ffmpeg/libavcodec/h264_metadata_bsf.c
Andreas Rheinhardt 75a2d25a6f avcodec/h26[45]_metadata_bsf: Fix range of chroma_sample_loc_type
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-07-09 20:10:21 +02:00

729 lines
25 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avstring.h"
#include "libavutil/display.h"
#include "libavutil/common.h"
#include "libavutil/opt.h"
#include "bsf.h"
#include "bsf_internal.h"
#include "cbs.h"
#include "cbs_bsf.h"
#include "cbs_h264.h"
#include "h264.h"
#include "h264_levels.h"
#include "h264_sei.h"
enum {
FLIP_HORIZONTAL = 1,
FLIP_VERTICAL = 2,
};
enum {
LEVEL_UNSET = -2,
LEVEL_AUTO = -1,
};
typedef struct H264MetadataContext {
CBSBSFContext common;
int done_first_au;
int aud;
H264RawAUD aud_nal;
AVRational sample_aspect_ratio;
int overscan_appropriate_flag;
int video_format;
int video_full_range_flag;
int colour_primaries;
int transfer_characteristics;
int matrix_coefficients;
int chroma_sample_loc_type;
AVRational tick_rate;
int fixed_frame_rate_flag;
int zero_new_constraint_set_flags;
int crop_left;
int crop_right;
int crop_top;
int crop_bottom;
const char *sei_user_data;
SEIRawUserDataUnregistered sei_user_data_payload;
int delete_filler;
int display_orientation;
double rotate;
int flip;
H264RawSEIDisplayOrientation display_orientation_payload;
int level;
} H264MetadataContext;
static int h264_metadata_insert_aud(AVBSFContext *bsf,
CodedBitstreamFragment *au)
{
H264MetadataContext *ctx = bsf->priv_data;
int primary_pic_type_mask = 0xff;
int err, i, j;
static const int primary_pic_type_table[] = {
0x084, // 2, 7
0x0a5, // 0, 2, 5, 7
0x0e7, // 0, 1, 2, 5, 6, 7
0x210, // 4, 9
0x318, // 3, 4, 8, 9
0x294, // 2, 4, 7, 9
0x3bd, // 0, 2, 3, 4, 5, 7, 8, 9
0x3ff, // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
};
for (i = 0; i < au->nb_units; i++) {
if (au->units[i].type == H264_NAL_SLICE ||
au->units[i].type == H264_NAL_IDR_SLICE) {
H264RawSlice *slice = au->units[i].content;
for (j = 0; j < FF_ARRAY_ELEMS(primary_pic_type_table); j++) {
if (!(primary_pic_type_table[j] &
(1 << slice->header.slice_type)))
primary_pic_type_mask &= ~(1 << j);
}
}
}
for (j = 0; j < FF_ARRAY_ELEMS(primary_pic_type_table); j++)
if (primary_pic_type_mask & (1 << j))
break;
if (j >= FF_ARRAY_ELEMS(primary_pic_type_table)) {
av_log(bsf, AV_LOG_ERROR, "No usable primary_pic_type: "
"invalid slice types?\n");
return AVERROR_INVALIDDATA;
}
ctx->aud_nal = (H264RawAUD) {
.nal_unit_header.nal_unit_type = H264_NAL_AUD,
.primary_pic_type = j,
};
err = ff_cbs_insert_unit_content(au, 0, H264_NAL_AUD,
&ctx->aud_nal, NULL);
if (err < 0) {
av_log(bsf, AV_LOG_ERROR, "Failed to insert AUD.\n");
return err;
}
return 0;
}
static int h264_metadata_update_sps(AVBSFContext *bsf,
H264RawSPS *sps)
{
H264MetadataContext *ctx = bsf->priv_data;
int need_vui = 0;
int crop_unit_x, crop_unit_y;
if (ctx->sample_aspect_ratio.num && ctx->sample_aspect_ratio.den) {
// Table E-1.
static const AVRational sar_idc[] = {
{ 0, 0 }, // Unspecified (never written here).
