ffmpeg/tests/checkasm/sw_rgb.c
Martin Storsjö 157ce21939 checkasm/sw_rgb: Revert test additions from e18b46d95f
The unaligned width test cases fail on i386; we have an assembly
function of rgb24toyv12 which is enabled only within
"#if ARCH_X86_32 && HAVE_7REGS", which seems to fail these new
test cases for unaligned widths.

As that assembly function has existed for a long time in that form,
the issue probably isn't very recent, thus skip testing these cases
for now.

Once the assembly function has been fixed, these test cases can
be readded.

Signed-off-by: Martin Storsjö <martin@martin.st>
2024-09-26 13:16:56 +03:00

498 lines
19 KiB
C

/*
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem_internal.h"
#include "libavutil/pixdesc.h"
#include "libswscale/rgb2rgb.h"
#include "libswscale/swscale.h"
#include "libswscale/swscale_internal.h"
#include "checkasm.h"
#define randomize_buffers(buf, size) \
do { \
int j; \
for (j = 0; j < size; j+=4) \
AV_WN32(buf + j, rnd()); \
} while (0)
static const uint8_t width[] = {12, 16, 20, 32, 36, 128};
static const struct {uint8_t w, h, s;} planes[] = {
{12,16,12}, {16,16,16}, {20,23,25}, {32,18,48}, {8,128,16}, {128,128,128}
};
#define MAX_STRIDE 128
#define MAX_HEIGHT 128
static void check_shuffle_bytes(void * func, const char * report)
{
int i;
LOCAL_ALIGNED_32(uint8_t, src0, [MAX_STRIDE]);
LOCAL_ALIGNED_32(uint8_t, src1, [MAX_STRIDE]);
LOCAL_ALIGNED_32(uint8_t, dst0, [MAX_STRIDE]);
LOCAL_ALIGNED_32(uint8_t, dst1, [MAX_STRIDE]);
declare_func(void, const uint8_t *src, uint8_t *dst, int src_size);
memset(dst0, 0, MAX_STRIDE);
memset(dst1, 0, MAX_STRIDE);
randomize_buffers(src0, MAX_STRIDE);
memcpy(src1, src0, MAX_STRIDE);
if (check_func(func, "%s", report)) {
for (i = 0; i < 6; i ++) {
call_ref(src0, dst0, width[i]);
call_new(src1, dst1, width[i]);
if (memcmp(dst0, dst1, MAX_STRIDE))
fail();
}
bench_new(src0, dst0, width[5]);
}
}
static void check_uyvy_to_422p(void)
{
int i;
LOCAL_ALIGNED_32(uint8_t, src0, [MAX_STRIDE * MAX_HEIGHT * 2]);
LOCAL_ALIGNED_32(uint8_t, src1, [MAX_STRIDE * MAX_HEIGHT * 2]);
LOCAL_ALIGNED_32(uint8_t, dst_y_0, [MAX_STRIDE * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_y_1, [MAX_STRIDE * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_u_0, [(MAX_STRIDE/2) * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_u_1, [(MAX_STRIDE/2) * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_v_0, [(MAX_STRIDE/2) * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_v_1, [(MAX_STRIDE/2) * MAX_HEIGHT]);
declare_func(void, uint8_t *ydst, uint8_t *udst, uint8_t *vdst,
const uint8_t *src, int width, int height,
int lumStride, int chromStride, int srcStride);
randomize_buffers(src0, MAX_STRIDE * MAX_HEIGHT * 2);
memcpy(src1, src0, MAX_STRIDE * MAX_HEIGHT * 2);
if (check_func(uyvytoyuv422, "uyvytoyuv422")) {
for (i = 0; i < 6; i ++) {
memset(dst_y_0, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst_y_1, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst_u_0, 0, (MAX_STRIDE/2) * MAX_HEIGHT);
memset(dst_u_1, 0, (MAX_STRIDE/2) * MAX_HEIGHT);
memset(dst_v_0, 0, (MAX_STRIDE/2) * MAX_HEIGHT);
memset(dst_v_1, 0, (MAX_STRIDE/2) * MAX_HEIGHT);
call_ref(dst_y_0, dst_u_0, dst_v_0, src0, planes[i].w, planes[i].h,
MAX_STRIDE, MAX_STRIDE / 2, planes[i].s);
call_new(dst_y_1, dst_u_1, dst_v_1, src1, planes[i].w, planes[i].h,
MAX_STRIDE, MAX_STRIDE / 2, planes[i].s);
if (memcmp(dst_y_0, dst_y_1, MAX_STRIDE * MAX_HEIGHT) ||
