ffmpeg/libavcodec/utvideodec.c
Andreas Rheinhardt a247ac640d avcodec: Constify AVCodecs
Given that the AVCodec.next pointer has now been removed, most of the
AVCodecs are not modified at all any more and can therefore be made
const (as this patch does); the only exceptions are the very few codecs
for external libraries that have a init_static_data callback.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Signed-off-by: James Almer <jamrial@gmail.com>
2021-04-27 10:43:15 -03:00

1066 lines
38 KiB
C

/*
* Ut Video decoder
* Copyright (c) 2011 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Ut Video decoder
*/
#include <inttypes.h>
#include <stdlib.h>
#define CACHED_BITSTREAM_READER !ARCH_X86_32
#define UNCHECKED_BITSTREAM_READER 1
#include "libavutil/intreadwrite.h"
#include "libavutil/pixdesc.h"
#include "avcodec.h"
#include "bswapdsp.h"
#include "bytestream.h"
#include "get_bits.h"
#include "internal.h"
#include "thread.h"
#include "utvideo.h"
typedef struct HuffEntry {
uint8_t len;
uint16_t sym;
} HuffEntry;
static int build_huff(UtvideoContext *c, const uint8_t *src, VLC *vlc,
int *fsym, unsigned nb_elems)
{
int i;
HuffEntry he[1024];
uint8_t bits[1024];
uint16_t codes_count[33] = { 0 };
*fsym = -1;
for (i = 0; i < nb_elems; i++) {
if (src[i] == 0) {
*fsym = i;
return 0;
} else if (src[i] == 255) {
bits[i] = 0;
} else if (src[i] <= 32) {
bits[i] = src[i];
} else
return AVERROR_INVALIDDATA;
codes_count[bits[i]]++;
}
if (codes_count[0] == nb_elems)
return AVERROR_INVALIDDATA;
/* For Ut Video, longer codes are to the left of the tree and
* for codes with the same length the symbol is descending from
* left to right. So after the next loop --codes_count[i] will
* be the index of the first (lowest) symbol of length i when
* indexed by the position in the tree with left nodes being first. */
for (int i = 31; i >= 0; i--)
codes_count[i] += codes_count[i + 1];
for (unsigned i = 0; i < nb_elems; i++)
he[--codes_count[bits[i]]] = (HuffEntry) { bits[i], i };
#define VLC_BITS 11
return ff_init_vlc_from_lengths(vlc, VLC_BITS, codes_count[0],
&he[0].len, sizeof(*he),
&he[0].sym, sizeof(*he), 2, 0, 0, c->avctx);
}
static int decode_plane10(UtvideoContext *c, int plane_no,
uint16_t *dst, ptrdiff_t stride,
int width, int height,
const uint8_t *src, const uint8_t *huff,
int use_pred)
{
int i, j, slice, pix, ret;
int sstart, send;
VLC vlc;
GetBitContext gb;
int prev, fsym;
if ((ret = build_huff(c, huff, &vlc, &fsym, 1024)) < 0) {
av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
return ret;
}
if (fsym >= 0) { // build_huff reported a symbol to fill slices with
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint16_t *dest;
sstart = send;
send = (height * (slice + 1) / c->slices);
dest = dst + sstart * stride;
prev = 0x200;
for (j = sstart; j < send; j++) {
for (i = 0; i < width; i++) {
pix = fsym;
if (use_pred) {
prev += pix;
prev &= 0x3FF;
pix = prev;
}
dest[i] = pix;
}
dest += stride;
}
}
return 0;
}
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint16_t *dest;
int slice_data_start, slice_data_end, slice_size;
sstart = send;
send = (height * (slice + 1) / c->slices);
dest = dst + sstart * stride;
// slice offset and size validation was done earlier
slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
slice_data_end = AV_RL32(src + slice * 4);
slice_size = slice_data_end - slice_data_start;
if (!slice_size) {
av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
"yet a slice has a length of zero.\n");
goto fail;
}
memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
(uint32_t *)(src + slice_data_start + c->slices * 4),
(slice_data_end - slice_data_start + 3) >> 2);
init_get_bits(&gb, c->slice_bits, slice_size * 8);
prev = 0x200;
for (j = sstart; j < send; j++) {
for (i = 0; i < width; i++) {
pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
if (pix < 0) {
