mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-22 07:20:45 +00:00
85770d6e56
This fixes build errors in some environments. Signed-off-by: Mans Rullgard <mans@mansr.com>
1141 lines
44 KiB
C
1141 lines
44 KiB
C
/*
|
|
* AAC coefficients encoder
|
|
* Copyright (C) 2008-2009 Konstantin Shishkov
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC coefficients encoder
|
|
*/
|
|
|
|
/***********************************
|
|
* TODOs:
|
|
* speedup quantizer selection
|
|
* add sane pulse detection
|
|
***********************************/
|
|
|
|
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
|
|
|
|
#include <float.h>
|
|
#include "libavutil/mathematics.h"
|
|
#include "avcodec.h"
|
|
#include "put_bits.h"
|
|
#include "aac.h"
|
|
#include "aacenc.h"
|
|
#include "aactab.h"
|
|
|
|
/** bits needed to code codebook run value for long windows */
|
|
static const uint8_t run_value_bits_long[64] = {
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
|
|
};
|
|
|
|
/** bits needed to code codebook run value for short windows */
|
|
static const uint8_t run_value_bits_short[16] = {
|
|
3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
|
|
};
|
|
|
|
static const uint8_t *run_value_bits[2] = {
|
|
run_value_bits_long, run_value_bits_short
|
|
};
|
|
|
|
|
|
/**
|
|
* Quantize one coefficient.
|
|
* @return absolute value of the quantized coefficient
|
|
* @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
|
|
*/
|
|
static av_always_inline int quant(float coef, const float Q)
|
|
{
|
|
float a = coef * Q;
|
|
return sqrtf(a * sqrtf(a)) + 0.4054;
|
|
}
|
|
|
|
static void quantize_bands(int *out, const float *in, const float *scaled,
|
|
int size, float Q34, int is_signed, int maxval)
|
|
{
|
|
int i;
|
|
double qc;
|
|
for (i = 0; i < size; i++) {
|
|
qc = scaled[i] * Q34;
|
|
out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
|
|
if (is_signed && in[i] < 0.0f) {
|
|
out[i] = -out[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void abs_pow34_v(float *out, const float *in, const int size)
|
|
{
|
|
#ifndef USE_REALLY_FULL_SEARCH
|
|
int i;
|
|
for (i = 0; i < size; i++) {
|
|
float a = fabsf(in[i]);
|
|
out[i] = sqrtf(a * sqrtf(a));
|
|
}
|
|
#endif /* USE_REALLY_FULL_SEARCH */
|
|
}
|
|
|
|
static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
|
|
static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
|
|
|
|
/**
|
|
* Calculate rate distortion cost for quantizing with given codebook
|
|
*
|
|
* @return quantization distortion
|
|
*/
|
|
static av_always_inline float quantize_and_encode_band_cost_template(
|
|
struct AACEncContext *s,
|
|
PutBitContext *pb, const float *in,
|
|
const float *scaled, int size, int scale_idx,
|
|
int cb, const float lambda, const float uplim,
|
|
int *bits, int BT_ZERO, int BT_UNSIGNED,
|
|
int BT_PAIR, int BT_ESC)
|
|
{
|
|
const float IQ = ff_aac_pow2sf_tab[POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
|
|
const float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
|
|
const float CLIPPED_ESCAPE = 165140.0f*IQ;
|
|
int i, j;
|
|
float cost = 0;
|
|
const int dim = BT_PAIR ? 2 : 4;
|
|
int resbits = 0;
|
|
const float Q34 = sqrtf(Q * sqrtf(Q));
|
|
const int range = aac_cb_range[cb];
|
|
const int maxval = aac_cb_maxval[cb];
|
|
int off;
|
|
|
|
if (BT_ZERO) {
|
|
for (i = 0; i < size; i++)
|
|
cost += in[i]*in[i];
|
|
if (bits)
|
|
*bits = 0;
|
|
return cost * lambda;
|
|
}
|
|
if (!scaled) {
|
|
abs_pow34_v(s->scoefs, in, size);
|
|
scaled = s->scoefs;
|
|
}
|
|
quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
|
|
if (BT_UNSIGNED) {
|
|
off = 0;
|
|
} else {
|
|
off = maxval;
|
|
}
|
|
