mirror of https://git.ffmpeg.org/ffmpeg.git
3001 lines
104 KiB
C
3001 lines
104 KiB
C
/*
|
|
* AAC decoder
|
|
* Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
|
|
* Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
|
|
*
|
|
* AAC LATM decoder
|
|
* Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
|
|
* Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC decoder
|
|
* @author Oded Shimon ( ods15 ods15 dyndns org )
|
|
* @author Maxim Gavrilov ( maxim.gavrilov gmail com )
|
|
*/
|
|
|
|
/*
|
|
* supported tools
|
|
*
|
|
* Support? Name
|
|
* N (code in SoC repo) gain control
|
|
* Y block switching
|
|
* Y window shapes - standard
|
|
* N window shapes - Low Delay
|
|
* Y filterbank - standard
|
|
* N (code in SoC repo) filterbank - Scalable Sample Rate
|
|
* Y Temporal Noise Shaping
|
|
* Y Long Term Prediction
|
|
* Y intensity stereo
|
|
* Y channel coupling
|
|
* Y frequency domain prediction
|
|
* Y Perceptual Noise Substitution
|
|
* Y Mid/Side stereo
|
|
* N Scalable Inverse AAC Quantization
|
|
* N Frequency Selective Switch
|
|
* N upsampling filter
|
|
* Y quantization & coding - AAC
|
|
* N quantization & coding - TwinVQ
|
|
* N quantization & coding - BSAC
|
|
* N AAC Error Resilience tools
|
|
* N Error Resilience payload syntax
|
|
* N Error Protection tool
|
|
* N CELP
|
|
* N Silence Compression
|
|
* N HVXC
|
|
* N HVXC 4kbits/s VR
|
|
* N Structured Audio tools
|
|
* N Structured Audio Sample Bank Format
|
|
* N MIDI
|
|
* N Harmonic and Individual Lines plus Noise
|
|
* N Text-To-Speech Interface
|
|
* Y Spectral Band Replication
|
|
* Y (not in this code) Layer-1
|
|
* Y (not in this code) Layer-2
|
|
* Y (not in this code) Layer-3
|
|
* N SinuSoidal Coding (Transient, Sinusoid, Noise)
|
|
* Y Parametric Stereo
|
|
* N Direct Stream Transfer
|
|
*
|
|
* Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
|
|
* - HE AAC v2 comprises LC AAC with Spectral Band Replication and
|
|
Parametric Stereo.
|
|
*/
|
|
|
|
#include "libavutil/float_dsp.h"
|
|
#include "avcodec.h"
|
|
#include "internal.h"
|
|
#include "get_bits.h"
|
|
#include "dsputil.h"
|
|
#include "fft.h"
|
|
#include "fmtconvert.h"
|
|
#include "lpc.h"
|
|
#include "kbdwin.h"
|
|
#include "sinewin.h"
|
|
|
|
#include "aac.h"
|
|
#include "aactab.h"
|
|
#include "aacdectab.h"
|
|
#include "cbrt_tablegen.h"
|
|
#include "sbr.h"
|
|
#include "aacsbr.h"
|
|
#include "mpeg4audio.h"
|
|
#include "aacadtsdec.h"
|
|
#include "libavutil/intfloat.h"
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#if ARCH_ARM
|
|
# include "arm/aac.h"
|
|
#endif
|
|
|
|
static VLC vlc_scalefactors;
|
|
static VLC vlc_spectral[11];
|
|
|
|
#define overread_err "Input buffer exhausted before END element found\n"
|
|
|
|
static int count_channels(uint8_t (*layout)[3], int tags)
|
|
{
|
|
int i, sum = 0;
|
|
for (i = 0; i < tags; i++) {
|
|
int syn_ele = layout[i][0];
|
|
int pos = layout[i][2];
|
|
sum += (1 + (syn_ele == TYPE_CPE)) *
|
|
(pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
/**
|
|
* Check for the channel element in the current channel position configuration.
|
|
* If it exists, make sure the appropriate element is allocated and map the
|
|
* channel order to match the internal FFmpeg channel layout.