memcmp(dst_u_0, dst_u_1, (MAX_STRIDE/2) * MAX_HEIGHT) ||
memcmp(dst_v_0, dst_v_1, (MAX_STRIDE/2) * MAX_HEIGHT))
fail();
}
bench_new(dst_y_1, dst_u_1, dst_v_1, src1, planes[5].w, planes[5].h,
MAX_STRIDE, MAX_STRIDE / 2, planes[5].s);
}
}
#define NUM_LINES 5
#define MAX_LINE_SIZE 1920
#define BUFSIZE (NUM_LINES * MAX_LINE_SIZE)
static int cmp_off_by_n(const uint8_t *ref, const uint8_t *test, size_t n, int accuracy)
{
for (size_t i = 0; i < n; i++) {
if (abs(ref[i] - test[i]) > accuracy)
return 1;
}
return 0;
}
static void check_rgb24toyv12(struct SwsContext *ctx)
{
static const int input_sizes[] = {16, 128, 512, MAX_LINE_SIZE, -MAX_LINE_SIZE};
LOCAL_ALIGNED_32(uint8_t, src, [BUFSIZE * 3]);
LOCAL_ALIGNED_32(uint8_t, buf_y_0, [BUFSIZE]);
LOCAL_ALIGNED_32(uint8_t, buf_y_1, [BUFSIZE]);
LOCAL_ALIGNED_32(uint8_t, buf_u_0, [BUFSIZE / 4]);
LOCAL_ALIGNED_32(uint8_t, buf_u_1, [BUFSIZE / 4]);
LOCAL_ALIGNED_32(uint8_t, buf_v_0, [BUFSIZE / 4]);
LOCAL_ALIGNED_32(uint8_t, buf_v_1, [BUFSIZE / 4]);
declare_func(void, const uint8_t *src, uint8_t *ydst, uint8_t *udst,
uint8_t *vdst, int width, int height, int lumStride,
int chromStride, int srcStride, int32_t *rgb2yuv);
randomize_buffers(src, BUFSIZE * 3);
for (int isi = 0; isi < FF_ARRAY_ELEMS(input_sizes); isi++) {
int input_size = input_sizes[isi];
int negstride = input_size < 0;
const char *negstride_str = negstride ? "_negstride" : "";
int width = FFABS(input_size);
int linesize = width + 32;
/* calculate height based on specified width to use the entire buffer. */
int height = (BUFSIZE / linesize) & ~1;
uint8_t *src0 = src;
uint8_t *src1 = src;
uint8_t *dst_y_0 = buf_y_0;
uint8_t *dst_y_1 = buf_y_1;
uint8_t *dst_u_0 = buf_u_0;
uint8_t *dst_u_1 = buf_u_1;
uint8_t *dst_v_0 = buf_v_0;
uint8_t *dst_v_1 = buf_v_1;
if (negstride) {
src0 += (height - 1) * (linesize * 3);
src1 += (height - 1) * (linesize * 3);
dst_y_0 += (height - 1) * linesize;
dst_y_1 += (height - 1) * linesize;
dst_u_0 += ((height / 2) - 1) * (linesize / 2);
dst_u_1 += ((height / 2) - 1) * (linesize / 2);
dst_v_0 += ((height / 2) - 1) * (linesize / 2);
dst_v_1 += ((height / 2) - 1) * (linesize / 2);
linesize *= -1;
}
if (check_func(ff_rgb24toyv12, "rgb24toyv12_%d_%d%s", width, height, negstride_str)) {
memset(buf_y_0, 0xFF, BUFSIZE);
memset(buf_y_1, 0xFF, BUFSIZE);
memset(buf_u_0, 0xFF, BUFSIZE / 4);
memset(buf_u_1, 0xFF, BUFSIZE / 4);
memset(buf_v_0, 0xFF, BUFSIZE / 4);
memset(buf_v_1, 0xFF, BUFSIZE / 4);
call_ref(src0, dst_y_0, dst_u_0, dst_v_0, width, height,
linesize, linesize / 2, linesize * 3, ctx->input_rgb2yuv_table);
call_new(src1, dst_y_1, dst_u_1, dst_v_1, width, height,
linesize, linesize / 2, linesize * 3, ctx->input_rgb2yuv_table);
if (cmp_off_by_n(buf_y_0, buf_y_1, BUFSIZE, 1) ||
cmp_off_by_n(buf_u_0, buf_u_1, BUFSIZE / 4, 1) ||
cmp_off_by_n(buf_v_0, buf_v_1, BUFSIZE / 4, 1))
fail();
bench_new(src1, dst_y_1, dst_u_1, dst_v_1, width, height,
linesize, linesize / 2, linesize * 3, ctx->input_rgb2yuv_table);
}
}
}
#undef NUM_LINES
#undef MAX_LINE_SIZE
#undef BUFSIZE
static void check_interleave_bytes(void)
{
LOCAL_ALIGNED_16(uint8_t, src0_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, src1_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, dst0_buf, [2*MAX_STRIDE*MAX_HEIGHT+2]);
LOCAL_ALIGNED_16(uint8_t, dst1_buf, [2*MAX_STRIDE*MAX_HEIGHT+2]);
// Intentionally using unaligned buffers, as this function doesn't have
// any alignment requirements.