for (i = 0; i < size; i += dim) {
|
|
const float *vec;
|
|
int *quants = s->qcoefs + i;
|
|
int curidx = 0;
|
|
int curbits;
|
|
float rd = 0.0f;
|
|
for (j = 0; j < dim; j++) {
|
|
curidx *= range;
|
|
curidx += quants[j] + off;
|
|
}
|
|
curbits = ff_aac_spectral_bits[cb-1][curidx];
|
|
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
|
|
if (BT_UNSIGNED) {
|
|
for (j = 0; j < dim; j++) {
|
|
float t = fabsf(in[i+j]);
|
|
float di;
|
|
if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
|
|
if (t >= CLIPPED_ESCAPE) {
|
|
di = t - CLIPPED_ESCAPE;
|
|
curbits += 21;
|
|
} else {
|
|
int c = av_clip(quant(t, Q), 0, 8191);
|
|
di = t - c*cbrtf(c)*IQ;
|
|
curbits += av_log2(c)*2 - 4 + 1;
|
|
}
|
|
} else {
|
|
di = t - vec[j]*IQ;
|
|
}
|
|
if (vec[j] != 0.0f)
|
|
curbits++;
|
|
rd += di*di;
|
|
}
|
|
} else {
|
|
for (j = 0; j < dim; j++) {
|
|
float di = in[i+j] - vec[j]*IQ;
|
|
rd += di*di;
|
|
}
|
|
}
|
|
cost += rd * lambda + curbits;
|
|
resbits += curbits;
|
|
if (cost >= uplim)
|
|
return uplim;
|
|
if (pb) {
|
|
put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
|
|
if (BT_UNSIGNED)
|
|
for (j = 0; j < dim; j++)
|
|
if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
|
|
put_bits(pb, 1, in[i+j] < 0.0f);
|
|
if (BT_ESC) {
|
|
for (j = 0; j < 2; j++) {
|
|
if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
|
|
int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
|
|
int len = av_log2(coef);
|
|
|
|
put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
|
|
put_bits(pb, len, coef & ((1 << len) - 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bits)
|
|
*bits = resbits;
|
|
return cost;
|
|
}
|
|
|
|
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
|
|
static float quantize_and_encode_band_cost_ ## NAME( \
|
|
struct AACEncContext *s, \
|
|
PutBitContext *pb, const float *in, \
|
|
const float *scaled, int size, int scale_idx, \
|
|
int cb, const float lambda, const float uplim, \
|
|
int *bits) { \
|
|
return quantize_and_encode_band_cost_template( \
|
|
s, pb, in, scaled, size, scale_idx, \
|
|
BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \
|
|
BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC); \
|
|
}
|
|
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1)
|
|
|
|
static float (*const quantize_and_encode_band_cost_arr[])(
|
|
struct AACEncContext *s,
|
|
PutBitContext *pb, const float *in,
|
|
const float *scaled, int size, int scale_idx,
|
|
int cb, const float lambda, const float uplim,
|
|
int *bits) = {
|
|
quantize_and_encode_band_cost_ZERO,
|
|
quantize_and_encode_band_cost_SQUAD,
|
|
quantize_and_encode_band_cost_SQUAD,
|
|
quantize_and_encode_band_cost_UQUAD,
|
|
quantize_and_encode_band_cost_UQUAD,
|
|
quantize_and_encode_band_cost_SPAIR,
|
|
quantize_and_encode_band_cost_SPAIR,
|
|
quantize_and_encode_band_cost_UPAIR,
|
|
quantize_and_encode_band_cost_UPAIR,
|
|
quantize_and_encode_band_cost_UPAIR,
|
|
quantize_and_encode_band_cost_UPAIR,
|
|
quantize_and_encode_band_cost_ESC,
|
|
};
|
|
|
|
#define quantize_and_encode_band_cost( \
|
|
s, pb, in, scaled, size, scale_idx, cb, \
|
|
lambda, uplim, bits) \
|
|
quantize_and_encode_band_cost_arr[cb]( \
|
|
s, pb, in, scaled, size, scale_idx, cb, \
|
|
lambda, uplim, bits)
|
|
|
|
static float quantize_band_cost(struct AACEncContext *s, const float *in,
|
|
const float *scaled, int size, int scale_idx,
|
|
int cb, const float lambda, const float uplim,
|
|
int *bits)
|
|
{
|
|
return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
|
|
cb, lambda, uplim, bits);
|
|
}
|
|
|
|
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
|
|
const float *in, int size, int scale_idx,