|
|
*
|
|
* @param che_pos current channel position configuration
|
|
* @param type channel element type
|
|
* @param id channel element id
|
|
* @param channels count of the number of channels in the configuration
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static av_cold int che_configure(AACContext *ac,
|
|
enum ChannelPosition che_pos,
|
|
int type, int id, int *channels)
|
|
{
|
|
if (che_pos) {
|
|
if (!ac->che[type][id]) {
|
|
if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
|
|
return AVERROR(ENOMEM);
|
|
ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr);
|
|
}
|
|
if (type != TYPE_CCE) {
|
|
if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
|
|
if (type == TYPE_CPE ||
|
|
(type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) {
|
|
ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
|
|
}
|
|
}
|
|
} else {
|
|
if (ac->che[type][id])
|
|
ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
|
|
av_freep(&ac->che[type][id]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct elem_to_channel {
|
|
uint64_t av_position;
|
|
uint8_t syn_ele;
|
|
uint8_t elem_id;
|
|
uint8_t aac_position;
|
|
};
|
|
|
|
static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID],
|
|
uint8_t (*layout_map)[3], int offset, uint64_t left,
|
|
uint64_t right, int pos)
|
|
{
|
|
if (layout_map[offset][0] == TYPE_CPE) {
|
|
e2c_vec[offset] = (struct elem_to_channel) {
|
|
.av_position = left | right, .syn_ele = TYPE_CPE,
|
|
.elem_id = layout_map[offset ][1], .aac_position = pos };
|
|
return 1;
|
|
} else {
|
|
e2c_vec[offset] = (struct elem_to_channel) {
|
|
.av_position = left, .syn_ele = TYPE_SCE,
|
|
.elem_id = layout_map[offset ][1], .aac_position = pos };
|
|
e2c_vec[offset + 1] = (struct elem_to_channel) {
|
|
.av_position = right, .syn_ele = TYPE_SCE,
|
|
.elem_id = layout_map[offset + 1][1], .aac_position = pos };
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, int *current) {
|
|
int num_pos_channels = 0;
|
|
int first_cpe = 0;
|
|
int sce_parity = 0;
|
|
int i;
|
|
for (i = *current; i < tags; i++) {
|
|
if (layout_map[i][2] != pos)
|
|
break;
|
|
if (layout_map[i][0] == TYPE_CPE) {
|
|
if (sce_parity) {
|
|
if (pos == AAC_CHANNEL_FRONT && !first_cpe) {
|
|
sce_parity = 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
num_pos_channels += 2;
|
|
first_cpe = 1;
|
|
} else {
|
|
num_pos_channels++;
|
|
sce_parity ^= 1;
|
|
}
|
|
}
|
|
if (sce_parity &&
|
|
((pos == AAC_CHANNEL_FRONT && first_cpe) || pos == AAC_CHANNEL_SIDE))
|
|
return -1;
|
|
*current = i;
|
|
return num_pos_channels;
|
|
}
|
|
|
|
static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags)
|
|
{
|
|
int i, n, total_non_cc_elements;
|
|
struct elem_to_channel e2c_vec[4*MAX_ELEM_ID] = {{ 0 }};
|
|
int num_front_channels, num_side_channels, num_back_channels;
|
|
uint64_t layout;
|
|
|
|
if (FF_ARRAY_ELEMS(e2c_vec) < tags)
|
|
return 0;
|
|
|
|
i = 0;
|
|
num_front_channels =
|
|
count_paired_channels(layout_map, tags, AAC_CHANNEL_FRONT, &i);
|
|
if (num_front_channels < 0)
|
|
return 0;
|
|
num_side_channels =
|
|
count_paired_channels(layout_map, tags, AAC_CHANNEL_SIDE, &i);
|
|
if (num_side_channels < 0)
