mirror of
https://git.ffmpeg.org/ffmpeg.git
synced 2024-12-29 10:52:20 +00:00
88bd7fdc82
It does not help as an abstraction and adds dsputil dependencies. Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
1080 lines
36 KiB
C
1080 lines
36 KiB
C
/*
|
|
* Apple ProRes encoder
|
|
*
|
|
* Copyright (c) 2012 Konstantin Shishkov
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "libavutil/opt.h"
|
|
#include "avcodec.h"
|
|
#include "dsputil.h"
|
|
#include "put_bits.h"
|
|
#include "bytestream.h"
|
|
#include "internal.h"
|
|
#include "proresdsp.h"
|
|
#include "proresdata.h"
|
|
|
|
#define CFACTOR_Y422 2
|
|
#define CFACTOR_Y444 3
|
|
|
|
#define MAX_MBS_PER_SLICE 8
|
|
|
|
#define MAX_PLANES 3 // should be increased to 4 when there's AV_PIX_FMT_YUV444AP10
|
|
|
|
enum {
|
|
PRORES_PROFILE_PROXY = 0,
|
|
PRORES_PROFILE_LT,
|
|
PRORES_PROFILE_STANDARD,
|
|
PRORES_PROFILE_HQ,
|
|
};
|
|
|
|
enum {
|
|
QUANT_MAT_PROXY = 0,
|
|
QUANT_MAT_LT,
|
|
QUANT_MAT_STANDARD,
|
|
QUANT_MAT_HQ,
|
|
QUANT_MAT_DEFAULT,
|
|
};
|
|
|
|
static const uint8_t prores_quant_matrices[][64] = {
|
|
{ // proxy
|
|
4, 7, 9, 11, 13, 14, 15, 63,
|
|
7, 7, 11, 12, 14, 15, 63, 63,
|
|
9, 11, 13, 14, 15, 63, 63, 63,
|
|
11, 11, 13, 14, 63, 63, 63, 63,
|
|
11, 13, 14, 63, 63, 63, 63, 63,
|
|
13, 14, 63, 63, 63, 63, 63, 63,
|
|
13, 63, 63, 63, 63, 63, 63, 63,
|
|
63, 63, 63, 63, 63, 63, 63, 63,
|
|
},
|
|
{ // LT
|
|
4, 5, 6, 7, 9, 11, 13, 15,
|
|
5, 5, 7, 8, 11, 13, 15, 17,
|
|
6, 7, 9, 11, 13, 15, 15, 17,
|
|
7, 7, 9, 11, 13, 15, 17, 19,
|
|
7, 9, 11, 13, 14, 16, 19, 23,
|
|
9, 11, 13, 14, 16, 19, 23, 29,
|
|
9, 11, 13, 15, 17, 21, 28, 35,
|
|
11, 13, 16, 17, 21, 28, 35, 41,
|
|
},
|
|
{ // standard
|
|
4, 4, 5, 5, 6, 7, 7, 9,
|
|
4, 4, 5, 6, 7, 7, 9, 9,
|
|
5, 5, 6, 7, 7, 9, 9, 10,
|
|
5, 5, 6, 7, 7, 9, 9, 10,
|
|
5, 6, 7, 7, 8, 9, 10, 12,
|
|
6, 7, 7, 8, 9, 10, 12, 15,
|
|
6, 7, 7, 9, 10, 11, 14, 17,
|
|
7, 7, 9, 10, 11, 14, 17, 21,
|
|
},
|
|
{ // high quality
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 5,
|
|
4, 4, 4, 4, 4, 4, 5, 5,
|
|
4, 4, 4, 4, 4, 5, 5, 6,
|
|
4, 4, 4, 4, 5, 5, 6, 7,
|
|
4, 4, 4, 4, 5, 6, 7, 7,
|
|
},
|
|
{ // codec default
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
},
|
|
};
|
|
|
|
#define NUM_MB_LIMITS 4
|
|
static const int prores_mb_limits[NUM_MB_LIMITS] = {
|
|
1620, // up to 720x576
|
|
2700, // up to 960x720
|
|
6075, // up to 1440x1080
|
|
9216, // up to 2048x1152
|
|
};
|
|
|
|
static const struct prores_profile {
|
|
const char *full_name;
|
|
uint32_t tag;
|
|
int min_quant;
|
|
int max_quant;
|
|
int br_tab[NUM_MB_LIMITS];
|
|
int quant;
|
|
} prores_profile_info[4] = {
|
|
{
|
|
.full_name = "proxy",
|
|
.tag = MKTAG('a', 'p', 'c', 'o'),
|
|
.min_quant = 4,
|
|
.max_quant = 8,
|
|
.br_tab = { 300, 242, 220, 194 },
|
|
.quant = QUANT_MAT_PROXY,
|
|
},
|
|
{
|
|
.full_name = "LT",
|
|
.tag = MKTAG('a', 'p', 'c', 's'),
|
|
.min_quant = 1,
|
|
.max_quant = 9,
|
|
.br_tab = { 720, 560, 490, 440 },
|
|
.quant = QUANT_MAT_LT,
|
|
},
|
|
{
|
|
.full_name = "standard",
|
|
.tag = MKTAG('a', 'p', 'c', 'n'),
|
|
.min_quant = 1,
|
|
.max_quant = 6,
|
|
.br_tab = { 1050, 808, 710, 632 },
|
|
.quant = QUANT_MAT_STANDARD,
|
|
},
|
|
{
|
|
.full_name = "high quality",
|
|
.tag = MKTAG('a', 'p', 'c', 'h'),
|
|
.min_quant = 1,
|
|
.max_quant = 6,
|
|
.br_tab = { 1566, 1216, 1070, 950 },