|
|
int cb, const float lambda)
|
|
{
|
|
quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
|
|
INFINITY, NULL);
|
|
}
|
|
|
|
static float find_max_val(int group_len, int swb_size, const float *scaled) {
|
|
float maxval = 0.0f;
|
|
int w2, i;
|
|
for (w2 = 0; w2 < group_len; w2++) {
|
|
for (i = 0; i < swb_size; i++) {
|
|
maxval = FFMAX(maxval, scaled[w2*128+i]);
|
|
}
|
|
}
|
|
return maxval;
|
|
}
|
|
|
|
static int find_min_book(float maxval, int sf) {
|
|
float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
|
|
float Q34 = sqrtf(Q * sqrtf(Q));
|
|
int qmaxval, cb;
|
|
qmaxval = maxval * Q34 + 0.4054f;
|
|
if (qmaxval == 0) cb = 0;
|
|
else if (qmaxval == 1) cb = 1;
|
|
else if (qmaxval == 2) cb = 3;
|
|
else if (qmaxval <= 4) cb = 5;
|
|
else if (qmaxval <= 7) cb = 7;
|
|
else if (qmaxval <= 12) cb = 9;
|
|
else cb = 11;
|
|
return cb;
|
|
}
|
|
|
|
/**
|
|
* structure used in optimal codebook search
|
|
*/
|
|
typedef struct BandCodingPath {
|
|
int prev_idx; ///< pointer to the previous path point
|
|
float cost; ///< path cost
|
|
int run;
|
|
} BandCodingPath;
|
|
|
|
/**
|
|
* Encode band info for single window group bands.
|
|
*/
|
|
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
|
|
int win, int group_len, const float lambda)
|
|
{
|
|
BandCodingPath path[120][12];
|
|
int w, swb, cb, start, size;
|
|
int i, j;
|
|
const int max_sfb = sce->ics.max_sfb;
|
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
|
const int run_esc = (1 << run_bits) - 1;
|
|
int idx, ppos, count;
|
|
int stackrun[120], stackcb[120], stack_len;
|
|
float next_minrd = INFINITY;
|
|
int next_mincb = 0;
|
|
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
start = win*128;
|
|
for (cb = 0; cb < 12; cb++) {
|
|
path[0][cb].cost = 0.0f;
|
|
path[0][cb].prev_idx = -1;
|
|
path[0][cb].run = 0;
|
|
}
|
|
for (swb = 0; swb < max_sfb; swb++) {
|
|
size = sce->ics.swb_sizes[swb];
|
|
if (sce->zeroes[win*16 + swb]) {
|
|
for (cb = 0; cb < 12; cb++) {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = path[swb][cb].cost;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
} else {
|
|
float minrd = next_minrd;
|
|
int mincb = next_mincb;
|
|
next_minrd = INFINITY;
|
|
next_mincb = 0;
|
|
for (cb = 0; cb < 12; cb++) {
|
|
float cost_stay_here, cost_get_here;
|
|
float rd = 0.0f;
|
|
for (w = 0; w < group_len; w++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
|
|
rd += quantize_band_cost(s, sce->coeffs + start + w*128,
|
|
s->scoefs + start + w*128, size,
|
|
sce->sf_idx[(win+w)*16+swb], cb,
|
|
lambda / band->threshold, INFINITY, NULL);
|
|
}
|
|
cost_stay_here = path[swb][cb].cost + rd;
|
|
cost_get_here = minrd + rd + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][cb].prev_idx = mincb;
|
|
path[swb+1][cb].cost = cost_get_here;
|
|
path[swb+1][cb].run = 1;
|
|
} else {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = cost_stay_here;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
if (path[swb+1][cb].cost < next_minrd) {
|
|
next_minrd = path[swb+1][cb].cost;
|
|
next_mincb = cb;
|
|
}
|
|
}
|
|
}
|
|
start += sce->ics.swb_sizes[swb];
|
|
}
|
|
|
|
//convert resulting path from backward-linked list
|
|
stack_len = 0;
|
|
idx = 0;
|
|
for (cb = 1; cb < 12; cb++)
|
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
|
idx = cb;
|
|
ppos = max_sfb;
|
|
while (ppos > 0) {
|
|
cb = idx;
|
|
stackrun[stack_len] = path[ppos][cb].run;
|
|
stackcb [stack_len] = cb;
|
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
|
ppos -= path[ppos][cb].run;
|
|
stack_len++;
|
|
}
|
|
//perform actual band info encoding
|
|
start = 0;
|
|