|
|
return 0;
|
|
num_back_channels =
|
|
count_paired_channels(layout_map, tags, AAC_CHANNEL_BACK, &i);
|
|
if (num_back_channels < 0)
|
|
return 0;
|
|
|
|
i = 0;
|
|
if (num_front_channels & 1) {
|
|
e2c_vec[i] = (struct elem_to_channel) {
|
|
.av_position = AV_CH_FRONT_CENTER, .syn_ele = TYPE_SCE,
|
|
.elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_FRONT };
|
|
i++;
|
|
num_front_channels--;
|
|
}
|
|
if (num_front_channels >= 4) {
|
|
i += assign_pair(e2c_vec, layout_map, i,
|
|
AV_CH_FRONT_LEFT_OF_CENTER,
|
|
AV_CH_FRONT_RIGHT_OF_CENTER,
|
|
AAC_CHANNEL_FRONT);
|
|
num_front_channels -= 2;
|
|
}
|
|
if (num_front_channels >= 2) {
|
|
i += assign_pair(e2c_vec, layout_map, i,
|
|
AV_CH_FRONT_LEFT,
|
|
AV_CH_FRONT_RIGHT,
|
|
AAC_CHANNEL_FRONT);
|
|
num_front_channels -= 2;
|
|
}
|
|
while (num_front_channels >= 2) {
|
|
i += assign_pair(e2c_vec, layout_map, i,
|
|
UINT64_MAX,
|
|
UINT64_MAX,
|
|
AAC_CHANNEL_FRONT);
|
|
num_front_channels -= 2;
|
|
}
|
|
|
|
if (num_side_channels >= 2) {
|
|
i += assign_pair(e2c_vec, layout_map, i,
|
|
AV_CH_SIDE_LEFT,
|
|
AV_CH_SIDE_RIGHT,
|
|
AAC_CHANNEL_FRONT);
|
|
num_side_channels -= 2;
|
|
}
|
|
while (num_side_channels >= 2) {
|
|
i += assign_pair(e2c_vec, layout_map, i,
|
|
UINT64_MAX,
|
|
UINT64_MAX,
|
|
AAC_CHANNEL_SIDE);
|
|
num_side_channels -= 2;
|
|
}
|
|
|
|
while (num_back_channels >= 4) {
|
|
i += assign_pair(e2c_vec, layout_map, i,
|
|
UINT64_MAX,
|
|
UINT64_MAX,
|
|
AAC_CHANNEL_BACK);
|
|
num_back_channels -= 2;
|
|
}
|
|
if (num_back_channels >= 2) {
|
|
i += assign_pair(e2c_vec, layout_map, i,
|
|
AV_CH_BACK_LEFT,
|
|
AV_CH_BACK_RIGHT,
|
|
AAC_CHANNEL_BACK);
|
|
num_back_channels -= 2;
|
|
}
|
|
if (num_back_channels) {
|
|
e2c_vec[i] = (struct elem_to_channel) {
|
|
.av_position = AV_CH_BACK_CENTER, .syn_ele = TYPE_SCE,
|
|
.elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_BACK };
|
|
i++;
|
|
num_back_channels--;
|
|
}
|
|
|
|
if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
|
|
e2c_vec[i] = (struct elem_to_channel) {
|
|
.av_position = AV_CH_LOW_FREQUENCY, .syn_ele = TYPE_LFE,
|
|
.elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE };
|
|
i++;
|
|
}
|
|
while (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
|
|
e2c_vec[i] = (struct elem_to_channel) {
|
|
.av_position = UINT64_MAX, .syn_ele = TYPE_LFE,
|
|
.elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE };
|
|
i++;
|
|
}
|
|
|
|
// Must choose a stable sort
|
|
total_non_cc_elements = n = i;
|
|
do {
|
|
int next_n = 0;
|
|
for (i = 1; i < n; i++) {
|
|
if (e2c_vec[i-1].av_position > e2c_vec[i].av_position) {
|
|
FFSWAP(struct elem_to_channel, e2c_vec[i-1], e2c_vec[i]);
|
|
next_n = i;
|
|
}
|
|
}
|
|
n = next_n;
|
|
} while (n > 0);
|
|
|
|
layout = 0;
|
|
for (i = 0; i < total_non_cc_elements; i++) {
|
|
layout_map[i][0] = e2c_vec[i].syn_ele;
|
|
layout_map[i][1] = e2c_vec[i].elem_id;
|
|
layout_map[i][2] = e2c_vec[i].aac_position;
|
|
if (e2c_vec[i].av_position != UINT64_MAX) {
|
|
layout |= e2c_vec[i].av_position;
|
|
}
|
|
}
|
|
|
|
return layout;
|
|
}
|
|
|
|
/**
|
|
* Save current output configuration if and only if it has been locked.