av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
goto fail;
}
if (use_pred) {
prev += pix;
prev &= 0x3FF;
pix = prev;
}
dest[i] = pix;
}
dest += stride;
if (get_bits_left(&gb) < 0) {
av_log(c->avctx, AV_LOG_ERROR,
"Slice decoding ran out of bits\n");
goto fail;
}
}
if (get_bits_left(&gb) > 32)
av_log(c->avctx, AV_LOG_WARNING,
"%d bits left after decoding slice\n", get_bits_left(&gb));
}
ff_free_vlc(&vlc);
return 0;
fail:
ff_free_vlc(&vlc);
return AVERROR_INVALIDDATA;
}
static int compute_cmask(int plane_no, int interlaced, enum AVPixelFormat pix_fmt)
{
const int is_luma = (pix_fmt == AV_PIX_FMT_YUV420P) && !plane_no;
if (interlaced)
return ~(1 + 2 * is_luma);
return ~is_luma;
}
static int decode_plane(UtvideoContext *c, int plane_no,
uint8_t *dst, ptrdiff_t stride,
int width, int height,
const uint8_t *src, int use_pred)
{
int i, j, slice, pix;
int sstart, send;
VLC vlc;
GetBitContext gb;
int ret, prev, fsym;
const int cmask = compute_cmask(plane_no, c->interlaced, c->avctx->pix_fmt);
if (c->pack) {
send = 0;
for (slice = 0; slice < c->slices; slice++) {
GetBitContext cbit, pbit;
uint8_t *dest, *p;
ret = init_get_bits8_le(&cbit, c->control_stream[plane_no][slice], c->control_stream_size[plane_no][slice]);
if (ret < 0)
return ret;
ret = init_get_bits8_le(&pbit, c->packed_stream[plane_no][slice], c->packed_stream_size[plane_no][slice]);
if (ret < 0)
return ret;
sstart = send;
send = (height * (slice + 1) / c->slices) & cmask;
dest = dst + sstart * stride;
if (3 * ((dst + send * stride - dest + 7)/8) > get_bits_left(&cbit))
return AVERROR_INVALIDDATA;
for (p = dest; p < dst + send * stride; p += 8) {
int bits = get_bits_le(&cbit, 3);
if (bits == 0) {
*(uint64_t *) p = 0;
} else {
uint32_t sub = 0x80 >> (8 - (bits + 1)), add;
int k;
if ((bits + 1) * 8 > get_bits_left(&pbit))
return AVERROR_INVALIDDATA;
for (k = 0; k < 8; k++) {
p[k] = get_bits_le(&pbit, bits + 1);
add = (~p[k] & sub) << (8 - bits);
p[k] -= sub;
p[k] += add;
}
}
}
}
return 0;
}
if (build_huff(c, src, &vlc, &fsym, 256)) {
av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
return AVERROR_INVALIDDATA;
}
if (fsym >= 0) { // build_huff reported a symbol to fill slices with
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint8_t *dest;
sstart = send;
send = (height * (slice + 1) / c->slices) & cmask;
dest = dst + sstart * stride;
prev = 0x80;
for (j = sstart; j < send; j++) {
for (i = 0; i < width; i++) {
pix = fsym;
if (use_pred) {
prev += (unsigned)pix;
pix = prev;
}
dest[i] = pix;
}
dest += stride;
}
}
return 0;
}
src += 256;
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint8_t *dest;
int slice_data_start, slice_data_end, slice_size;
sstart = send;
send = (height * (slice + 1) / c->slices) & cmask;
dest = dst + sstart * stride;
// slice offset and size validation was done earlier
slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
slice_data_end = AV_RL32(src + slice * 4);
slice_size = slice_data_end - slice_data_start;
if (!slice_size) {
av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
"yet a slice has a length of zero.\n");
goto fail;
}
memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
(uint32_t *)(src + slice_data_start + c->slices * 4),
(slice_data_end - slice_data_start + 3) >> 2);
init_get_bits(&gb, c->slice_bits, slice_size * 8);
prev = 0x80;
for (j = sstart; j < send; j++) {
for (i = 0; i < width; i++) {
pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
if (pix < 0) {
av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
goto fail;
}
if (use_pred) {
prev += pix;
pix = prev;
}
dest[i] = pix;
}
if (get_bits_left(&gb) < 0) {
av_log(c->avctx, AV_LOG_ERROR,
"Slice decoding ran out of bits\n");
goto fail;
}
dest += stride;
}
if (get_bits_left(&gb) > 32)
av_log(c->avctx, AV_LOG_WARNING,
"%d bits left after decoding slice\n", get_bits_left(&gb));
}
ff_free_vlc(&vlc);
return 0;
fail:
ff_free_vlc(&vlc);
return AVERROR_INVALIDDATA;