|
|
.quant = QUANT_MAT_HQ,
|
|
}
|
|
// for 4444 profile bitrate numbers are { 2350, 1828, 1600, 1425 }
|
|
};
|
|
|
|
#define TRELLIS_WIDTH 16
|
|
#define SCORE_LIMIT INT_MAX / 2
|
|
|
|
struct TrellisNode {
|
|
int prev_node;
|
|
int quant;
|
|
int bits;
|
|
int score;
|
|
};
|
|
|
|
#define MAX_STORED_Q 16
|
|
|
|
typedef struct ProresThreadData {
|
|
DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE];
|
|
DECLARE_ALIGNED(16, uint16_t, emu_buf)[16 * 16];
|
|
int16_t custom_q[64];
|
|
struct TrellisNode *nodes;
|
|
} ProresThreadData;
|
|
|
|
typedef struct ProresContext {
|
|
AVClass *class;
|
|
DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE];
|
|
DECLARE_ALIGNED(16, uint16_t, emu_buf)[16*16];
|
|
int16_t quants[MAX_STORED_Q][64];
|
|
int16_t custom_q[64];
|
|
const uint8_t *quant_mat;
|
|
|
|
ProresDSPContext dsp;
|
|
ScanTable scantable;
|
|
|
|
int mb_width, mb_height;
|
|
int mbs_per_slice;
|
|
int num_chroma_blocks, chroma_factor;
|
|
int slices_width;
|
|
int slices_per_picture;
|
|
int pictures_per_frame; // 1 for progressive, 2 for interlaced
|
|
int cur_picture_idx;
|
|
int num_planes;
|
|
int bits_per_mb;
|
|
int force_quant;
|
|
|
|
char *vendor;
|
|
int quant_sel;
|
|
|
|
int frame_size_upper_bound;
|
|
|
|
int profile;
|
|
const struct prores_profile *profile_info;
|
|
|
|
int *slice_q;
|
|
|
|
ProresThreadData *tdata;
|
|
} ProresContext;
|
|
|
|
static void get_slice_data(ProresContext *ctx, const uint16_t *src,
|
|
int linesize, int x, int y, int w, int h,
|
|
int16_t *blocks, uint16_t *emu_buf,
|
|
int mbs_per_slice, int blocks_per_mb, int is_chroma)
|
|
{
|
|
const uint16_t *esrc;
|
|
const int mb_width = 4 * blocks_per_mb;
|
|
int elinesize;
|
|
int i, j, k;
|
|
|
|
for (i = 0; i < mbs_per_slice; i++, src += mb_width) {
|
|
if (x >= w) {
|
|
memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb
|
|
* sizeof(*blocks));
|
|
return;
|
|
}
|
|
if (x + mb_width <= w && y + 16 <= h) {
|
|
esrc = src;
|
|
elinesize = linesize;
|
|
} else {
|
|
int bw, bh, pix;
|
|
|
|
esrc = emu_buf;
|
|
elinesize = 16 * sizeof(*emu_buf);
|
|
|
|
bw = FFMIN(w - x, mb_width);
|
|
bh = FFMIN(h - y, 16);
|
|
|
|
for (j = 0; j < bh; j++) {
|
|
memcpy(emu_buf + j * 16,
|
|
(const uint8_t*)src + j * linesize,
|
|
bw * sizeof(*src));
|
|
pix = emu_buf[j * 16 + bw - 1];
|
|
for (k = bw; k < mb_width; k++)
|
|
emu_buf[j * 16 + k] = pix;
|
|
}
|
|
for (; j < 16; j++)
|
|
memcpy(emu_buf + j * 16,
|
|
emu_buf + (bh - 1) * 16,
|
|
mb_width * sizeof(*emu_buf));
|
|
}
|
|
if (!is_chroma) {
|
|
ctx->dsp.fdct(esrc, elinesize, blocks);
|
|
blocks += 64;
|
|
if (blocks_per_mb > 2) {
|
|
ctx->dsp.fdct(esrc + 8, elinesize, blocks);
|
|
blocks += 64;
|
|
}
|
|
ctx->dsp.fdct(esrc + elinesize * 4, elinesize, blocks);
|
|
blocks += 64;
|
|
if (blocks_per_mb > 2) {
|
|
ctx->dsp.fdct(esrc + elinesize * 4 + 8, elinesize, blocks);
|
|
blocks += 64;
|
|
}
|
|
} else {
|
|
ctx->dsp.fdct(esrc, elinesize, blocks);
|
|
blocks += 64;
|
|
ctx->dsp.fdct(esrc + elinesize * 4, elinesize, blocks);
|
|
blocks += 64;
|
|
if (blocks_per_mb > 2) {
|
|
ctx->dsp.fdct(esrc + 8, elinesize, blocks);
|
|
blocks += 64;
|
|
ctx->dsp.fdct(esrc + elinesize * 4 + 8, elinesize, blocks);
|
|
blocks += 64;
|
|
}
|
|
}
|
|
|
|
x += mb_width;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Write an unsigned rice/exp golomb codeword.