{ 1, 1 }, { 12, 11 }, { 10, 11 }, { 16, 11 },
{ 40, 33 }, { 24, 11 }, { 20, 11 }, { 32, 11 },
{ 80, 33 }, { 18, 11 }, { 15, 11 }, { 64, 33 },
{ 160, 99 }, { 4, 3 }, { 3, 2 }, { 2, 1 },
};
int num, den, i;
av_reduce(&num, &den, ctx->sample_aspect_ratio.num,
ctx->sample_aspect_ratio.den, 65535);
for (i = 1; i < FF_ARRAY_ELEMS(sar_idc); i++) {
if (num == sar_idc[i].num &&
den == sar_idc[i].den)
break;
}
if (i == FF_ARRAY_ELEMS(sar_idc)) {
sps->vui.aspect_ratio_idc = 255;
sps->vui.sar_width = num;
sps->vui.sar_height = den;
} else {
sps->vui.aspect_ratio_idc = i;
}
sps->vui.aspect_ratio_info_present_flag = 1;
need_vui = 1;
}
#define SET_VUI_FIELD(field) do { \
if (ctx->field >= 0) { \
sps->vui.field = ctx->field; \
need_vui = 1; \
} \
} while (0)
if (ctx->overscan_appropriate_flag >= 0) {
SET_VUI_FIELD(overscan_appropriate_flag);
sps->vui.overscan_info_present_flag = 1;
}
if (ctx->video_format >= 0 ||
ctx->video_full_range_flag >= 0 ||
ctx->colour_primaries >= 0 ||
ctx->transfer_characteristics >= 0 ||
ctx->matrix_coefficients >= 0) {
SET_VUI_FIELD(video_format);
SET_VUI_FIELD(video_full_range_flag);
if (ctx->colour_primaries >= 0 ||
ctx->transfer_characteristics >= 0 ||
ctx->matrix_coefficients >= 0) {
SET_VUI_FIELD(colour_primaries);
SET_VUI_FIELD(transfer_characteristics);
SET_VUI_FIELD(matrix_coefficients);
sps->vui.colour_description_present_flag = 1;
}
sps->vui.video_signal_type_present_flag = 1;
}
if (ctx->chroma_sample_loc_type >= 0) {
sps->vui.chroma_sample_loc_type_top_field =
ctx->chroma_sample_loc_type;
sps->vui.chroma_sample_loc_type_bottom_field =
ctx->chroma_sample_loc_type;
sps->vui.chroma_loc_info_present_flag = 1;
need_vui = 1;
}
if (ctx->tick_rate.num && ctx->tick_rate.den) {
int num, den;
av_reduce(&num, &den, ctx->tick_rate.num, ctx->tick_rate.den,
UINT32_MAX > INT_MAX ? UINT32_MAX : INT_MAX);
sps->vui.time_scale = num;
sps->vui.num_units_in_tick = den;
sps->vui.timing_info_present_flag = 1;
need_vui = 1;
}
SET_VUI_FIELD(fixed_frame_rate_flag);
if (ctx->zero_new_constraint_set_flags) {
sps->constraint_set4_flag = 0;
sps->constraint_set5_flag = 0;
}
if (sps->separate_colour_plane_flag || sps->chroma_format_idc == 0) {
crop_unit_x = 1;
crop_unit_y = 2 - sps->frame_mbs_only_flag;
} else {
crop_unit_x = 1 + (sps->chroma_format_idc < 3);
crop_unit_y = (1 + (sps->chroma_format_idc < 2)) *
(2 - sps->frame_mbs_only_flag);
}
#define CROP(border, unit) do { \
if (ctx->crop_ ## border >= 0) { \
if (ctx->crop_ ## border % unit != 0) { \
av_log(bsf, AV_LOG_ERROR, "Invalid value for crop_%s: " \
"must be a multiple of %d.\n", #border, unit); \
return AVERROR(EINVAL); \
} \
sps->frame_crop_ ## border ## _offset = \
ctx->crop_ ## border / unit; \
sps->frame_cropping_flag = 1; \
} \
} while (0)
CROP(left, crop_unit_x);
CROP(right, crop_unit_x);
CROP(top, crop_unit_y);
CROP(bottom, crop_unit_y);
#undef CROP
if (ctx->level != LEVEL_UNSET) {
int level_idc;
if (ctx->level == LEVEL_AUTO) {
const H264LevelDescriptor *desc;
int64_t bit_rate;
int width, height, dpb_frames;
int framerate;
if (sps->vui.nal_hrd_parameters_present_flag) {
bit_rate = (sps->vui.nal_hrd_parameters.bit_rate_value_minus1[0] + 1) *
(INT64_C(1) << (sps->vui.nal_hrd_parameters.bit_rate_scale + 6));
} else if (sps->vui.vcl_hrd_parameters_present_flag) {
bit_rate = (sps->vui.vcl_hrd_parameters.bit_rate_value_minus1[0] + 1) *
(INT64_C(1) << (sps->vui.vcl_hrd_parameters.bit_rate_scale + 6));
// Adjust for VCL vs. NAL limits.