}
#undef A
#undef B
#undef C
static void restore_median_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~rmode;
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
if (!slice_height)
continue;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
bsrc += stride;
if (slice_height <= 1)
continue;
// second line - first element has top prediction, the rest uses median
C = bsrc[-stride];
bsrc[0] += C;
A = bsrc[0];
for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
B = bsrc[i - stride];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
}
if (width > 16)
c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride + 16,
bsrc + 16, width - 16, &A, &B);
bsrc += stride;
// the rest of lines use continuous median prediction
for (j = 2; j < slice_height; j++) {
c->llviddsp.add_median_pred(bsrc, bsrc - stride,
bsrc, width, &A, &B);
bsrc += stride;
}
}
}
/* UtVideo interlaced mode treats every two lines as a single one,
* so restoring function should take care of possible padding between
* two parts of the same "line".
*/
static void restore_median_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~(rmode ? 3 : 1);
const ptrdiff_t stride2 = stride << 1;
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
slice_height >>= 1;
if (!slice_height)
continue;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
bsrc += stride2;
if (slice_height <= 1)
continue;
// second line - first element has top prediction, the rest uses median
C = bsrc[-stride2];
bsrc[0] += C;
A = bsrc[0];
for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
B = bsrc[i - stride2];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
}
if (width > 16)
c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride2 + 16,
bsrc + 16, width - 16, &A, &B);
c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
bsrc + stride, width, &A, &B);
bsrc += stride2;
// the rest of lines use continuous median prediction
for (j = 2; j < slice_height; j++) {
c->llviddsp.add_median_pred(bsrc, bsrc - stride2,
bsrc, width, &A, &B);
c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
bsrc + stride, width, &A, &B);
bsrc += stride2;
}
}
}
static void restore_gradient_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~rmode;
int min_width = FFMIN(width, 32);
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
if (!slice_height)
continue;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
bsrc += stride;
if (slice_height <= 1)
continue;
for (j = 1; j < slice_height; j++) {
// second line - first element has top prediction, the rest uses gradient
bsrc[0] = (bsrc[0] + bsrc[-stride]) & 0xFF;
for (i = 1; i < min_width; i++) { /* dsp need align 32 */
A = bsrc[i - stride];
B = bsrc[i - (stride + 1)];
C = bsrc[i - 1];
bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
}
if (width > 32)
c->llviddsp.add_gradient_pred(bsrc + 32, stride, width - 32);
bsrc += stride;
}
}
}
static void restore_gradient_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~(rmode ? 3 : 1);
const ptrdiff_t stride2 = stride << 1;
int min_width = FFMIN(width, 32);
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
slice_height >>= 1;
if (!slice_height)
continue;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
bsrc += stride2;
if (slice_height <= 1)
continue;
for (j = 1; j < slice_height; j++) {
// second line - first element has top prediction, the rest uses gradient
bsrc[0] = (bsrc[0] + bsrc[-stride2]) & 0xFF;
for (i = 1; i < min_width; i++) { /* dsp need align 32 */
A = bsrc[i - stride2];
B = bsrc[i - (stride2 + 1)];
C = bsrc[i - 1];
bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
}
if (width > 32)
c->llviddsp.add_gradient_pred(bsrc + 32, stride2, width - 32);
A = bsrc[-stride];
B = bsrc[-(1 + stride + stride - width)];
C = bsrc[width - 1];
bsrc[stride] = (A - B + C + bsrc[stride]) & 0xFF;
for (i = 1; i < width; i++) {
A = bsrc[i - stride];
B = bsrc[i - (1 + stride)];