|
|
*/
|
|
static inline void encode_vlc_codeword(PutBitContext *pb, unsigned codebook, int val)
|
|
{
|
|
unsigned int rice_order, exp_order, switch_bits, switch_val;
|
|
int exponent;
|
|
|
|
/* number of prefix bits to switch between Rice and expGolomb */
|
|
switch_bits = (codebook & 3) + 1;
|
|
rice_order = codebook >> 5; /* rice code order */
|
|
exp_order = (codebook >> 2) & 7; /* exp golomb code order */
|
|
|
|
switch_val = switch_bits << rice_order;
|
|
|
|
if (val >= switch_val) {
|
|
val -= switch_val - (1 << exp_order);
|
|
exponent = av_log2(val);
|
|
|
|
put_bits(pb, exponent - exp_order + switch_bits, 0);
|
|
put_bits(pb, exponent + 1, val);
|
|
} else {
|
|
exponent = val >> rice_order;
|
|
|
|
if (exponent)
|
|
put_bits(pb, exponent, 0);
|
|
put_bits(pb, 1, 1);
|
|
if (rice_order)
|
|
put_sbits(pb, rice_order, val);
|
|
}
|
|
}
|
|
|
|
#define GET_SIGN(x) ((x) >> 31)
|
|
#define MAKE_CODE(x) (((x) << 1) ^ GET_SIGN(x))
|
|
|
|
static void encode_dcs(PutBitContext *pb, int16_t *blocks,
|
|
int blocks_per_slice, int scale)
|
|
{
|
|
int i;
|
|
int codebook = 3, code, dc, prev_dc, delta, sign, new_sign;
|
|
|
|
prev_dc = (blocks[0] - 0x4000) / scale;
|
|
encode_vlc_codeword(pb, FIRST_DC_CB, MAKE_CODE(prev_dc));
|
|
sign = 0;
|
|
codebook = 3;
|
|
blocks += 64;
|
|
|
|
for (i = 1; i < blocks_per_slice; i++, blocks += 64) {
|
|
dc = (blocks[0] - 0x4000) / scale;
|
|
delta = dc - prev_dc;
|
|
new_sign = GET_SIGN(delta);
|
|
delta = (delta ^ sign) - sign;
|
|
code = MAKE_CODE(delta);
|
|
encode_vlc_codeword(pb, ff_prores_dc_codebook[codebook], code);
|
|
codebook = (code + (code & 1)) >> 1;
|
|
codebook = FFMIN(codebook, 3);
|
|
sign = new_sign;
|
|
prev_dc = dc;
|
|
}
|
|
}
|
|
|
|
static void encode_acs(PutBitContext *pb, int16_t *blocks,
|
|
int blocks_per_slice,
|
|
int plane_size_factor,
|
|
const uint8_t *scan, const int16_t *qmat)
|
|
{
|
|
int idx, i;
|
|
int run, level, run_cb, lev_cb;
|
|
int max_coeffs, abs_level;
|
|
|
|
max_coeffs = blocks_per_slice << 6;
|
|
run_cb = ff_prores_run_to_cb_index[4];
|
|
lev_cb = ff_prores_lev_to_cb_index[2];
|
|
run = 0;
|
|
|
|
for (i = 1; i < 64; i++) {
|
|
for (idx = scan[i]; idx < max_coeffs; idx += 64) {
|
|
level = blocks[idx] / qmat[scan[i]];
|
|
if (level) {
|
|
abs_level = FFABS(level);
|
|
encode_vlc_codeword(pb, ff_prores_ac_codebook[run_cb], run);
|
|
encode_vlc_codeword(pb, ff_prores_ac_codebook[lev_cb],
|
|
abs_level - 1);
|
|
put_sbits(pb, 1, GET_SIGN(level));
|
|
|
|
run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)];
|
|
lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)];
|
|
run = 0;
|
|
} else {
|
|
run++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int encode_slice_plane(ProresContext *ctx, PutBitContext *pb,
|
|
const uint16_t *src, int linesize,
|
|
int mbs_per_slice, int16_t *blocks,
|
|
int blocks_per_mb, int plane_size_factor,
|
|
const int16_t *qmat)
|
|
{
|
|
int blocks_per_slice, saved_pos;
|
|
|
|
saved_pos = put_bits_count(pb);
|
|
blocks_per_slice = mbs_per_slice * blocks_per_mb;
|
|
|
|
encode_dcs(pb, blocks, blocks_per_slice, qmat[0]);
|
|
encode_acs(pb, blocks, blocks_per_slice, plane_size_factor,
|
|
ctx->scantable.permutated, qmat);
|
|
flush_put_bits(pb);
|
|
|
|
return (put_bits_count(pb) - saved_pos) >> 3;
|
|
}
|
|
|
|
static int encode_slice(AVCodecContext *avctx, const AVFrame *pic,
|
|
PutBitContext *pb,
|
|
int sizes[4], int x, int y, int quant,
|
|
int mbs_per_slice)
|
|
{
|
|
ProresContext *ctx = avctx->priv_data;
|
|
int i, xp, yp;
|
|
int total_size = 0;
|
|
const uint16_t *src;
|
|
int slice_width_factor = av_log2(mbs_per_slice);
|
|
int num_cblocks, pwidth, linesize, line_add;
|
|
int plane_factor, is_chroma;
|
|
uint16_t *qmat;
|
|
|
|
if (ctx->pictures_per_frame == 1)
|
|
line_add = 0;
|
|
else
|
|
line_add = ctx->cur_picture_idx ^ !pic->top_field_first;
|
|
|
|
if (ctx->force_quant) {
|
|
qmat = ctx->quants[0];
|
|
} else if (quant < MAX_STORED_Q) {
|
|
qmat = ctx->quants[quant];
|
|
} else {
|
|
qmat = ctx->custom_q;
|
|
for (i = 0; i < 64; i++)
|
|
qmat[i] = ctx->quant_mat[i] * quant;
|
|
}
|
|
|
|
for (i = 0; i < ctx->num_planes; i++) {