for (i = stack_len - 1; i >= 0; i--) {
|
|
put_bits(&s->pb, 4, stackcb[i]);
|
|
count = stackrun[i];
|
|
memset(sce->zeroes + win*16 + start, !stackcb[i], count);
|
|
//XXX: memset when band_type is also uint8_t
|
|
for (j = 0; j < count; j++) {
|
|
sce->band_type[win*16 + start] = stackcb[i];
|
|
start++;
|
|
}
|
|
while (count >= run_esc) {
|
|
put_bits(&s->pb, run_bits, run_esc);
|
|
count -= run_esc;
|
|
}
|
|
put_bits(&s->pb, run_bits, count);
|
|
}
|
|
}
|
|
|
|
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
|
|
int win, int group_len, const float lambda)
|
|
{
|
|
BandCodingPath path[120][12];
|
|
int w, swb, cb, start, size;
|
|
int i, j;
|
|
const int max_sfb = sce->ics.max_sfb;
|
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
|
const int run_esc = (1 << run_bits) - 1;
|
|
int idx, ppos, count;
|
|
int stackrun[120], stackcb[120], stack_len;
|
|
float next_minrd = INFINITY;
|
|
int next_mincb = 0;
|
|
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
start = win*128;
|
|
for (cb = 0; cb < 12; cb++) {
|
|
path[0][cb].cost = run_bits+4;
|
|
path[0][cb].prev_idx = -1;
|
|
path[0][cb].run = 0;
|
|
}
|
|
for (swb = 0; swb < max_sfb; swb++) {
|
|
size = sce->ics.swb_sizes[swb];
|
|
if (sce->zeroes[win*16 + swb]) {
|
|
float cost_stay_here = path[swb][0].cost;
|
|
float cost_get_here = next_minrd + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][0].prev_idx = next_mincb;
|
|
path[swb+1][0].cost = cost_get_here;
|
|
path[swb+1][0].run = 1;
|
|
} else {
|
|
path[swb+1][0].prev_idx = 0;
|
|
path[swb+1][0].cost = cost_stay_here;
|
|
path[swb+1][0].run = path[swb][0].run + 1;
|
|
}
|
|
next_minrd = path[swb+1][0].cost;
|
|
next_mincb = 0;
|
|
for (cb = 1; cb < 12; cb++) {
|
|
path[swb+1][cb].cost = 61450;
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].run = 0;
|
|
}
|
|
} else {
|
|
float minrd = next_minrd;
|
|
int mincb = next_mincb;
|
|
int startcb = sce->band_type[win*16+swb];
|
|
next_minrd = INFINITY;
|
|
next_mincb = 0;
|
|
for (cb = 0; cb < startcb; cb++) {
|
|
path[swb+1][cb].cost = 61450;
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].run = 0;
|
|
}
|
|
for (cb = startcb; cb < 12; cb++) {
|
|
float cost_stay_here, cost_get_here;
|
|
float rd = 0.0f;
|
|
for (w = 0; w < group_len; w++) {
|
|
rd += quantize_band_cost(s, sce->coeffs + start + w*128,
|
|
s->scoefs + start + w*128, size,
|
|
sce->sf_idx[(win+w)*16+swb], cb,
|
|
0, INFINITY, NULL);
|
|
}
|
|
cost_stay_here = path[swb][cb].cost + rd;
|
|
cost_get_here = minrd + rd + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][cb].prev_idx = mincb;
|
|
path[swb+1][cb].cost = cost_get_here;
|
|
path[swb+1][cb].run = 1;
|
|
} else {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = cost_stay_here;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
if (path[swb+1][cb].cost < next_minrd) {
|
|
next_minrd = path[swb+1][cb].cost;
|
|
next_mincb = cb;
|
|
}
|
|
}
|
|
}
|
|
start += sce->ics.swb_sizes[swb];
|
|
}
|
|
|
|
//convert resulting path from backward-linked list
|
|
stack_len = 0;
|
|
idx = 0;
|
|
for (cb = 1; cb < 12; cb++)
|
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
|
idx = cb;
|
|
ppos = max_sfb;
|
|
while (ppos > 0) {
|
|
assert(idx >= 0);
|
|
cb = idx;
|
|
stackrun[stack_len] = path[ppos][cb].run;
|
|
stackcb [stack_len] = cb;
|
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
|
ppos -= path[ppos][cb].run;
|
|
stack_len++;
|
|
}
|
|
//perform actual band info encoding
|
|
start = 0;
|
|
for (i = stack_len - 1; i >= 0; i--) {
|
|
put_bits(&s->pb, 4, stackcb[i]);
|
|
count = stackrun[i];
|
|
memset(sce->zeroes + win*16 + start, !stackcb[i], count);
|
|