bit_rate = bit_rate * 6 / 5;
} else {
bit_rate = 0;
}
// Don't use max_dec_frame_buffering if it is only inferred.
dpb_frames = sps->vui.bitstream_restriction_flag ?
sps->vui.max_dec_frame_buffering : H264_MAX_DPB_FRAMES;
width = 16 * (sps->pic_width_in_mbs_minus1 + 1);
height = 16 * (sps->pic_height_in_map_units_minus1 + 1) *
(2 - sps->frame_mbs_only_flag);
if (sps->vui.timing_info_present_flag)
framerate = sps->vui.time_scale / sps->vui.num_units_in_tick / 2;
else
framerate = 0;
desc = ff_h264_guess_level(sps->profile_idc, bit_rate, framerate,
width, height, dpb_frames);
if (desc) {
level_idc = desc->level_idc;
} else {
av_log(bsf, AV_LOG_WARNING, "Stream does not appear to "
"conform to any level: using level 6.2.\n");
level_idc = 62;
}
} else {
level_idc = ctx->level;
}
if (level_idc == 9) {
if (sps->profile_idc == 66 ||
sps->profile_idc == 77 ||
sps->profile_idc == 88) {
sps->level_idc = 11;
sps->constraint_set3_flag = 1;
} else {
sps->level_idc = 9;
}
} else {
sps->level_idc = level_idc;
}
}
if (need_vui)
sps->vui_parameters_present_flag = 1;
return 0;
}
static int h264_metadata_handle_display_orientation(AVBSFContext *bsf,
AVPacket *pkt,
CodedBitstreamFragment *au,
int seek_point)
{
H264MetadataContext *ctx = bsf->priv_data;
SEIRawMessage *message;
int err;
message = NULL;
while (ff_cbs_sei_find_message(ctx->common.output, au,
SEI_TYPE_DISPLAY_ORIENTATION,
&message) == 0) {
H264RawSEIDisplayOrientation *disp = message->payload;
double angle = disp->anticlockwise_rotation * 180.0 / 65536.0;
int32_t *matrix;
matrix = av_malloc(9 * sizeof(int32_t));
if (!matrix)
return AVERROR(ENOMEM);
/* av_display_rotation_set() expects the angle in the clockwise
* direction, hence the first minus.
* The below code applies the flips after the rotation, yet
* the H.2645 specs require flipping to be applied first.
* Because of R O(phi) = O(-phi) R (where R is flipping around
* an arbitatry axis and O(phi) is the proper rotation by phi)
* we can create display matrices as desired by negating
* the degree once for every flip applied. */
angle = -angle * (1 - 2 * !!disp->hor_flip) * (1 - 2 * !!disp->ver_flip);
av_display_rotation_set(matrix, angle);
av_display_matrix_flip(matrix, disp->hor_flip, disp->ver_flip);
// If there are multiple display orientation messages in an
// access unit, then the last one added to the packet (i.e.
// the first one in the access unit) will prevail.
err = av_packet_add_side_data(pkt, AV_PKT_DATA_DISPLAYMATRIX,
(uint8_t*)matrix,
9 * sizeof(int32_t));
if (err < 0) {
av_log(bsf, AV_LOG_ERROR, "Failed to attach extracted "
"displaymatrix side data to packet.\n");
av_free(matrix);
return AVERROR(ENOMEM);
}
}
if (ctx->display_orientation == BSF_ELEMENT_REMOVE ||
ctx->display_orientation == BSF_ELEMENT_INSERT) {
ff_cbs_sei_delete_message_type(ctx->common.output, au,
SEI_TYPE_DISPLAY_ORIENTATION);
}
if (ctx->display_orientation == BSF_ELEMENT_INSERT) {
H264RawSEIDisplayOrientation *disp =
&ctx->display_orientation_payload;
uint8_t *data;
size_t size;
int write = 0;
data = av_packet_get_side_data(pkt, AV_PKT_DATA_DISPLAYMATRIX, &size);
if (data && size >= 9 * sizeof(int32_t)) {
int32_t matrix[9];
double dmatrix[9];
int hflip, vflip, i;
double scale_x, scale_y, angle;
memcpy(matrix, data, sizeof(matrix));
for (i = 0; i < 9; i++)
dmatrix[i] = matrix[i] / 65536.0;
// Extract scale factors.