|
|
is_chroma = (i == 1 || i == 2);
|
|
plane_factor = slice_width_factor + 2;
|
|
if (is_chroma)
|
|
plane_factor += ctx->chroma_factor - 3;
|
|
if (!is_chroma || ctx->chroma_factor == CFACTOR_Y444) {
|
|
xp = x << 4;
|
|
yp = y << 4;
|
|
num_cblocks = 4;
|
|
pwidth = avctx->width;
|
|
} else {
|
|
xp = x << 3;
|
|
yp = y << 4;
|
|
num_cblocks = 2;
|
|
pwidth = avctx->width >> 1;
|
|
}
|
|
|
|
linesize = pic->linesize[i] * ctx->pictures_per_frame;
|
|
src = (const uint16_t*)(pic->data[i] + yp * linesize +
|
|
line_add * pic->linesize[i]) + xp;
|
|
|
|
get_slice_data(ctx, src, linesize, xp, yp,
|
|
pwidth, avctx->height / ctx->pictures_per_frame,
|
|
ctx->blocks[0], ctx->emu_buf,
|
|
mbs_per_slice, num_cblocks, is_chroma);
|
|
sizes[i] = encode_slice_plane(ctx, pb, src, linesize,
|
|
mbs_per_slice, ctx->blocks[0],
|
|
num_cblocks, plane_factor,
|
|
qmat);
|
|
total_size += sizes[i];
|
|
}
|
|
return total_size;
|
|
}
|
|
|
|
static inline int estimate_vlc(unsigned codebook, int val)
|
|
{
|
|
unsigned int rice_order, exp_order, switch_bits, switch_val;
|
|
int exponent;
|
|
|
|
/* number of prefix bits to switch between Rice and expGolomb */
|
|
switch_bits = (codebook & 3) + 1;
|
|
rice_order = codebook >> 5; /* rice code order */
|
|
exp_order = (codebook >> 2) & 7; /* exp golomb code order */
|
|
|
|
switch_val = switch_bits << rice_order;
|
|
|
|
if (val >= switch_val) {
|
|
val -= switch_val - (1 << exp_order);
|
|
exponent = av_log2(val);
|
|
|
|
return exponent * 2 - exp_order + switch_bits + 1;
|
|
} else {
|
|
return (val >> rice_order) + rice_order + 1;
|
|
}
|
|
}
|
|
|
|
static int estimate_dcs(int *error, int16_t *blocks, int blocks_per_slice,
|
|
int scale)
|
|
{
|
|
int i;
|
|
int codebook = 3, code, dc, prev_dc, delta, sign, new_sign;
|
|
int bits;
|
|
|
|
prev_dc = (blocks[0] - 0x4000) / scale;
|
|
bits = estimate_vlc(FIRST_DC_CB, MAKE_CODE(prev_dc));
|
|
sign = 0;
|
|
codebook = 3;
|
|
blocks += 64;
|
|
*error += FFABS(blocks[0] - 0x4000) % scale;
|
|
|
|
for (i = 1; i < blocks_per_slice; i++, blocks += 64) {
|
|
dc = (blocks[0] - 0x4000) / scale;
|
|
*error += FFABS(blocks[0] - 0x4000) % scale;
|
|
delta = dc - prev_dc;
|
|
new_sign = GET_SIGN(delta);
|
|
delta = (delta ^ sign) - sign;
|
|
code = MAKE_CODE(delta);
|
|
bits += estimate_vlc(ff_prores_dc_codebook[codebook], code);
|
|
codebook = (code + (code & 1)) >> 1;
|
|
codebook = FFMIN(codebook, 3);
|
|
sign = new_sign;
|
|
prev_dc = dc;
|
|
}
|
|
|
|
return bits;
|
|
}
|
|
|
|
static int estimate_acs(int *error, int16_t *blocks, int blocks_per_slice,
|
|
int plane_size_factor,
|
|
const uint8_t *scan, const int16_t *qmat)
|
|
{
|
|
int idx, i;
|
|
int run, level, run_cb, lev_cb;
|
|
int max_coeffs, abs_level;
|
|
int bits = 0;
|
|
|
|
max_coeffs = blocks_per_slice << 6;
|
|
run_cb = ff_prores_run_to_cb_index[4];
|
|
lev_cb = ff_prores_lev_to_cb_index[2];
|
|
run = 0;
|
|
|
|
for (i = 1; i < 64; i++) {
|
|
for (idx = scan[i]; idx < max_coeffs; idx += 64) {
|
|
level = blocks[idx] / qmat[scan[i]];
|
|
*error += FFABS(blocks[idx]) % qmat[scan[i]];
|
|
if (level) {
|
|
abs_level = FFABS(level);
|
|
bits += estimate_vlc(ff_prores_ac_codebook[run_cb], run);
|
|
bits += estimate_vlc(ff_prores_ac_codebook[lev_cb],
|
|
abs_level - 1) + 1;
|
|
|
|
run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)];
|
|
lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)];
|
|
run = 0;
|
|
} else {
|
|
run++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return bits;
|
|
}
|
|
|
|
static int estimate_slice_plane(ProresContext *ctx, int *error, int plane,
|
|
const uint16_t *src, int linesize,
|
|
int mbs_per_slice,
|
|
int blocks_per_mb, int plane_size_factor,
|
|
const int16_t *qmat, ProresThreadData *td)
|
|
{
|
|
int blocks_per_slice;
|
|
int bits;
|
|
|
|
blocks_per_slice = mbs_per_slice * blocks_per_mb;
|
|
|
|
bits = estimate_dcs(error, td->blocks[plane], blocks_per_slice, qmat[0]);
|
|
bits += estimate_acs(error, td->blocks[plane], blocks_per_slice,
|
|
plane_size_factor, ctx->scantable.permutated, qmat);
|
|
|
|
return FFALIGN(bits, 8);
|
|
}
|
|
|
|
static int find_slice_quant(AVCodecContext *avctx, const AVFrame *pic,