C = bsrc[i - 1 + stride];
bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
}
bsrc += stride2;
}
}
}
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
UtvideoContext *c = avctx->priv_data;
int i, j;
const uint8_t *plane_start[5];
int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
int ret;
GetByteContext gb;
ThreadFrame frame = { .f = data };
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
/* parse plane structure to get frame flags and validate slice offsets */
bytestream2_init(&gb, buf, buf_size);
if (c->pack) {
const uint8_t *packed_stream;
const uint8_t *control_stream;
GetByteContext pb;
uint32_t nb_cbs;
int left;
c->frame_info = PRED_GRADIENT << 8;
if (bytestream2_get_byte(&gb) != 1)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gb, 3);
c->offset = bytestream2_get_le32(&gb);
if (buf_size <= c->offset + 8LL)
return AVERROR_INVALIDDATA;
bytestream2_init(&pb, buf + 8 + c->offset, buf_size - 8 - c->offset);
nb_cbs = bytestream2_get_le32(&pb);
if (nb_cbs > c->offset)
return AVERROR_INVALIDDATA;
packed_stream = buf + 8;
control_stream = packed_stream + (c->offset - nb_cbs);
left = control_stream - packed_stream;
for (i = 0; i < c->planes; i++) {
for (j = 0; j < c->slices; j++) {
c->packed_stream[i][j] = packed_stream;
c->packed_stream_size[i][j] = bytestream2_get_le32(&pb);
if (c->packed_stream_size[i][j] > left)
return AVERROR_INVALIDDATA;
left -= c->packed_stream_size[i][j];
packed_stream += c->packed_stream_size[i][j];
}
}
left = buf + buf_size - control_stream;
for (i = 0; i < c->planes; i++) {
for (j = 0; j < c->slices; j++) {
c->control_stream[i][j] = control_stream;
c->control_stream_size[i][j] = bytestream2_get_le32(&pb);
if (c->control_stream_size[i][j] > left)
return AVERROR_INVALIDDATA;
left -= c->control_stream_size[i][j];
control_stream += c->control_stream_size[i][j];
}
}
} else if (c->pro) {
if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
return AVERROR_INVALIDDATA;
}
c->frame_info = bytestream2_get_le32u(&gb);
c->slices = ((c->frame_info >> 16) & 0xff) + 1;
for (i = 0; i < c->planes; i++) {
plane_start[i] = gb.buffer;
if (bytestream2_get_bytes_left(&gb) < 1024 + 4 * c->slices) {
av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
return AVERROR_INVALIDDATA;
}
slice_start = 0;
slice_end = 0;
for (j = 0; j < c->slices; j++) {
slice_end = bytestream2_get_le32u(&gb);
if (slice_end < 0 || slice_end < slice_start ||
bytestream2_get_bytes_left(&gb) < slice_end + 1024LL) {
av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
return AVERROR_INVALIDDATA;
}
slice_size = slice_end - slice_start;
slice_start = slice_end;
max_slice_size = FFMAX(max_slice_size, slice_size);
}
plane_size = slice_end;
bytestream2_skipu(&gb, plane_size);
bytestream2_skipu(&gb, 1024);
}
plane_start[c->planes] = gb.buffer;
} else {
for (i = 0; i < c->planes; i++) {
plane_start[i] = gb.buffer;
if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
return AVERROR_INVALIDDATA;
}
bytestream2_skipu(&gb, 256);
slice_start = 0;
slice_end = 0;
for (j = 0; j < c->slices; j++) {
slice_end = bytestream2_get_le32u(&gb);
if (slice_end < 0 || slice_end < slice_start ||
bytestream2_get_bytes_left(&gb) < slice_end) {
av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
return AVERROR_INVALIDDATA;
}
slice_size = slice_end - slice_start;
slice_start = slice_end;
max_slice_size = FFMAX(max_slice_size, slice_size);
}
plane_size = slice_end;
bytestream2_skipu(&gb, plane_size);
}
plane_start[c->planes] = gb.buffer;
if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
return AVERROR_INVALIDDATA;
}
c->frame_info = bytestream2_get_le32u(&gb);
}
av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
c->frame_info);
c->frame_pred = (c->frame_info >> 8) & 3;
max_slice_size += 4*avctx->width;
if (!c->pack) {
av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE);