//XXX: memset when band_type is also uint8_t
|
|
for (j = 0; j < count; j++) {
|
|
sce->band_type[win*16 + start] = stackcb[i];
|
|
start++;
|
|
}
|
|
while (count >= run_esc) {
|
|
put_bits(&s->pb, run_bits, run_esc);
|
|
count -= run_esc;
|
|
}
|
|
put_bits(&s->pb, run_bits, count);
|
|
}
|
|
}
|
|
|
|
/** Return the minimum scalefactor where the quantized coef does not clip. */
|
|
static av_always_inline uint8_t coef2minsf(float coef) {
|
|
return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
|
|
}
|
|
|
|
/** Return the maximum scalefactor where the quantized coef is not zero. */
|
|
static av_always_inline uint8_t coef2maxsf(float coef) {
|
|
return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
|
|
}
|
|
|
|
typedef struct TrellisPath {
|
|
float cost;
|
|
int prev;
|
|
} TrellisPath;
|
|
|
|
#define TRELLIS_STAGES 121
|
|
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
|
|
|
|
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int q, w, w2, g, start = 0;
|
|
int i, j;
|
|
int idx;
|
|
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
|
|
int bandaddr[TRELLIS_STAGES];
|
|
int minq;
|
|
float mincost;
|
|
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
|
|
int q0, q1, qcnt = 0;
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
float t = fabsf(sce->coeffs[i]);
|
|
if (t > 0.0f) {
|
|
q0f = FFMIN(q0f, t);
|
|
q1f = FFMAX(q1f, t);
|
|
qnrgf += t*t;
|
|
qcnt++;
|
|
}
|
|
}
|
|
|
|
if (!qcnt) {
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
memset(sce->zeroes, 1, sizeof(sce->zeroes));
|
|
return;
|
|
}
|
|
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
q0 = coef2minsf(q0f);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
q1 = coef2maxsf(q1f);
|
|
//av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
|
|
if (q1 - q0 > 60) {
|
|
int q0low = q0;
|
|
int q1high = q1;
|
|
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
|
|
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
|
|
q1 = qnrg + 30;
|
|
q0 = qnrg - 30;
|
|
//av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
|
|
if (q0 < q0low) {
|
|
q1 += q0low - q0;
|
|
q0 = q0low;
|
|
} else if (q1 > q1high) {
|
|
q0 -= q1 - q1high;
|
|
q1 = q1high;
|
|
}
|
|
}
|
|
//av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
|
|
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[0][i].cost = 0.0f;
|
|
paths[0][i].prev = -1;
|
|
}
|
|
for (j = 1; j < TRELLIS_STAGES; j++) {
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[j][i].cost = INFINITY;
|
|
paths[j][i].prev = -2;
|
|
}
|
|
}
|
|
idx = 1;
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = sce->coeffs + start;
|
|
float qmin, qmax;
|
|
int nz = 0;
|
|
|
|
bandaddr[idx] = w * 16 + g;
|
|
qmin = INT_MAX;
|
|
qmax = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
continue;
|
|
}
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
nz = 1;
|
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
|
|
float t = fabsf(coefs[w2*128+i]);
|
|
if (t > 0.0f)
|
|
qmin = FFMIN(qmin, t);
|
|
qmax = FFMAX(qmax, t);
|
|
}
|
|
}
|
|
if (nz) {
|
|
int minscale, maxscale;
|
|
float minrd = INFINITY;
|
|
float maxval;
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
minscale = coef2minsf(qmin);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
maxscale = coef2maxsf(qmax);
|
|
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
|
|
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
|
|
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
|
|
for (q = minscale; q < maxscale; q++) {
|
|
float dist = 0;
|
|
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
|
|
q + q0, cb, lambda / band->threshold, INFINITY, NULL);
|
|