scale_x = hypot(dmatrix[0], dmatrix[3]);
scale_y = hypot(dmatrix[1], dmatrix[4]);
// Select flips to make the main diagonal positive.
hflip = dmatrix[0] < 0.0;
vflip = dmatrix[4] < 0.0;
if (hflip)
scale_x = -scale_x;
if (vflip)
scale_y = -scale_y;
// Rescale.
for (i = 0; i < 9; i += 3) {
dmatrix[i] /= scale_x;
dmatrix[i + 1] /= scale_y;
}
// Extract rotation.
angle = atan2(dmatrix[3], dmatrix[0]);
if (!(angle >= -M_PI && angle <= M_PI) ||
matrix[2] != 0.0 || matrix[5] != 0.0 ||
matrix[6] != 0.0 || matrix[7] != 0.0) {
av_log(bsf, AV_LOG_WARNING, "Input display matrix is not "
"representable in H.264 parameters.\n");
} else {
disp->hor_flip = hflip;
disp->ver_flip = vflip;
disp->anticlockwise_rotation =
(uint16_t)rint((angle >= 0.0 ? angle
: angle + 2 * M_PI) *
32768.0 / M_PI);
write = 1;
}
}
if (seek_point) {
if (!isnan(ctx->rotate)) {
disp->anticlockwise_rotation =
(uint16_t)rint((ctx->rotate >= 0.0 ? ctx->rotate
: ctx->rotate + 360.0) *
65536.0 / 360.0);
write = 1;
}
if (ctx->flip) {
disp->hor_flip = !!(ctx->flip & FLIP_HORIZONTAL);
disp->ver_flip = !!(ctx->flip & FLIP_VERTICAL);
write = 1;
}
}
if (write) {
disp->display_orientation_repetition_period = 1;
err = ff_cbs_sei_add_message(ctx->common.output, au, 1,
SEI_TYPE_DISPLAY_ORIENTATION,
disp, NULL);
if (err < 0) {
av_log(bsf, AV_LOG_ERROR, "Failed to add display orientation "
"SEI message to access unit.\n");
return err;
}
}
}
return 0;
}
static int h264_metadata_update_fragment(AVBSFContext *bsf, AVPacket *pkt,
CodedBitstreamFragment *au)
{
H264MetadataContext *ctx = bsf->priv_data;
int err, i, has_sps, seek_point;
// If an AUD is present, it must be the first NAL unit.
if (au->nb_units && au->units[0].type == H264_NAL_AUD) {
if (ctx->aud == BSF_ELEMENT_REMOVE)
ff_cbs_delete_unit(au, 0);
} else {
if (pkt && ctx->aud == BSF_ELEMENT_INSERT) {
err = h264_metadata_insert_aud(bsf, au);
if (err < 0)
return err;
}
}
has_sps = 0;
for (i = 0; i < au->nb_units; i++) {
if (au->units[i].type == H264_NAL_SPS) {
err = h264_metadata_update_sps(bsf, au->units[i].content);
if (err < 0)
return err;
has_sps = 1;
}
}
if (pkt) {
// The current packet should be treated as a seek point for metadata
// insertion if any of:
// - It is the first packet in the stream.
// - It contains an SPS, indicating that a sequence might start here.