if (!c->slice_bits) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
return AVERROR(ENOMEM);
}
}
switch (c->avctx->pix_fmt) {
case AV_PIX_FMT_GBRP:
case AV_PIX_FMT_GBRAP:
for (i = 0; i < c->planes; i++) {
ret = decode_plane(c, i, frame.f->data[i],
frame.f->linesize[i], avctx->width,
avctx->height, plane_start[i],
c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median_planar(c, frame.f->data[i],
frame.f->linesize[i], avctx->width,
avctx->height, c->slices, 0);
} else {
restore_median_planar_il(c, frame.f->data[i],
frame.f->linesize[i],
avctx->width, avctx->height, c->slices,
0);
}
} else if (c->frame_pred == PRED_GRADIENT) {
if (!c->interlaced) {
restore_gradient_planar(c, frame.f->data[i],
frame.f->linesize[i], avctx->width,
avctx->height, c->slices, 0);
} else {
restore_gradient_planar_il(c, frame.f->data[i],
frame.f->linesize[i],
avctx->width, avctx->height, c->slices,
0);
}
}
}
c->utdsp.restore_rgb_planes(frame.f->data[2], frame.f->data[0], frame.f->data[1],
frame.f->linesize[2], frame.f->linesize[0], frame.f->linesize[1],
avctx->width, avctx->height);
break;
case AV_PIX_FMT_GBRAP10:
case AV_PIX_FMT_GBRP10:
for (i = 0; i < c->planes; i++) {
ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i],
frame.f->linesize[i] / 2, avctx->width,
avctx->height, plane_start[i],
plane_start[i + 1] - 1024,
c->frame_pred == PRED_LEFT);
if (ret)
return ret;
}
c->utdsp.restore_rgb_planes10((uint16_t *)frame.f->data[2], (uint16_t *)frame.f->data[0], (uint16_t *)frame.f->data[1],
frame.f->linesize[2] / 2, frame.f->linesize[0] / 2, frame.f->linesize[1] / 2,
avctx->width, avctx->height);
break;
case AV_PIX_FMT_YUV420P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height >> !!i,
plane_start[i], c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height >> !!i,
c->slices, !i);
} else {
restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i,
avctx->height >> !!i,
c->slices, !i);
}
} else if (c->frame_pred == PRED_GRADIENT) {
if (!c->interlaced) {
restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height >> !!i,
c->slices, !i);
} else {
restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i,
avctx->height >> !!i,
c->slices, !i);
}
}
}
break;
case AV_PIX_FMT_YUV422P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
plane_start[i], c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
} else {
restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
}
} else if (c->frame_pred == PRED_GRADIENT) {
if (!c->interlaced) {
restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
} else {
restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
}
}
}
break;
case AV_PIX_FMT_YUV444P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
plane_start[i], c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
c->slices, 0);
} else {
restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
c->slices, 0);
}
} else if (c->frame_pred == PRED_GRADIENT) {
if (!c->interlaced) {
restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
c->slices, 0);
} else {
restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
c->slices, 0);
}
}
}
break;
case AV_PIX_FMT_YUV420P10:
for (i = 0; i < 3; i++) {
ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], frame.f->linesize[i] / 2,
avctx->width >> !!i, avctx->height >> !!i,
plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
if (ret)
return ret;
}
break;
case AV_PIX_FMT_YUV422P10:
for (i = 0; i < 3; i++) {
ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], frame.f->linesize[i] / 2,
avctx->width >> !!i, avctx->height,
plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
if (ret)
return ret;
}
break;
}
frame.f->key_frame = 1;
frame.f->pict_type = AV_PICTURE_TYPE_I;
frame.f->interlaced_frame = !!c->interlaced;
*got_frame = 1;
/* always report that the buffer was completely consumed */
return buf_size;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
UtvideoContext * const c = avctx->priv_data;