uint8_t *src0 = src0_buf + 1;
uint8_t *src1 = src1_buf + 1;
uint8_t *dst0 = dst0_buf + 2;
uint8_t *dst1 = dst1_buf + 2;
declare_func(void, const uint8_t *, const uint8_t *,
uint8_t *, int, int, int, int, int);
randomize_buffers(src0, MAX_STRIDE * MAX_HEIGHT);
randomize_buffers(src1, MAX_STRIDE * MAX_HEIGHT);
if (check_func(interleaveBytes, "interleave_bytes")) {
for (int i = 0; i <= 16; i++) {
// Try all widths [1,16], and try one random width.
int w = i > 0 ? i : (1 + (rnd() % (MAX_STRIDE-2)));
int h = 1 + (rnd() % (MAX_HEIGHT-2));
int src0_offset = 0, src0_stride = MAX_STRIDE;
int src1_offset = 0, src1_stride = MAX_STRIDE;
int dst_offset = 0, dst_stride = 2 * MAX_STRIDE;
memset(dst0, 0, 2 * MAX_STRIDE * MAX_HEIGHT);
memset(dst1, 0, 2 * MAX_STRIDE * MAX_HEIGHT);
// Try different combinations of negative strides
if (i & 1) {
src0_offset = (h-1)*src0_stride;
src0_stride = -src0_stride;
}
if (i & 2) {
src1_offset = (h-1)*src1_stride;
src1_stride = -src1_stride;
}
if (i & 4) {
dst_offset = (h-1)*dst_stride;
dst_stride = -dst_stride;
}
call_ref(src0 + src0_offset, src1 + src1_offset, dst0 + dst_offset,
w, h, src0_stride, src1_stride, dst_stride);
call_new(src0 + src0_offset, src1 + src1_offset, dst1 + dst_offset,
w, h, src0_stride, src1_stride, dst_stride);
// Check a one pixel-pair edge around the destination area,
// to catch overwrites past the end.
checkasm_check(uint8_t, dst0, 2*MAX_STRIDE, dst1, 2*MAX_STRIDE,
2 * w + 2, h + 1, "dst");
}
bench_new(src0, src1, dst1, 127, MAX_HEIGHT,
MAX_STRIDE, MAX_STRIDE, 2*MAX_STRIDE);
}
if (check_func(interleaveBytes, "interleave_bytes_aligned")) {
// Bench the function in a more typical case, with aligned
// buffers and widths.
bench_new(src0_buf, src1_buf, dst1_buf, 128, MAX_HEIGHT,
MAX_STRIDE, MAX_STRIDE, 2*MAX_STRIDE);
}
}
static void check_deinterleave_bytes(void)
{
LOCAL_ALIGNED_16(uint8_t, src_buf, [2*MAX_STRIDE*MAX_HEIGHT+2]);
LOCAL_ALIGNED_16(uint8_t, dst0_u_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, dst0_v_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, dst1_u_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, dst1_v_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
// Intentionally using unaligned buffers, as this function doesn't have
// any alignment requirements.
uint8_t *src = src_buf + 2;
uint8_t *dst0_u = dst0_u_buf + 1;
uint8_t *dst0_v = dst0_v_buf + 1;
uint8_t *dst1_u = dst1_u_buf + 1;
uint8_t *dst1_v = dst1_v_buf + 1;
declare_func(void, const uint8_t *src, uint8_t *dst1, uint8_t *dst2,
int width, int height, int srcStride,
int dst1Stride, int dst2Stride);
randomize_buffers(src, 2*MAX_STRIDE*MAX_HEIGHT+2);
if (check_func(deinterleaveBytes, "deinterleave_bytes")) {
for (int i = 0; i <= 16; i++) {
// Try all widths [1,16], and try one random width.