}
|
|
minrd = FFMIN(minrd, dist);
|
|
|
|
for (i = 0; i < q1 - q0; i++) {
|
|
float cost;
|
|
cost = paths[idx - 1][i].cost + dist
|
|
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
|
|
if (cost < paths[idx][q].cost) {
|
|
paths[idx][q].cost = cost;
|
|
paths[idx][q].prev = i;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (q = 0; q < q1 - q0; q++) {
|
|
paths[idx][q].cost = paths[idx - 1][q].cost + 1;
|
|
paths[idx][q].prev = q;
|
|
}
|
|
}
|
|
sce->zeroes[w*16+g] = !nz;
|
|
start += sce->ics.swb_sizes[g];
|
|
idx++;
|
|
}
|
|
}
|
|
idx--;
|
|
mincost = paths[idx][0].cost;
|
|
minq = 0;
|
|
for (i = 1; i < TRELLIS_STATES; i++) {
|
|
if (paths[idx][i].cost < mincost) {
|
|
mincost = paths[idx][i].cost;
|
|
minq = i;
|
|
}
|
|
}
|
|
while (idx) {
|
|
sce->sf_idx[bandaddr[idx]] = minq + q0;
|
|
minq = paths[idx][minq].prev;
|
|
idx--;
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
/**
|
|
* two-loop quantizers search taken from ISO 13818-7 Appendix C
|
|
*/
|
|
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
|
|
AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
|
|
float dists[128], uplims[128];
|
|
float maxvals[128];
|
|
int fflag, minscaler;
|
|
int its = 0;
|
|
int allz = 0;
|
|
float minthr = INFINITY;
|
|
|
|
//XXX: some heuristic to determine initial quantizers will reduce search time
|
|
memset(dists, 0, sizeof(dists));
|
|
//determine zero bands and upper limits
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
int nz = 0;
|
|
float uplim = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
uplim += band->threshold;
|
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
continue;
|
|
}
|
|
nz = 1;
|
|
}
|
|
uplims[w*16+g] = uplim *512;
|
|
sce->zeroes[w*16+g] = !nz;
|
|
if (nz)
|
|
minthr = FFMIN(minthr, uplim);
|
|
allz |= nz;
|
|
}
|
|
}
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->zeroes[w*16+g]) {
|
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
|
|
continue;
|
|
}
|
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
|
|
}
|
|
}
|
|
|
|
if (!allz)
|
|
return;
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *scaled = s->scoefs + start;
|
|
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
|
|
//perform two-loop search
|
|
//outer loop - improve quality
|
|
do {
|
|
int tbits, qstep;
|
|
minscaler = sce->sf_idx[0];
|
|
//inner loop - quantize spectrum to fit into given number of bits
|
|
qstep = its ? 1 : 32;
|
|
do {
|
|
int prev = -1;
|
|
tbits = 0;
|
|
fflag = 0;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = sce->coeffs + start;
|
|
const float *scaled = s->scoefs + start;
|
|
int bits = 0;
|
|
int cb;
|
|
float dist = 0.0f;
|
|
|
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
|
start += sce->ics.swb_sizes[g];
|
|
continue;
|
|
}
|
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
dist += quantize_band_cost(s, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
sce->sf_idx[w*16+g],
|
|
cb,
|
|
1.0f,
|
|
INFINITY,
|
|
&b);
|
|
bits += b;
|
|
}
|
|
dists[w*16+g] = dist - bits;
|
|
if (prev != -1) {
|
|
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
|
|
}
|
|
tbits += bits;
|
|
start += sce->ics.swb_sizes[g];
|
|
prev = sce->sf_idx[w*16+g];
|
|
}
|
|
}
|
|
if (tbits > destbits) {
|
|
for (i = 0; i < 128; i++)
|
|
if (sce->sf_idx[i] < 218 - qstep)
|
|
sce->sf_idx[i] += qstep;
|
|
} else {
|
|
for (i = 0; i < 128; i++)
|
|
if (sce->sf_idx[i] > 60 - qstep)
|
|
sce->sf_idx[i] -= qstep;
|
|
}
|
|
qstep >>= 1;
|
|
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
|
|
qstep = 1;
|
|
} while (qstep);
|
|
|
|
fflag = 0;
|
|
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