|
|
int trellis_node, int x, int y, int mbs_per_slice,
|
|
ProresThreadData *td)
|
|
{
|
|
ProresContext *ctx = avctx->priv_data;
|
|
int i, q, pq, xp, yp;
|
|
const uint16_t *src;
|
|
int slice_width_factor = av_log2(mbs_per_slice);
|
|
int num_cblocks[MAX_PLANES], pwidth;
|
|
int plane_factor[MAX_PLANES], is_chroma[MAX_PLANES];
|
|
const int min_quant = ctx->profile_info->min_quant;
|
|
const int max_quant = ctx->profile_info->max_quant;
|
|
int error, bits, bits_limit;
|
|
int mbs, prev, cur, new_score;
|
|
int slice_bits[TRELLIS_WIDTH], slice_score[TRELLIS_WIDTH];
|
|
int overquant;
|
|
uint16_t *qmat;
|
|
int linesize[4], line_add;
|
|
|
|
if (ctx->pictures_per_frame == 1)
|
|
line_add = 0;
|
|
else
|
|
line_add = ctx->cur_picture_idx ^ !pic->top_field_first;
|
|
mbs = x + mbs_per_slice;
|
|
|
|
for (i = 0; i < ctx->num_planes; i++) {
|
|
is_chroma[i] = (i == 1 || i == 2);
|
|
plane_factor[i] = slice_width_factor + 2;
|
|
if (is_chroma[i])
|
|
plane_factor[i] += ctx->chroma_factor - 3;
|
|
if (!is_chroma[i] || ctx->chroma_factor == CFACTOR_Y444) {
|
|
xp = x << 4;
|
|
yp = y << 4;
|
|
num_cblocks[i] = 4;
|
|
pwidth = avctx->width;
|
|
} else {
|
|
xp = x << 3;
|
|
yp = y << 4;
|
|
num_cblocks[i] = 2;
|
|
pwidth = avctx->width >> 1;
|
|
}
|
|
|
|
linesize[i] = pic->linesize[i] * ctx->pictures_per_frame;
|
|
src = (const uint16_t*)(pic->data[i] + yp * linesize[i] +
|
|
line_add * pic->linesize[i]) + xp;
|
|
|
|
get_slice_data(ctx, src, linesize[i], xp, yp,
|
|
pwidth, avctx->height / ctx->pictures_per_frame,
|
|
td->blocks[i], td->emu_buf,
|
|
mbs_per_slice, num_cblocks[i], is_chroma[i]);
|
|
}
|
|
|
|
for (q = min_quant; q < max_quant + 2; q++) {
|
|
td->nodes[trellis_node + q].prev_node = -1;
|
|
td->nodes[trellis_node + q].quant = q;
|
|
}
|
|
|
|
// todo: maybe perform coarser quantising to fit into frame size when needed
|
|
for (q = min_quant; q <= max_quant; q++) {
|
|
bits = 0;
|
|
error = 0;
|
|
for (i = 0; i < ctx->num_planes; i++) {
|
|
bits += estimate_slice_plane(ctx, &error, i,
|
|
src, linesize[i],
|
|
mbs_per_slice,
|
|
num_cblocks[i], plane_factor[i],
|
|
ctx->quants[q], td);
|
|
}
|
|
if (bits > 65000 * 8) {
|
|
error = SCORE_LIMIT;
|
|
break;
|
|
}
|
|
slice_bits[q] = bits;
|
|
slice_score[q] = error;
|
|
}
|
|
if (slice_bits[max_quant] <= ctx->bits_per_mb * mbs_per_slice) {
|
|
slice_bits[max_quant + 1] = slice_bits[max_quant];
|
|
slice_score[max_quant + 1] = slice_score[max_quant] + 1;
|
|
overquant = max_quant;
|
|
} else {
|
|
for (q = max_quant + 1; q < 128; q++) {
|
|
bits = 0;
|
|
error = 0;
|
|
if (q < MAX_STORED_Q) {
|
|
qmat = ctx->quants[q];
|
|
} else {
|
|
qmat = td->custom_q;
|
|
for (i = 0; i < 64; i++)
|
|
qmat[i] = ctx->quant_mat[i] * q;
|
|
}
|
|
for (i = 0; i < ctx->num_planes; i++) {
|
|
bits += estimate_slice_plane(ctx, &error, i,
|
|
src, linesize[i],
|
|
mbs_per_slice,
|
|
num_cblocks[i], plane_factor[i],
|
|
qmat, td);
|
|
}
|
|
if (bits <= ctx->bits_per_mb * mbs_per_slice)
|
|
break;
|
|
}
|
|
|
|
slice_bits[max_quant + 1] = bits;
|
|
slice_score[max_quant + 1] = error;
|
|
overquant = q;
|
|
}
|
|
td->nodes[trellis_node + max_quant + 1].quant = overquant;
|
|
|
|
bits_limit = mbs * ctx->bits_per_mb;
|
|
for (pq = min_quant; pq < max_quant + 2; pq++) {
|
|
prev = trellis_node - TRELLIS_WIDTH + pq;
|
|
|
|
for (q = min_quant; q < max_quant + 2; q++) {
|
|
cur = trellis_node + q;
|
|
|
|
bits = td->nodes[prev].bits + slice_bits[q];
|
|
error = slice_score[q];
|
|
if (bits > bits_limit)
|
|
error = SCORE_LIMIT;
|
|
|
|
if (td->nodes[prev].score < SCORE_LIMIT && error < SCORE_LIMIT)
|
|
new_score = td->nodes[prev].score + error;
|
|
else
|
|
new_score = SCORE_LIMIT;
|
|
if (td->nodes[cur].prev_node == -1 ||
|
|
td->nodes[cur].score >= new_score) {
|
|
|
|
td->nodes[cur].bits = bits;
|
|
td->nodes[cur].score = new_score;
|
|
td->nodes[cur].prev_node = prev;
|
|
}
|
|
}
|
|
}
|
|
|
|
error = td->nodes[trellis_node + min_quant].score;
|
|
pq = trellis_node + min_quant;
|
|
for (q = min_quant + 1; q < max_quant + 2; q++) {
|
|
if (td->nodes[trellis_node + q].score <= error) {
|
|
error = td->nodes[trellis_node + q].score;