|
|
*/
|
|
static void push_output_configuration(AACContext *ac) {
|
|
if (ac->oc[1].status == OC_LOCKED) {
|
|
ac->oc[0] = ac->oc[1];
|
|
}
|
|
ac->oc[1].status = OC_NONE;
|
|
}
|
|
|
|
/**
|
|
* Restore the previous output configuration if and only if the current
|
|
* configuration is unlocked.
|
|
*/
|
|
static void pop_output_configuration(AACContext *ac) {
|
|
if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) {
|
|
ac->oc[1] = ac->oc[0];
|
|
ac->avctx->channels = ac->oc[1].channels;
|
|
ac->avctx->channel_layout = ac->oc[1].channel_layout;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Configure output channel order based on the current program configuration element.
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int output_configure(AACContext *ac,
|
|
uint8_t layout_map[MAX_ELEM_ID*4][3], int tags,
|
|
enum OCStatus oc_type)
|
|
{
|
|
AVCodecContext *avctx = ac->avctx;
|
|
int i, channels = 0, ret;
|
|
uint64_t layout = 0;
|
|
|
|
if (ac->oc[1].layout_map != layout_map) {
|
|
memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0]));
|
|
ac->oc[1].layout_map_tags = tags;
|
|
}
|
|
|
|
// Try to sniff a reasonable channel order, otherwise output the
|
|
// channels in the order the PCE declared them.
|
|
if (avctx->request_channel_layout != AV_CH_LAYOUT_NATIVE)
|
|
layout = sniff_channel_order(layout_map, tags);
|
|
for (i = 0; i < tags; i++) {
|
|
int type = layout_map[i][0];
|
|
int id = layout_map[i][1];
|
|
int position = layout_map[i][2];
|
|
// Allocate or free elements depending on if they are in the
|
|
// current program configuration.
|
|
ret = che_configure(ac, position, type, id, &channels);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
if (ac->oc[1].m4ac.ps == 1 && channels == 2) {
|
|
if (layout == AV_CH_FRONT_CENTER) {
|
|
layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT;
|
|
} else {
|
|
layout = 0;
|
|
}
|
|
}
|
|
|
|
memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
|
|
if (layout) avctx->channel_layout = layout;
|
|
ac->oc[1].channel_layout = layout;
|
|
avctx->channels = ac->oc[1].channels = channels;
|
|
ac->oc[1].status = oc_type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void flush(AVCodecContext *avctx)
|
|
{
|
|
AACContext *ac= avctx->priv_data;
|
|
int type, i, j;
|
|
|
|
for (type = 3; type >= 0; type--) {
|
|
for (i = 0; i < MAX_ELEM_ID; i++) {
|
|
ChannelElement *che = ac->che[type][i];
|
|
if (che) {
|
|
for (j = 0; j <= 1; j++) {
|
|
memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Set up channel positions based on a default channel configuration
|
|
* as specified in table 1.17.
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int set_default_channel_config(AVCodecContext *avctx,
|
|
uint8_t (*layout_map)[3],
|
|
int *tags,
|
|
int channel_config)
|
|
{
|
|
if (channel_config < 1 || channel_config > 7) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
|
|
channel_config);
|
|
return -1;
|
|
}
|
|
*tags = tags_per_config[channel_config];
|
|
memcpy(layout_map, aac_channel_layout_map[channel_config-1], *tags * sizeof(*layout_map));
|
|
return 0;
|
|
}
|
|
|
|
static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
|
|
{
|
|
// For PCE based channel configurations map the channels solely based on tags.
|
|
if (!ac->oc[1].m4ac.chan_config) {
|
|
return ac->tag_che_map[type][elem_id];
|
|
}
|
|
// Allow single CPE stereo files to be signalled with mono configuration.