int w = i > 0 ? i : (1 + (rnd() % (MAX_STRIDE-2)));
int h = 1 + (rnd() % (MAX_HEIGHT-2));
int src_offset = 0, src_stride = 2 * MAX_STRIDE;
int dst_u_offset = 0, dst_u_stride = MAX_STRIDE;
int dst_v_offset = 0, dst_v_stride = MAX_STRIDE;
memset(dst0_u, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst0_v, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst1_u, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst1_v, 0, MAX_STRIDE * MAX_HEIGHT);
// Try different combinations of negative strides
if (i & 1) {
src_offset = (h-1)*src_stride;
src_stride = -src_stride;
}
if (i & 2) {
dst_u_offset = (h-1)*dst_u_stride;
dst_u_stride = -dst_u_stride;
}
if (i & 4) {
dst_v_offset = (h-1)*dst_v_stride;
dst_v_stride = -dst_v_stride;
}
call_ref(src + src_offset, dst0_u + dst_u_offset, dst0_v + dst_v_offset,
w, h, src_stride, dst_u_stride, dst_v_stride);
call_new(src + src_offset, dst1_u + dst_u_offset, dst1_v + dst_v_offset,
w, h, src_stride, dst_u_stride, dst_v_stride);
// Check a one pixel-pair edge around the destination area,
// to catch overwrites past the end.
checkasm_check(uint8_t, dst0_u, MAX_STRIDE, dst1_u, MAX_STRIDE,
w + 1, h + 1, "dst_u");
checkasm_check(uint8_t, dst0_v, MAX_STRIDE, dst1_v, MAX_STRIDE,
w + 1, h + 1, "dst_v");
}
bench_new(src, dst1_u, dst1_v, 127, MAX_HEIGHT,
2*MAX_STRIDE, MAX_STRIDE, MAX_STRIDE);
}
if (check_func(deinterleaveBytes, "deinterleave_bytes_aligned")) {
// Bench the function in a more typical case, with aligned
// buffers and widths.
bench_new(src_buf, dst1_u_buf, dst1_v_buf, 128, MAX_HEIGHT,
2*MAX_STRIDE, MAX_STRIDE, MAX_STRIDE);
}
}
#define MAX_LINE_SIZE 1920
static const int input_sizes[] = {8, 128, 1080, MAX_LINE_SIZE};
static const enum AVPixelFormat rgb_formats[] = {
AV_PIX_FMT_RGB24,
AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA,
AV_PIX_FMT_BGRA,
AV_PIX_FMT_ABGR,
AV_PIX_FMT_ARGB,
};
static void check_rgb_to_y(struct SwsContext *ctx)
{
LOCAL_ALIGNED_16(uint8_t, src24, [MAX_LINE_SIZE * 3]);
LOCAL_ALIGNED_16(uint8_t, src32, [MAX_LINE_SIZE * 4]);
LOCAL_ALIGNED_32(uint8_t, dst0_y, [MAX_LINE_SIZE * 2]);
LOCAL_ALIGNED_32(uint8_t, dst1_y, [MAX_LINE_SIZE * 2]);
declare_func(void, uint8_t *dst, const uint8_t *src,
const uint8_t *unused1, const uint8_t *unused2, int width,
uint32_t *rgb2yuv, void *opq);
randomize_buffers(src24, MAX_LINE_SIZE * 3);
randomize_buffers(src32, MAX_LINE_SIZE * 4);
for (int i = 0; i < FF_ARRAY_ELEMS(rgb_formats); i++) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(rgb_formats[i]);
ctx->srcFormat = rgb_formats[i];
ff_sws_init_scale(ctx);
for (int j = 0; j < FF_ARRAY_ELEMS(input_sizes); j++) {
int w = input_sizes[j];
if (check_func(ctx->lumToYV12, "%s_to_y_%d", desc->name, w)) {
const uint8_t *src = desc->nb_components == 3 ? src24 : src32;
memset(dst0_y, 0xFA, MAX_LINE_SIZE * 2);
memset(dst1_y, 0xFA, MAX_LINE_SIZE * 2);
call_ref(dst0_y, src, NULL, NULL, w, ctx->input_rgb2yuv_table, NULL);
call_new(dst1_y, src, NULL, NULL, w, ctx->input_rgb2yuv_table, NULL);
if (memcmp(dst0_y, dst1_y, w * 2))
fail();
if (desc->nb_components == 3 ||
// only bench native endian formats