|
|
pq = trellis_node + q;
|
|
}
|
|
}
|
|
|
|
return pq;
|
|
}
|
|
|
|
static int find_quant_thread(AVCodecContext *avctx, void *arg,
|
|
int jobnr, int threadnr)
|
|
{
|
|
ProresContext *ctx = avctx->priv_data;
|
|
ProresThreadData *td = ctx->tdata + threadnr;
|
|
int mbs_per_slice = ctx->mbs_per_slice;
|
|
int x, y = jobnr, mb, q = 0;
|
|
|
|
for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) {
|
|
while (ctx->mb_width - x < mbs_per_slice)
|
|
mbs_per_slice >>= 1;
|
|
q = find_slice_quant(avctx, avctx->coded_frame,
|
|
(mb + 1) * TRELLIS_WIDTH, x, y,
|
|
mbs_per_slice, td);
|
|
}
|
|
|
|
for (x = ctx->slices_width - 1; x >= 0; x--) {
|
|
ctx->slice_q[x + y * ctx->slices_width] = td->nodes[q].quant;
|
|
q = td->nodes[q].prev_node;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
|
|
const AVFrame *pic, int *got_packet)
|
|
{
|
|
ProresContext *ctx = avctx->priv_data;
|
|
uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *tmp;
|
|
uint8_t *picture_size_pos;
|
|
PutBitContext pb;
|
|
int x, y, i, mb, q = 0;
|
|
int sizes[4] = { 0 };
|
|
int slice_hdr_size = 2 + 2 * (ctx->num_planes - 1);
|
|
int frame_size, picture_size, slice_size;
|
|
int pkt_size, ret;
|
|
uint8_t frame_flags;
|
|
|
|
*avctx->coded_frame = *pic;
|
|
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
|
|
avctx->coded_frame->key_frame = 1;
|
|
|
|
pkt_size = ctx->frame_size_upper_bound + FF_MIN_BUFFER_SIZE;
|
|
|
|
if ((ret = ff_alloc_packet(pkt, pkt_size)) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
|
|
return ret;
|
|
}
|
|
|
|
orig_buf = pkt->data;
|
|
|
|
// frame atom
|
|
orig_buf += 4; // frame size
|
|
bytestream_put_be32 (&orig_buf, FRAME_ID); // frame container ID
|
|
buf = orig_buf;
|
|
|
|
// frame header
|
|
tmp = buf;
|
|
buf += 2; // frame header size will be stored here
|
|
bytestream_put_be16 (&buf, 0); // version 1
|
|
bytestream_put_buffer(&buf, ctx->vendor, 4);
|
|
bytestream_put_be16 (&buf, avctx->width);
|
|
bytestream_put_be16 (&buf, avctx->height);
|
|
|
|
frame_flags = ctx->chroma_factor << 6;
|
|
if (avctx->flags & CODEC_FLAG_INTERLACED_DCT)
|
|
frame_flags |= pic->top_field_first ? 0x04 : 0x08;
|
|
bytestream_put_byte (&buf, frame_flags);
|
|
|
|
bytestream_put_byte (&buf, 0); // reserved
|
|
bytestream_put_byte (&buf, avctx->color_primaries);
|
|
bytestream_put_byte (&buf, avctx->color_trc);
|
|
bytestream_put_byte (&buf, avctx->colorspace);
|
|
bytestream_put_byte (&buf, 0x40); // source format and alpha information
|
|
bytestream_put_byte (&buf, 0); // reserved
|
|
if (ctx->quant_sel != QUANT_MAT_DEFAULT) {
|
|
bytestream_put_byte (&buf, 0x03); // matrix flags - both matrices are present
|
|
// luma quantisation matrix
|
|
for (i = 0; i < 64; i++)
|
|
bytestream_put_byte(&buf, ctx->quant_mat[i]);
|
|
// chroma quantisation matrix
|
|
for (i = 0; i < 64; i++)
|
|
bytestream_put_byte(&buf, ctx->quant_mat[i]);
|
|
} else {
|
|
bytestream_put_byte (&buf, 0x00); // matrix flags - default matrices are used
|
|
}
|
|
bytestream_put_be16 (&tmp, buf - orig_buf); // write back frame header size
|
|
|
|
for (ctx->cur_picture_idx = 0;
|
|
ctx->cur_picture_idx < ctx->pictures_per_frame;
|
|
ctx->cur_picture_idx++) {
|
|
// picture header
|
|
picture_size_pos = buf + 1;
|
|
bytestream_put_byte (&buf, 0x40); // picture header size (in bits)
|
|
buf += 4; // picture data size will be stored here
|
|
bytestream_put_be16 (&buf, ctx->slices_per_picture);
|
|
bytestream_put_byte (&buf, av_log2(ctx->mbs_per_slice) << 4); // slice width and height in MBs
|
|
|
|
// seek table - will be filled during slice encoding
|
|
slice_sizes = buf;
|
|
buf += ctx->slices_per_picture * 2;
|
|
|
|
// slices
|
|
if (!ctx->force_quant) {
|
|
ret = avctx->execute2(avctx, find_quant_thread, NULL, NULL,
|
|
ctx->mb_height);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
for (y = 0; y < ctx->mb_height; y++) {
|
|
int mbs_per_slice = ctx->mbs_per_slice;
|
|
for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) {
|
|
q = ctx->force_quant ? ctx->force_quant
|
|
: ctx->slice_q[mb + y * ctx->slices_width];
|
|
|
|
while (ctx->mb_width - x < mbs_per_slice)
|
|