|
|
if (!ac->tags_mapped && type == TYPE_CPE && ac->oc[1].m4ac.chan_config == 1) {
|
|
uint8_t layout_map[MAX_ELEM_ID*4][3];
|
|
int layout_map_tags;
|
|
push_output_configuration(ac);
|
|
|
|
av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n");
|
|
|
|
if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags,
|
|
2) < 0)
|
|
return NULL;
|
|
if (output_configure(ac, layout_map, layout_map_tags,
|
|
OC_TRIAL_FRAME) < 0)
|
|
return NULL;
|
|
|
|
ac->oc[1].m4ac.chan_config = 2;
|
|
ac->oc[1].m4ac.ps = 0;
|
|
}
|
|
// And vice-versa
|
|
if (!ac->tags_mapped && type == TYPE_SCE && ac->oc[1].m4ac.chan_config == 2) {
|
|
uint8_t layout_map[MAX_ELEM_ID*4][3];
|
|
int layout_map_tags;
|
|
push_output_configuration(ac);
|
|
|
|
av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n");
|
|
|
|
if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags,
|
|
1) < 0)
|
|
return NULL;
|
|
if (output_configure(ac, layout_map, layout_map_tags,
|
|
OC_TRIAL_FRAME) < 0)
|
|
return NULL;
|
|
|
|
ac->oc[1].m4ac.chan_config = 1;
|
|
if (ac->oc[1].m4ac.sbr)
|
|
ac->oc[1].m4ac.ps = -1;
|
|
}
|
|
// For indexed channel configurations map the channels solely based on position.
|
|
switch (ac->oc[1].m4ac.chan_config) {
|
|
case 7:
|
|
if (ac->tags_mapped == 3 && type == TYPE_CPE) {
|
|
ac->tags_mapped++;
|
|
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
|
|
}
|
|
case 6:
|
|
/* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
|
|
instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
|
|
encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
|
|
if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
|
|
ac->tags_mapped++;
|
|
return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
|
|
}
|
|
case 5:
|
|
if (ac->tags_mapped == 2 && type == TYPE_CPE) {
|
|
ac->tags_mapped++;
|
|
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
|
|
}
|
|
case 4:
|
|
if (ac->tags_mapped == 2 && ac->oc[1].m4ac.chan_config == 4 && type == TYPE_SCE) {
|
|
ac->tags_mapped++;
|
|
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
|
|
}
|
|
case 3:
|
|
case 2:
|
|
if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && type == TYPE_CPE) {
|
|
ac->tags_mapped++;
|
|
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
|
|
} else if (ac->oc[1].m4ac.chan_config == 2) {
|
|
return NULL;
|
|
}
|
|
case 1:
|
|
if (!ac->tags_mapped && type == TYPE_SCE) {
|
|
ac->tags_mapped++;
|
|
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
|
|
}
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
|
|
*
|
|
* @param type speaker type/position for these channels
|
|
*/
|
|
static void decode_channel_map(uint8_t layout_map[][3],
|
|
enum ChannelPosition type,
|
|
GetBitContext *gb, int n)
|
|
{
|
|
while (n--) {
|
|
enum RawDataBlockType syn_ele;
|
|
switch (type) {
|
|
case AAC_CHANNEL_FRONT:
|
|
case AAC_CHANNEL_BACK:
|
|
case AAC_CHANNEL_SIDE:
|
|
syn_ele = get_bits1(gb);
|
|
break;
|
|
case AAC_CHANNEL_CC:
|
|
skip_bits1(gb);
|
|
syn_ele = TYPE_CCE;
|
|
break;
|
|
case AAC_CHANNEL_LFE:
|
|
syn_ele = TYPE_LFE;
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
layout_map[0][0] = syn_ele;
|
|
layout_map[0][1] = get_bits(gb, 4);
|
|
layout_map[0][2] = type;
|
|
layout_map++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decode program configuration element; reference: table 4.2.