int h_shift, v_shift;
c->avctx = avctx;
ff_utvideodsp_init(&c->utdsp);
ff_bswapdsp_init(&c->bdsp);
ff_llviddsp_init(&c->llviddsp);
c->slice_bits_size = 0;
switch (avctx->codec_tag) {
case MKTAG('U', 'L', 'R', 'G'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_GBRP;
break;
case MKTAG('U', 'L', 'R', 'A'):
c->planes = 4;
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
break;
case MKTAG('U', 'L', 'Y', '0'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'L', 'Y', '2'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'L', 'Y', '4'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'Q', 'Y', '0'):
c->planes = 3;
c->pro = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV420P10;
break;
case MKTAG('U', 'Q', 'Y', '2'):
c->planes = 3;
c->pro = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
break;
case MKTAG('U', 'Q', 'R', 'G'):
c->planes = 3;
c->pro = 1;
avctx->pix_fmt = AV_PIX_FMT_GBRP10;
break;
case MKTAG('U', 'Q', 'R', 'A'):
c->planes = 4;
c->pro = 1;
avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
break;
case MKTAG('U', 'L', 'H', '0'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'L', 'H', '2'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'L', 'H', '4'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'M', 'Y', '2'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'M', 'H', '2'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'M', 'Y', '4'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'M', 'H', '4'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'M', 'R', 'G'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_GBRP;
break;
case MKTAG('U', 'M', 'R', 'A'):
c->planes = 4;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
avctx->codec_tag);
return AVERROR_INVALIDDATA;
}
av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &h_shift, &v_shift);
if ((avctx->width & ((1<<h_shift)-1)) ||
(avctx->height & ((1<<v_shift)-1))) {
avpriv_request_sample(avctx, "Odd dimensions");
return AVERROR_PATCHWELCOME;
}
if (c->pack && avctx->extradata_size >= 16) {
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
avctx->extradata[3], avctx->extradata[2],
avctx->extradata[1], avctx->extradata[0]);
av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
AV_RB32(avctx->extradata + 4));
c->compression = avctx->extradata[8];
if (c->compression != 2)
avpriv_request_sample(avctx, "Unknown compression type");
c->slices = avctx->extradata[9] + 1;
} else if (!c->pro && avctx->extradata_size >= 16) {
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
avctx->extradata[3], avctx->extradata[2],
avctx->extradata[1], avctx->extradata[0]);
av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
AV_RB32(avctx->extradata + 4));
c->frame_info_size = AV_RL32(avctx->extradata + 8);
c->flags = AV_RL32(avctx->extradata + 12);
if (c->frame_info_size != 4)
avpriv_request_sample(avctx, "Frame info not 4 bytes");
av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
c->slices = (c->flags >> 24) + 1;
c->compression = c->flags & 1;
c->interlaced = c->flags & 0x800;
} else if (c->pro && avctx->extradata_size == 8) {
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
avctx->extradata[3], avctx->extradata[2],
avctx->extradata[1], avctx->extradata[0]);
av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
AV_RB32(avctx->extradata + 4));
c->interlaced = 0;
c->frame_info_size = 4;
} else {
av_log(avctx, AV_LOG_ERROR,
"Insufficient extradata size %d, should be at least 16\n",
avctx->extradata_size);
return AVERROR_INVALIDDATA;
}
return 0;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
UtvideoContext * const c = avctx->priv_data;
av_freep(&c->slice_bits);
return 0;
}
const AVCodec ff_utvideo_decoder = {
.name = "utvideo",
.long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_UTVIDEO,
.priv_data_size = sizeof(UtvideoContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};