// - It is marked as containing a key frame.
seek_point = !ctx->done_first_au || has_sps ||
(pkt->flags & AV_PKT_FLAG_KEY);
} else {
seek_point = 0;
}
if (ctx->sei_user_data && seek_point) {
err = ff_cbs_sei_add_message(ctx->common.output, au, 1,
SEI_TYPE_USER_DATA_UNREGISTERED,
&ctx->sei_user_data_payload, NULL);
if (err < 0) {
av_log(bsf, AV_LOG_ERROR, "Failed to add user data SEI "
"message to access unit.\n");
return err;
}
}
if (ctx->delete_filler) {
for (i = au->nb_units - 1; i >= 0; i--) {
if (au->units[i].type == H264_NAL_FILLER_DATA) {
ff_cbs_delete_unit(au, i);
continue;
}
}
ff_cbs_sei_delete_message_type(ctx->common.output, au,
SEI_TYPE_FILLER_PAYLOAD);
}
if (pkt && ctx->display_orientation != BSF_ELEMENT_PASS) {
err = h264_metadata_handle_display_orientation(bsf, pkt, au,
seek_point);
if (err < 0)
return err;
}
if (pkt)
ctx->done_first_au = 1;
return 0;
}
static const CBSBSFType h264_metadata_type = {
.codec_id = AV_CODEC_ID_H264,
.fragment_name = "access unit",
.unit_name = "NAL unit",
.update_fragment = &h264_metadata_update_fragment,
};
static int h264_metadata_init(AVBSFContext *bsf)
{
H264MetadataContext *ctx = bsf->priv_data;
if (ctx->sei_user_data) {
SEIRawUserDataUnregistered *udu = &ctx->sei_user_data_payload;
int i, j;
// Parse UUID. It must be a hex string of length 32, possibly
// containing '-'s between hex digits (which we ignore).
for (i = j = 0; j < 32 && i < 64 && ctx->sei_user_data[i]; i++) {
int c, v;
c = ctx->sei_user_data[i];
if (c == '-') {
continue;
} else if (av_isxdigit(c)) {
c = av_tolower(c);
v = (c <= '9' ? c - '0' : c - 'a' + 10);
} else {
break;
}
if (j & 1)
udu->uuid_iso_iec_11578[j / 2] |= v;
else
udu->uuid_iso_iec_11578[j / 2] = v << 4;
++j;
}
if (j == 32 && ctx->sei_user_data[i] == '+') {
udu->data = (uint8_t*)ctx->sei_user_data + i + 1;
udu->data_length = strlen(udu->data) + 1;
} else {
av_log(bsf, AV_LOG_ERROR, "Invalid user data: "
"must be \"UUID+string\".\n");
return AVERROR(EINVAL);
}
}
return ff_cbs_bsf_generic_init(bsf, &h264_metadata_type);
}
#define OFFSET(x) offsetof(H264MetadataContext, x)
#define FLAGS (AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_BSF_PARAM)
static const AVOption h264_metadata_options[] = {
BSF_ELEMENT_OPTIONS_PIR("aud", "Access Unit Delimiter NAL units",
aud, FLAGS),
{ "sample_aspect_ratio", "Set sample aspect ratio (table E-1)",
OFFSET(sample_aspect_ratio), AV_OPT_TYPE_RATIONAL,
{ .dbl = 0.0 }, 0, 65535, FLAGS },
{ "overscan_appropriate_flag", "Set VUI overscan appropriate flag",
OFFSET(overscan_appropriate_flag), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, 1, FLAGS },
{ "video_format", "Set video format (table E-2)",
OFFSET(video_format), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, 7, FLAGS},
{ "video_full_range_flag", "Set video full range flag",
OFFSET(video_full_range_flag), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, 1, FLAGS },
{ "colour_primaries", "Set colour primaries (table E-3)",
OFFSET(colour_primaries), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, 255, FLAGS },
{ "transfer_characteristics", "Set transfer characteristics (table E-4)",
OFFSET(transfer_characteristics), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, 255, FLAGS },
{ "matrix_coefficients", "Set matrix coefficients (table E-5)",
OFFSET(matrix_coefficients), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, 255, FLAGS },
{ "chroma_sample_loc_type", "Set chroma sample location type (figure E-1)",