(ctx->srcFormat == AV_PIX_FMT_RGB32 || ctx->srcFormat == AV_PIX_FMT_RGB32_1))
bench_new(dst1_y, src, NULL, NULL, w, ctx->input_rgb2yuv_table, NULL);
}
}
}
}
static void check_rgb_to_uv(struct SwsContext *ctx)
{
LOCAL_ALIGNED_16(uint8_t, src24, [MAX_LINE_SIZE * 3]);
LOCAL_ALIGNED_16(uint8_t, src32, [MAX_LINE_SIZE * 4]);
LOCAL_ALIGNED_16(uint8_t, dst0_u, [MAX_LINE_SIZE * 2]);
LOCAL_ALIGNED_16(uint8_t, dst0_v, [MAX_LINE_SIZE * 2]);
LOCAL_ALIGNED_16(uint8_t, dst1_u, [MAX_LINE_SIZE * 2]);
LOCAL_ALIGNED_16(uint8_t, dst1_v, [MAX_LINE_SIZE * 2]);
declare_func(void, uint8_t *dstU, uint8_t *dstV,
const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
int width, uint32_t *pal, void *opq);
randomize_buffers(src24, MAX_LINE_SIZE * 3);
randomize_buffers(src32, MAX_LINE_SIZE * 4);
for (int i = 0; i < 2 * FF_ARRAY_ELEMS(rgb_formats); i++) {
enum AVPixelFormat src_fmt = rgb_formats[i / 2];
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(src_fmt);
ctx->chrSrcHSubSample = (i % 2) ? 0 : 1;
ctx->srcFormat = src_fmt;
ctx->dstFormat = ctx->chrSrcHSubSample ? AV_PIX_FMT_YUV420P : AV_PIX_FMT_YUV444P;
ff_sws_init_scale(ctx);
for (int j = 0; j < FF_ARRAY_ELEMS(input_sizes); j++) {
int w = input_sizes[j] >> ctx->chrSrcHSubSample;
if (check_func(ctx->chrToYV12, "%s_to_uv%s_%d", desc->name,
ctx->chrSrcHSubSample ? "_half" : "",
input_sizes[j])) {
const uint8_t *src = desc->nb_components == 3 ? src24 : src32;
memset(dst0_u, 0xFF, MAX_LINE_SIZE * 2);
memset(dst0_v, 0xFF, MAX_LINE_SIZE * 2);
memset(dst1_u, 0xFF, MAX_LINE_SIZE * 2);
memset(dst1_v, 0xFF, MAX_LINE_SIZE * 2);
call_ref(dst0_u, dst0_v, NULL, src, src, w, ctx->input_rgb2yuv_table, NULL);
call_new(dst1_u, dst1_v, NULL, src, src, w, ctx->input_rgb2yuv_table, NULL);
if (memcmp(dst0_u, dst1_u, w * 2) || memcmp(dst0_v, dst1_v, w * 2))
fail();
if (desc->nb_components == 3 ||
// only bench native endian formats
(ctx->srcFormat == AV_PIX_FMT_RGB32 || ctx->srcFormat == AV_PIX_FMT_RGB32_1))
bench_new(dst1_u, dst1_v, NULL, src, src, w, ctx->input_rgb2yuv_table, NULL);
}
}
}
}
void checkasm_check_sw_rgb(void)
{
struct SwsContext *ctx;
ff_sws_rgb2rgb_init();
check_shuffle_bytes(shuffle_bytes_2103, "shuffle_bytes_2103");
report("shuffle_bytes_2103");
check_shuffle_bytes(shuffle_bytes_0321, "shuffle_bytes_0321");
report("shuffle_bytes_0321");
check_shuffle_bytes(shuffle_bytes_1230, "shuffle_bytes_1230");
report("shuffle_bytes_1230");
check_shuffle_bytes(shuffle_bytes_3012, "shuffle_bytes_3012");
report("shuffle_bytes_3012");
check_shuffle_bytes(shuffle_bytes_3210, "shuffle_bytes_3210");
report("shuffle_bytes_3210");
check_uyvy_to_422p();
report("uyvytoyuv422");
check_interleave_bytes();
report("interleave_bytes");
check_deinterleave_bytes();
report("deinterleave_bytes");
ctx = sws_getContext(MAX_LINE_SIZE, MAX_LINE_SIZE, AV_PIX_FMT_RGB24,
MAX_LINE_SIZE, MAX_LINE_SIZE, AV_PIX_FMT_YUV420P,
SWS_ACCURATE_RND | SWS_BITEXACT, NULL, NULL, NULL);
if (!ctx)
fail();
check_rgb_to_y(ctx);
report("rgb_to_y");
check_rgb_to_uv(ctx);
report("rgb_to_uv");
check_rgb24toyv12(ctx);
report("rgb24toyv12");
sws_freeContext(ctx);
}