int prevsc = sce->sf_idx[w*16+g];
|
|
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
|
|
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
|
|
sce->sf_idx[w*16+g]--;
|
|
else //Try to make sure there is some energy in every band
|
|
sce->sf_idx[w*16+g]-=2;
|
|
}
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
|
|
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
|
|
if (sce->sf_idx[w*16+g] != prevsc)
|
|
fflag = 1;
|
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
}
|
|
}
|
|
its++;
|
|
} while (fflag && its < 10);
|
|
}
|
|
|
|
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
float uplim[128], maxq[128];
|
|
int minq, maxsf;
|
|
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
|
|
int last = 0, lastband = 0, curband = 0;
|
|
float avg_energy = 0.0;
|
|
if (sce->ics.num_windows == 1) {
|
|
start = 0;
|
|
for (i = 0; i < 1024; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (sce->coeffs[i]) {
|
|
avg_energy += sce->coeffs[i] * sce->coeffs[i];
|
|
last = i;
|
|
lastband = curband;
|
|
}
|
|
}
|
|
} else {
|
|
for (w = 0; w < 8; w++) {
|
|
const float *coeffs = sce->coeffs + w*128;
|
|
start = 0;
|
|
for (i = 0; i < 128; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (coeffs[i]) {
|
|
avg_energy += coeffs[i] * coeffs[i];
|
|
last = FFMAX(last, i);
|
|
lastband = FFMAX(lastband, curband);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
last++;
|
|
avg_energy /= last;
|
|
if (avg_energy == 0.0f) {
|
|
for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
|
|
sce->sf_idx[i] = SCALE_ONE_POS;
|
|
return;
|
|
}
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
float *coefs = sce->coeffs + start;
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int start2 = start, end2 = start + size, peakpos = start;
|
|
float maxval = -1, thr = 0.0f, t;
|
|
maxq[w*16+g] = 0.0f;
|
|
if (g > lastband) {
|
|
maxq[w*16+g] = 0.0f;
|
|
start += size;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
|
|
memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
|
|
continue;
|
|
}
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
for (i = 0; i < size; i++) {
|
|
float t = coefs[w2*128+i]*coefs[w2*128+i];
|
|
maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
|
|
thr += t;
|
|
if (sce->ics.num_windows == 1 && maxval < t) {
|
|
maxval = t;
|
|
peakpos = start+i;
|
|
}
|
|
}
|
|
}
|
|
if (sce->ics.num_windows == 1) {
|
|
start2 = FFMAX(peakpos - 2, start2);
|
|
end2 = FFMIN(peakpos + 3, end2);
|
|
} else {
|
|
start2 -= start;
|
|
end2 -= start;
|
|
}
|
|
start += size;
|
|
thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
|
|
t = 1.0 - (1.0 * start2 / last);
|
|
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
|
|
}
|
|
}
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = sce->coeffs + start;
|
|
const float *scaled = s->scoefs + start;
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int scf, prev_scf, step;
|
|
int min_scf = -1, max_scf = 256;
|
|
float curdiff;
|
|
if (maxq[w*16+g] < 21.544) {
|
|
sce->zeroes[w*16+g] = 1;
|
|
start += size;
|
|
continue;
|
|
}
|
|
sce->zeroes[w*16+g] = 0;
|
|
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
|
|
step = 16;
|
|
for (;;) {
|
|
float dist = 0.0f;
|
|
int quant_max;
|
|
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
dist += quantize_band_cost(s, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
scf,
|
|
ESC_BT,
|
|
lambda,
|
|
INFINITY,
|
|
&b);
|
|
dist -= b;
|
|
}
|
|
dist *= 1.0f / 512.0f / lambda;
|
|
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]);
|
|
if (quant_max >= 8191) { // too much, return to the previous quantizer
|
|
sce->sf_idx[w*16+g] = prev_scf;