mbs_per_slice >>= 1;
|
|
|
|
bytestream_put_byte(&buf, slice_hdr_size << 3);
|
|
slice_hdr = buf;
|
|
buf += slice_hdr_size - 1;
|
|
init_put_bits(&pb, buf, (pkt_size - (buf - orig_buf)) * 8);
|
|
encode_slice(avctx, pic, &pb, sizes, x, y, q, mbs_per_slice);
|
|
|
|
bytestream_put_byte(&slice_hdr, q);
|
|
slice_size = slice_hdr_size + sizes[ctx->num_planes - 1];
|
|
for (i = 0; i < ctx->num_planes - 1; i++) {
|
|
bytestream_put_be16(&slice_hdr, sizes[i]);
|
|
slice_size += sizes[i];
|
|
}
|
|
bytestream_put_be16(&slice_sizes, slice_size);
|
|
buf += slice_size - slice_hdr_size;
|
|
}
|
|
}
|
|
|
|
if (ctx->pictures_per_frame == 1)
|
|
picture_size = buf - picture_size_pos - 6;
|
|
else
|
|
picture_size = buf - picture_size_pos + 1;
|
|
bytestream_put_be32(&picture_size_pos, picture_size);
|
|
}
|
|
|
|
orig_buf -= 8;
|
|
frame_size = buf - orig_buf;
|
|
bytestream_put_be32(&orig_buf, frame_size);
|
|
|
|
pkt->size = frame_size;
|
|
pkt->flags |= AV_PKT_FLAG_KEY;
|
|
*got_packet = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int encode_close(AVCodecContext *avctx)
|
|
{
|
|
ProresContext *ctx = avctx->priv_data;
|
|
int i;
|
|
|
|
av_freep(&avctx->coded_frame);
|
|
|
|
if (ctx->tdata) {
|
|
for (i = 0; i < avctx->thread_count; i++)
|
|
av_free(ctx->tdata[i].nodes);
|
|
}
|
|
av_freep(&ctx->tdata);
|
|
av_freep(&ctx->slice_q);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int encode_init(AVCodecContext *avctx)
|
|
{
|
|
ProresContext *ctx = avctx->priv_data;
|
|
int mps;
|
|
int i, j;
|
|
int min_quant, max_quant;
|
|
int interlaced = !!(avctx->flags & CODEC_FLAG_INTERLACED_DCT);
|
|
|
|
avctx->bits_per_raw_sample = 10;
|
|
avctx->coded_frame = avcodec_alloc_frame();
|
|
if (!avctx->coded_frame)
|
|
return AVERROR(ENOMEM);
|
|
|
|
ff_proresdsp_init(&ctx->dsp);
|
|
ff_init_scantable(ctx->dsp.dct_permutation, &ctx->scantable,
|
|
interlaced ? ff_prores_interlaced_scan
|
|
: ff_prores_progressive_scan);
|
|
|
|
mps = ctx->mbs_per_slice;
|
|
if (mps & (mps - 1)) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"there should be an integer power of two MBs per slice\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
ctx->chroma_factor = avctx->pix_fmt == AV_PIX_FMT_YUV422P10
|
|
? CFACTOR_Y422
|
|
: CFACTOR_Y444;
|
|
ctx->profile_info = prores_profile_info + ctx->profile;
|
|
ctx->num_planes = 3;
|
|
|
|
ctx->mb_width = FFALIGN(avctx->width, 16) >> 4;
|
|
|
|
if (interlaced)
|
|
ctx->mb_height = FFALIGN(avctx->height, 32) >> 5;
|
|
else
|
|
ctx->mb_height = FFALIGN(avctx->height, 16) >> 4;
|
|
|
|
ctx->slices_width = ctx->mb_width / mps;
|
|
ctx->slices_width += av_popcount(ctx->mb_width - ctx->slices_width * mps);
|
|
ctx->slices_per_picture = ctx->mb_height * ctx->slices_width;
|
|
ctx->pictures_per_frame = 1 + interlaced;
|
|
|
|
if (ctx->quant_sel == -1)
|
|
ctx->quant_mat = prores_quant_matrices[ctx->profile_info->quant];
|
|
else
|
|
ctx->quant_mat = prores_quant_matrices[ctx->quant_sel];
|
|
|
|
if (strlen(ctx->vendor) != 4) {
|
|
av_log(avctx, AV_LOG_ERROR, "vendor ID should be 4 bytes\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
ctx->force_quant = avctx->global_quality / FF_QP2LAMBDA;
|
|
if (!ctx->force_quant) {
|
|
if (!ctx->bits_per_mb) {
|
|
for (i = 0; i < NUM_MB_LIMITS - 1; i++)
|
|
if (prores_mb_limits[i] >= ctx->mb_width * ctx->mb_height *
|
|
ctx->pictures_per_frame)
|
|
break;
|
|
ctx->bits_per_mb = ctx->profile_info->br_tab[i];
|
|
} else if (ctx->bits_per_mb < 128) {
|
|
av_log(avctx, AV_LOG_ERROR, "too few bits per MB, please set at least 128\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
min_quant = ctx->profile_info->min_quant;
|
|
max_quant = ctx->profile_info->max_quant;
|
|
for (i = min_quant; i < MAX_STORED_Q; i++) {
|
|
for (j = 0; j < 64; j++)
|
|
ctx->quants[i][j] = ctx->quant_mat[j] * i;
|
|
}
|
|
|
|
ctx->slice_q = av_malloc(ctx->slices_per_picture * sizeof(*ctx->slice_q));
|
|
if (!ctx->slice_q) {
|
|
encode_close(avctx);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
ctx->tdata = av_mallocz(avctx->thread_count * sizeof(*ctx->tdata));
|
|
if (!ctx->tdata) {
|
|
encode_close(avctx);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