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
|
|
uint8_t (*layout_map)[3],
|
|
GetBitContext *gb)
|
|
{
|
|
int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
|
|
int comment_len;
|
|
int tags;
|
|
|
|
skip_bits(gb, 2); // object_type
|
|
|
|
sampling_index = get_bits(gb, 4);
|
|
if (m4ac->sampling_index != sampling_index)
|
|
av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
|
|
|
|
num_front = get_bits(gb, 4);
|
|
num_side = get_bits(gb, 4);
|
|
num_back = get_bits(gb, 4);
|
|
num_lfe = get_bits(gb, 2);
|
|
num_assoc_data = get_bits(gb, 3);
|
|
num_cc = get_bits(gb, 4);
|
|
|
|
if (get_bits1(gb))
|
|
skip_bits(gb, 4); // mono_mixdown_tag
|
|
if (get_bits1(gb))
|
|
skip_bits(gb, 4); // stereo_mixdown_tag
|
|
|
|
if (get_bits1(gb))
|
|
skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
|
|
|
|
if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) {
|
|
av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
|
|
return -1;
|
|
}
|
|
decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front);
|
|
tags = num_front;
|
|
decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side);
|
|
tags += num_side;
|
|
decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back);
|
|
tags += num_back;
|
|
decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe);
|
|
tags += num_lfe;
|
|
|
|
skip_bits_long(gb, 4 * num_assoc_data);
|
|
|
|
decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc);
|
|
tags += num_cc;
|
|
|
|
align_get_bits(gb);
|
|
|
|
/* comment field, first byte is length */
|
|
comment_len = get_bits(gb, 8) * 8;
|
|
if (get_bits_left(gb) < comment_len) {
|
|
av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
|
|
return -1;
|
|
}
|
|
skip_bits_long(gb, comment_len);
|
|
return tags;
|
|
}
|
|
|
|
/**
|
|
* Decode GA "General Audio" specific configuration; reference: table 4.1.
|
|
*
|
|
* @param ac pointer to AACContext, may be null
|
|
* @param avctx pointer to AVCCodecContext, used for logging
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
|
|
GetBitContext *gb,
|
|
MPEG4AudioConfig *m4ac,
|
|
int channel_config)
|
|
{
|
|
int extension_flag, ret;
|
|
uint8_t layout_map[MAX_ELEM_ID*4][3];
|
|
int tags = 0;
|
|
|
|
if (get_bits1(gb)) { // frameLengthFlag
|
|
av_log_missing_feature(avctx, "960/120 MDCT window", 1);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
if (get_bits1(gb)) // dependsOnCoreCoder
|
|
skip_bits(gb, 14); // coreCoderDelay
|
|
extension_flag = get_bits1(gb);
|
|
|
|
if (m4ac->object_type == AOT_AAC_SCALABLE ||
|
|
m4ac->object_type == AOT_ER_AAC_SCALABLE)
|
|
skip_bits(gb, 3); // layerNr
|
|
|
|
if (channel_config == 0) {
|
|
skip_bits(gb, 4); // element_instance_tag
|
|
tags = decode_pce(avctx, m4ac, layout_map, gb);
|
|
if (tags < 0)
|
|
return tags;
|
|
} else {
|
|
if ((ret = set_default_channel_config(avctx, layout_map, &tags, channel_config)))
|
|
return ret;
|
|
}
|
|
|
|
if (count_channels(layout_map, tags) > 1) {
|
|
m4ac->ps = 0;
|
|
} else if (m4ac->sbr == 1 && m4ac->ps == -1)
|
|
m4ac->ps = 1;
|
|
|
|
if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR)))
|
|
return ret;
|
|
|
|
if (extension_flag) {
|
|
switch (m4ac->object_type) {
|
|
case AOT_ER_BSAC:
|
|
skip_bits(gb, 5); // numOfSubFrame
|
|
skip_bits(gb, 11); // layer_length
|
|
break;
|
|
case AOT_ER_AAC_LC:
|
|
case AOT_ER_AAC_LTP:
|
|
case AOT_ER_AAC_SCALABLE:
|
|
case AOT_ER_AAC_LD:
|
|
skip_bits(gb, 3); /* aacSectionDataResilienceFlag
|
|
* aacScalefactorDataResilienceFlag
|
|
* aacSpectralDataResilienceFlag
|
|
*/
|
|
break;
|
|
}
|
|
skip_bits1(gb); // extensionFlag3 (TBD in version 3)
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode audio specific configuration; reference: table 1.13.
