[2];
} VVCCabacState;
// VVC_CONTEXTS matched with SYNTAX_ELEMENT_LAST, it's checked by cabac_init_state.
#define VVC_CONTEXTS 378
typedef struct EntryPoint {
int8_t qp_y; ///< QpY
int stat_coeff[VVC_MAX_SAMPLE_ARRAYS]; ///< StatCoeff
VVCCabacState cabac_state[VVC_CONTEXTS];
CABACContext cc;
int ctu_start;
int ctu_end;
uint8_t is_first_qg; // first quantization group
MvField hmvp[MAX_NUM_HMVP_CANDS]; ///< HmvpCandList
int num_hmvp; ///< NumHmvpCand
MvField hmvp_ibc[MAX_NUM_HMVP_CANDS]; ///< HmvpIbcCandList
int num_hmvp_ibc; ///< NumHmvpIbcCand
} EntryPoint;
typedef struct VVCLocalContext {
uint8_t ctb_left_flag;
uint8_t ctb_up_flag;
uint8_t ctb_up_right_flag;
uint8_t ctb_up_left_flag;
int end_of_tiles_x;
int end_of_tiles_y;
/* *2 for high bit depths */
DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[EDGE_EMU_BUFFER_STRIDE * EDGE_EMU_BUFFER_STRIDE * 2];
DECLARE_ALIGNED(32, int16_t, tmp)[MAX_PB_SIZE * MAX_PB_SIZE];
DECLARE_ALIGNED(32, int16_t, tmp1)[MAX_PB_SIZE * MAX_PB_SIZE];
DECLARE_ALIGNED(32, int16_t, tmp2)[MAX_PB_SIZE * MAX_PB_SIZE];
DECLARE_ALIGNED(32, uint8_t, ciip_tmp)[MAX_PB_SIZE * MAX_PB_SIZE * 2];
DECLARE_ALIGNED(32, uint8_t, sao_buffer)[(MAX_CTU_SIZE + 2 * SAO_PADDING_SIZE) * EDGE_EMU_BUFFER_STRIDE * 2];
DECLARE_ALIGNED(32, uint8_t, alf_buffer_luma)[(MAX_CTU_SIZE + 2 * ALF_PADDING_SIZE) * EDGE_EMU_BUFFER_STRIDE * 2];
DECLARE_ALIGNED(32, uint8_t, alf_buffer_chroma)[(MAX_CTU_SIZE + 2 * ALF_PADDING_SIZE) * EDGE_EMU_BUFFER_STRIDE * 2];
DECLARE_ALIGNED(32, int32_t, alf_gradient_tmp)[ALF_GRADIENT_SIZE * ALF_GRADIENT_SIZE * ALF_NUM_DIR];
struct {
int sbt_num_fourths_tb0; ///< SbtNumFourthsTb0
uint8_t is_cu_qp_delta_coded; ///< IsCuQpDeltaCoded
int cu_qg_top_left_x; ///< CuQgTopLeftX
int cu_qg_top_left_y; ///< CuQgTopLeftY
int is_cu_chroma_qp_offset_coded; ///< IsCuChromaQpOffsetCoded
int chroma_qp_offset[3]; ///< CuQpOffsetCb, CuQpOffsetCr, CuQpOffsetCbCr
int infer_tu_cbf_luma; ///< InferTuCbfLuma
int prev_tu_cbf_y; ///< prevTuCbfY;
int lfnst_dc_only; ///< LfnstDcOnly
int lfnst_zero_out_sig_coeff_flag; ///< LfnstZeroOutSigCoeffFlag
int mts_dc_only; ///< MtsDcOnly
int mts_zero_out_sig_coeff_flag; ///< MtsZeroOutSigCoeffFlag;
} parse;
struct {
// lmcs cache, for recon only
int chroma_scale;
int x_vpdu;
int y_vpdu;
} lmcs;
CodingUnit *cu;
ReconstructedArea ras[2][MAX_PARTS_IN_CTU];
int num_ras[2];
NeighbourAvailable na;
#define BOUNDARY_LEFT_SLICE (1 << 0)
#define BOUNDARY_LEFT_TILE (1 << 1)
#define BOUNDARY_LEFT_SUBPIC (1 << 2)
#define BOUNDARY_UPPER_SLICE (1 << 3)
#define BOUNDARY_UPPER_TILE (1 << 4)
#define BOUNDARY_UPPER_SUBPIC (1 << 5)
/* properties of the boundary of the current CTB for the purposes
* of the deblocking filter */
int boundary_flags;
SliceContext *sc;
VVCFrameContext *fc;
EntryPoint *ep;
int *coeffs;
} VVCLocalContext;
typedef struct VVCAllowedSplit {
int qt;
int btv;
int bth;
int ttv;
int tth;
} VVCAllowedSplit;
typedef struct SAOParams {
int offset_abs[3][4]; ///< sao_offset_abs
int offset_sign[3][4]; ///< sao_offset_sign
uint8_t band_position[3]; ///< sao_band_position
int eo_class[3]; ///< sao_eo_class
int16_t offset_val[3][5]; ///< SaoOffsetVal
uint8_t type_idx[3]; ///< sao_type_idx
} SAOParams;
typedef struct ALFParams {
uint8_t ctb_flag[3]; ///< alf_ctb_flag[]
uint8_t ctb_filt_set_idx_y; ///< AlfCtbFiltSetIdxY
uint8_t alf_ctb_filter_alt_idx[2]; ///< alf_ctb_filter_alt_idx[]
uint8_t ctb_cc_idc[2]; ///< alf_ctb_cc_cb_idc, alf_ctb_cc_cr_idc
uint8_t applied[3];
} ALFParams;
/**
* parse a CTU
* @param lc local context for CTU
* @param ctb_idx CTB(CTU) address in the current slice
* @param rs raster order for the CTU.
* @param rx raster order x for the CTU.
* @param ry raster order y for the CTU.
* @return AVERROR
*/
int ff_vvc_coding_tree_unit(VVCLocalContext *lc, int ctu_idx, int rs, int rx, int ry);
//utils
void ff_vvc_set_neighbour_available(VVCLocalContext *lc, int x0, int y0, int w, int h);
void ff_vvc_decode_neighbour(VVCLocalContext *lc, int x_ctb, int y_ctb, int rx, int ry, int rs);
void ff_vvc_ctu_free_cus(CTU *ctu);
int ff_vvc_get_qPy(const VVCFrameContext *fc, int xc, int yc);
void ff_vvc_ep_init_stat_coeff(EntryPoint *ep, int bit_depth, int persistent_rice_adaptation_enabled_flag);
#endif // AVCODEC_VVC_CTU_H