OFFSET(chroma_sample_loc_type), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, 5, FLAGS },
{ "tick_rate", "Set VUI tick rate (time_scale / num_units_in_tick)",
OFFSET(tick_rate), AV_OPT_TYPE_RATIONAL,
{ .dbl = 0.0 }, 0, UINT_MAX, FLAGS },
{ "fixed_frame_rate_flag", "Set VUI fixed frame rate flag",
OFFSET(fixed_frame_rate_flag), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, 1, FLAGS },
{ "zero_new_constraint_set_flags", "Set constraint_set4_flag / constraint_set5_flag to zero",
OFFSET(zero_new_constraint_set_flags), AV_OPT_TYPE_BOOL,
{ .i64 = 0 }, 0, 1, FLAGS },
{ "crop_left", "Set left border crop offset",
OFFSET(crop_left), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, H264_MAX_WIDTH, FLAGS },
{ "crop_right", "Set right border crop offset",
OFFSET(crop_right), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, H264_MAX_WIDTH, FLAGS },
{ "crop_top", "Set top border crop offset",
OFFSET(crop_top), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, H264_MAX_HEIGHT, FLAGS },
{ "crop_bottom", "Set bottom border crop offset",
OFFSET(crop_bottom), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, H264_MAX_HEIGHT, FLAGS },
{ "sei_user_data", "Insert SEI user data (UUID+string)",
OFFSET(sei_user_data), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = FLAGS },
{ "delete_filler", "Delete all filler (both NAL and SEI)",
OFFSET(delete_filler), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS},
BSF_ELEMENT_OPTIONS_PIRE("display_orientation",
"Display orientation SEI",
display_orientation, FLAGS),
{ "rotate", "Set rotation in display orientation SEI (anticlockwise angle in degrees)",
OFFSET(rotate), AV_OPT_TYPE_DOUBLE,
{ .dbl = NAN }, -360.0, +360.0, FLAGS },
{ "flip", "Set flip in display orientation SEI",
OFFSET(flip), AV_OPT_TYPE_FLAGS,
{ .i64 = 0 }, 0, FLIP_HORIZONTAL | FLIP_VERTICAL, FLAGS, "flip" },
{ "horizontal", "Set hor_flip",
0, AV_OPT_TYPE_CONST,
{ .i64 = FLIP_HORIZONTAL }, .flags = FLAGS, .unit = "flip" },
{ "vertical", "Set ver_flip",
0, AV_OPT_TYPE_CONST,
{ .i64 = FLIP_VERTICAL }, .flags = FLAGS, .unit = "flip" },
{ "level", "Set level (table A-1)",
OFFSET(level), AV_OPT_TYPE_INT,
{ .i64 = LEVEL_UNSET }, LEVEL_UNSET, 0xff, FLAGS, "level" },
{ "auto", "Attempt to guess level from stream properties",
0, AV_OPT_TYPE_CONST,
{ .i64 = LEVEL_AUTO }, .flags = FLAGS, .unit = "level" },
#define LEVEL(name, value) name, NULL, 0, AV_OPT_TYPE_CONST, \
{ .i64 = value }, .flags = FLAGS, .unit = "level"
{ LEVEL("1", 10) },
{ LEVEL("1b", 9) },
{ LEVEL("1.1", 11) },
{ LEVEL("1.2", 12) },
{ LEVEL("1.3", 13) },
{ LEVEL("2", 20) },
{ LEVEL("2.1", 21) },
{ LEVEL("2.2", 22) },
{ LEVEL("3", 30) },
{ LEVEL("3.1", 31) },
{ LEVEL("3.2", 32) },
{ LEVEL("4", 40) },
{ LEVEL("4.1", 41) },
{ LEVEL("4.2", 42) },
{ LEVEL("5", 50) },
{ LEVEL("5.1", 51) },
{ LEVEL("5.2", 52) },
{ LEVEL("6", 60) },
{ LEVEL("6.1", 61) },
{ LEVEL("6.2", 62) },
#undef LEVEL
{ NULL }
};
static const AVClass h264_metadata_class = {
.class_name = "h264_metadata_bsf",
.item_name = av_default_item_name,
.option = h264_metadata_options,
.version = LIBAVUTIL_VERSION_INT,
};
static const enum AVCodecID h264_metadata_codec_ids[] = {
AV_CODEC_ID_H264, AV_CODEC_ID_NONE,
};
const FFBitStreamFilter ff_h264_metadata_bsf = {
.p.name = "h264_metadata",
.p.codec_ids = h264_metadata_codec_ids,
.p.priv_class = &h264_metadata_class,
.priv_data_size = sizeof(H264MetadataContext),
.init = &h264_metadata_init,
.close = &ff_cbs_bsf_generic_close,
.filter = &ff_cbs_bsf_generic_filter,
};