for (j = 0; j < avctx->thread_count; j++) {
|
|
ctx->tdata[j].nodes = av_malloc((ctx->slices_width + 1)
|
|
* TRELLIS_WIDTH
|
|
* sizeof(*ctx->tdata->nodes));
|
|
if (!ctx->tdata[j].nodes) {
|
|
encode_close(avctx);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
for (i = min_quant; i < max_quant + 2; i++) {
|
|
ctx->tdata[j].nodes[i].prev_node = -1;
|
|
ctx->tdata[j].nodes[i].bits = 0;
|
|
ctx->tdata[j].nodes[i].score = 0;
|
|
}
|
|
}
|
|
} else {
|
|
int ls = 0;
|
|
|
|
if (ctx->force_quant > 64) {
|
|
av_log(avctx, AV_LOG_ERROR, "too large quantiser, maximum is 64\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
for (j = 0; j < 64; j++) {
|
|
ctx->quants[0][j] = ctx->quant_mat[j] * ctx->force_quant;
|
|
ls += av_log2((1 << 11) / ctx->quants[0][j]) * 2 + 1;
|
|
}
|
|
|
|
ctx->bits_per_mb = ls * 8;
|
|
if (ctx->chroma_factor == CFACTOR_Y444)
|
|
ctx->bits_per_mb += ls * 4;
|
|
if (ctx->num_planes == 4)
|
|
ctx->bits_per_mb += ls * 4;
|
|
}
|
|
|
|
ctx->frame_size_upper_bound = ctx->pictures_per_frame *
|
|
ctx->slices_per_picture *
|
|
(2 + 2 * ctx->num_planes +
|
|
(mps * ctx->bits_per_mb) / 8)
|
|
+ 200;
|
|
|
|
avctx->codec_tag = ctx->profile_info->tag;
|
|
|
|
av_log(avctx, AV_LOG_DEBUG,
|
|
"profile %d, %d slices, interlacing: %s, %d bits per MB\n",
|
|
ctx->profile, ctx->slices_per_picture * ctx->pictures_per_frame,
|
|
interlaced ? "yes" : "no", ctx->bits_per_mb);
|
|
av_log(avctx, AV_LOG_DEBUG, "frame size upper bound: %d\n",
|
|
ctx->frame_size_upper_bound);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define OFFSET(x) offsetof(ProresContext, x)
|
|
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
|
|
|
|
static const AVOption options[] = {
|
|
{ "mbs_per_slice", "macroblocks per slice", OFFSET(mbs_per_slice),
|
|
AV_OPT_TYPE_INT, { .i64 = 8 }, 1, MAX_MBS_PER_SLICE, VE },
|
|
{ "profile", NULL, OFFSET(profile), AV_OPT_TYPE_INT,
|
|
{ .i64 = PRORES_PROFILE_STANDARD },
|
|
PRORES_PROFILE_PROXY, PRORES_PROFILE_HQ, VE, "profile" },
|
|
{ "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_PROXY },
|
|
0, 0, VE, "profile" },
|
|
{ "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_LT },
|
|
0, 0, VE, "profile" },
|
|
{ "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_STANDARD },
|
|
0, 0, VE, "profile" },
|
|
{ "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_HQ },
|
|
0, 0, VE, "profile" },
|
|
{ "vendor", "vendor ID", OFFSET(vendor),
|
|
AV_OPT_TYPE_STRING, { .str = "Lavc" }, CHAR_MIN, CHAR_MAX, VE },
|
|
{ "bits_per_mb", "desired bits per macroblock", OFFSET(bits_per_mb),
|
|
AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 8192, VE },
|
|
{ "quant_mat", "quantiser matrix", OFFSET(quant_sel), AV_OPT_TYPE_INT,
|
|
{ .i64 = -1 }, -1, QUANT_MAT_DEFAULT, VE, "quant_mat" },
|
|
{ "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 },
|
|
0, 0, VE, "quant_mat" },
|
|
{ "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_PROXY },
|
|
0, 0, VE, "quant_mat" },
|
|
{ "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_LT },
|
|
0, 0, VE, "quant_mat" },
|
|
{ "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_STANDARD },
|
|
0, 0, VE, "quant_mat" },
|
|
{ "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_HQ },
|
|
0, 0, VE, "quant_mat" },
|
|
{ "default", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_DEFAULT },
|
|
0, 0, VE, "quant_mat" },
|
|
{ NULL }
|
|
};
|
|
|
|
static const AVClass proresenc_class = {
|
|
.class_name = "ProRes encoder",
|
|
.item_name = av_default_item_name,
|
|
.option = options,
|
|
.version = LIBAVUTIL_VERSION_INT,
|
|
};
|
|
|
|
AVCodec ff_prores_encoder = {
|
|
.name = "prores",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = AV_CODEC_ID_PRORES,
|
|
.priv_data_size = sizeof(ProresContext),
|
|
.init = encode_init,
|
|
.close = encode_close,
|
|
.encode2 = encode_frame,
|
|
.capabilities = CODEC_CAP_SLICE_THREADS,
|
|
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"),
|
|
.pix_fmts = (const enum AVPixelFormat[]) {
|
|
AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_NONE
|
|
},
|
|
.priv_class = &proresenc_class,
|
|
};
|