|
|
break;
|
|
}
|
|
prev_scf = scf;
|
|
curdiff = fabsf(dist - uplim[w*16+g]);
|
|
if (curdiff <= 1.0f)
|
|
step = 0;
|
|
else
|
|
step = log2f(curdiff);
|
|
if (dist > uplim[w*16+g])
|
|
step = -step;
|
|
scf += step;
|
|
scf = av_clip_uint8(scf);
|
|
step = scf - prev_scf;
|
|
if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
|
|
sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
|
|
break;
|
|
}
|
|
if (step > 0)
|
|
min_scf = prev_scf;
|
|
else
|
|
max_scf = prev_scf;
|
|
}
|
|
start += size;
|
|
}
|
|
}
|
|
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
|
|
for (i = 1; i < 128; i++) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i-1];
|
|
else
|
|
minq = FFMIN(minq, sce->sf_idx[i]);
|
|
}
|
|
if (minq == INT_MAX)
|
|
minq = 0;
|
|
minq = FFMIN(minq, SCALE_MAX_POS);
|
|
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
|
|
for (i = 126; i >= 0; i--) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i+1];
|
|
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
|
|
}
|
|
}
|
|
|
|
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int i, w, w2, g;
|
|
int minq = 255;
|
|
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold) {
|
|
sce->sf_idx[(w+w2)*16+g] = 218;
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
} else {
|
|
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
}
|
|
minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < 128; i++) {
|
|
sce->sf_idx[i] = 140;
|
|
//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
float M[128], S[128];
|
|
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
|
|
SingleChannelElement *sce0 = &cpe->ch[0];
|
|
SingleChannelElement *sce1 = &cpe->ch[1];
|
|
if (!cpe->common_window)
|
|
return;
|
|
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
|
|
for (g = 0; g < sce0->ics.num_swb; g++) {
|
|
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
|
|
float dist1 = 0.0f, dist2 = 0.0f;
|
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
|
|
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
|
|
float minthr = FFMIN(band0->threshold, band1->threshold);
|
|
float maxthr = FFMAX(band0->threshold, band1->threshold);
|
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
|
|
M[i] = (sce0->coeffs[start+w2*128+i]
|
|
+ sce1->coeffs[start+w2*128+i]) * 0.5;
|
|
S[i] = M[i]
|
|
- sce1->coeffs[start+w2*128+i];
|
|
}
|
|
abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
|
|
dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
|
|
L34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / band0->threshold, INFINITY, NULL);
|
|
dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
|
|
R34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
lambda / band1->threshold, INFINITY, NULL);
|
|
dist2 += quantize_band_cost(s, M,
|
|
M34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / maxthr, INFINITY, NULL);
|
|
dist2 += quantize_band_cost(s, S,
|
|
S34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
lambda / minthr, INFINITY, NULL);
|
|
}
|
|
cpe->ms_mask[w*16+g] = dist2 < dist1;
|
|
}
|
|
start += sce0->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
}
|
|
|
|
AACCoefficientsEncoder ff_aac_coders[] = {
|
|
{
|
|
search_for_quantizers_faac,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
search_for_ms,
|
|
},
|
|
{
|
|
search_for_quantizers_anmr,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
search_for_ms,
|
|
},
|
|
{
|
|
search_for_quantizers_twoloop,
|
|
codebook_trellis_rate,
|
|
quantize_and_encode_band,
|
|
search_for_ms,
|
|
},
|
|
{
|
|
search_for_quantizers_fast,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
search_for_ms,
|
|
},
|
|
};
|