|
|
*
|
|
* @param ac pointer to AACContext, may be null
|
|
* @param avctx pointer to AVCCodecContext, used for logging
|
|
* @param m4ac pointer to MPEG4AudioConfig, used for parsing
|
|
* @param data pointer to buffer holding an audio specific config
|
|
* @param bit_size size of audio specific config or data in bits
|
|
* @param sync_extension look for an appended sync extension
|
|
*
|
|
* @return Returns error status or number of consumed bits. <0 - error
|
|
*/
|
|
static int decode_audio_specific_config(AACContext *ac,
|
|
AVCodecContext *avctx,
|
|
MPEG4AudioConfig *m4ac,
|
|
const uint8_t *data, int bit_size,
|
|
int sync_extension)
|
|
{
|
|
GetBitContext gb;
|
|
int i;
|
|
|
|
av_dlog(avctx, "audio specific config size %d\n", bit_size >> 3);
|
|
for (i = 0; i < bit_size >> 3; i++)
|
|
av_dlog(avctx, "%02x ", data[i]);
|
|
av_dlog(avctx, "\n");
|
|
|
|
init_get_bits(&gb, data, bit_size);
|
|
|
|
if ((i = avpriv_mpeg4audio_get_config(m4ac, data, bit_size, sync_extension)) < 0)
|
|
return -1;
|
|
if (m4ac->sampling_index > 12) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
|
|
return -1;
|
|
}
|
|
|
|
skip_bits_long(&gb, i);
|
|
|
|
switch (m4ac->object_type) {
|
|
case AOT_AAC_MAIN:
|
|
case AOT_AAC_LC:
|
|
case AOT_AAC_LTP:
|
|
if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
|
|
return -1;
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
|
|
m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
|
|
return -1;
|
|
}
|
|
|
|
av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
|
|
m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
|
|
m4ac->sample_rate, m4ac->sbr, m4ac->ps);
|
|
|
|
return get_bits_count(&gb);
|
|
}
|
|
|
|
/**
|
|
* linear congruential pseudorandom number generator
|
|
*
|
|
* @param previous_val pointer to the current state of the generator
|
|
*
|
|
* @return Returns a 32-bit pseudorandom integer
|
|
*/
|
|
static av_always_inline int lcg_random(unsigned previous_val)
|
|
{
|
|
return previous_val * 1664525 + 1013904223;
|
|
}
|
|
|
|
static av_always_inline void reset_predict_state(PredictorState *ps)
|
|
{
|
|
ps->r0 = 0.0f;
|
|
ps->r1 = 0.0f;
|
|
ps->cor0 = 0.0f;
|
|
ps->cor1 = 0.0f;
|
|
ps->var0 = 1.0f;
|
|
ps->var1 = 1.0f;
|
|
}
|
|
|
|
static void reset_all_predictors(PredictorState *ps)
|
|
{
|
|
int i;
|
|
for (i = 0; i < MAX_PREDICTORS; i++)
|
|
reset_predict_state(&ps[i]);
|
|
}
|
|
|
|
static int sample_rate_idx (int rate)
|
|
{
|
|
if (92017 <= rate) return 0;
|
|
else if (75132 <= rate) return 1;
|
|
else if (55426 <= rate) return 2;
|
|
else if (46009 <= rate) return 3;
|
|
else if (37566 <= rate) return 4;
|
|
else if (27713 <= rate) return 5;
|
|
else if (23004 <= rate) return 6;
|
|
else if (18783 <= rate) return 7;
|
|
else if (13856 <= rate) return 8;
|
|
else if (11502 <= rate) return 9;
|
|
else if (9391 <= rate) return 10;
|
|
else return 11;
|
|
}
|
|
|
|
static void reset_predictor_group(PredictorState *ps, int group_num)
|
|
{
|
|
int i;
|
|
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
|
|
reset_predict_state(&ps[i]);
|
|
}
|
|
|
|
#define AAC_INIT_VLC_STATIC(num, size) \
|
|
INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
|
|
ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
|
|
ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
|
|
size);
|
|
|
|
static av_cold int aac_decode_init(AVCodecContext *avctx)
|
|
{
|
|
AACContext *ac = avctx->priv_data;
|
|
float output_scale_factor;
|
|
|
|
ac->avctx = avctx;
|
|
ac->oc[1].m4ac.sample_rate = avctx->sample_rate;
|
|
|
|
if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
|
|
output_scale_factor = 1.0 / 32768.0;
|
|
} else {
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16;
|
|
output_scale_factor = 1.0;
|
|
}
|
|
|
|
if (avctx->extradata_size > 0) {
|
|
if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac,
|
|
avctx->extradata,
|
|
avctx->extradata_size*8, 1) < 0)
|
|
return -1;
|
|
} else {
|
|
int sr, i;
|
|
uint8_t layout_map[MAX_ELEM_ID*4][3];
|
|
int layout_map_tags;
|
|
|
|
sr = sample_rate_idx(avctx->sample_rate);
|
|
ac->oc[1].m4ac.sampling_index = sr;
|
|
ac->oc[1].m4ac.channels = avctx->channels;
|
|
ac->oc[1].m4ac.sbr = -1;
|
|
ac->oc[1].m4ac.ps = -1;
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++)
|
|
if (ff_mpeg4audio_channels[i] == avctx->channels)
|
|
break;
|
|
if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) {
|
|
i = 0;
|
|
}
|
|
ac->oc[1].m4ac.chan_config = i;
|
|
|
|
if (ac->oc[1].m4ac.chan_config) {
|
|
int ret = set_default_channel_config(avctx, layout_map,
|
|
&layout_map_tags, ac->oc[1].m4ac.chan_config);
|
|
if (!ret)
|
|
output_configure(ac, layout_map, layout_map_tags,
|
|
OC_GLOBAL_HDR);
|
|
else if (avctx->err_recognition & AV_EF_EXPLODE)
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
|
|
AAC_INIT_VLC_STATIC( 0, 304);
|
|
AAC_INIT_VLC_STATIC( 1, 270);
|
|
AAC_INIT_VLC_STATIC( 2, 550);
|
|
AAC_INIT_VLC_STATIC( 3, 300);
|
|
AAC_INIT_VLC_STATIC( 4, 328);
|
|
AAC_INIT_VLC_STATIC( 5, 294);
|
|
AAC_INIT_VLC_STATIC( 6, 306);
|
|
AAC_INIT_VLC_STATIC( 7, 268);
|
|
AAC_INIT_VLC_STATIC( 8, 510);
|
|
AAC_INIT_VLC_STATIC( 9, 366);
|
|
AAC_INIT_VLC_STATIC(10, 462);
|
|
|
|
ff_aac_sbr_init();
|
|
|
|
ff_dsputil_init(&ac->dsp, avctx);
|
|
ff_fmt_convert_init(&ac->fmt_conv, avctx);
|
|
avpriv_float_dsp_init(&ac->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
|
|
|
|
ac->random_state = 0x1f2e3d4c;
|
|
|
|
ff_aac_tableinit();
|
|
|
|
INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
|
|
ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
|
|
ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
|
|
352);
|
|
|
|
ff_mdct_init(&ac->mdct, 11, 1, output_scale_factor/1024.0);
|
|
ff_mdct_init(&ac->mdct_small, 8, 1, output_scale_factor/128.0);
|
|
ff_mdct_init(&ac->mdct_ltp, 11, 0, -2.0/output_scale_factor);
|
|
// window initialization
|
|
ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
|
|
ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
|
|
ff_init_ff_sine_windows(10);
|
|
ff_init_ff_sine_windows( 7);
|
|
|
|
cbrt_tableinit();
|
|
|
|
avcodec_get_frame_defaults(&ac->frame);
|
|
avctx->coded_frame = &ac->frame;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Skip data_stream_element; reference: table 4.10.
|
|
*/
|
|
static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
|
|
{
|
|
int byte_align = get_bits1(gb);
|
|
int count = get_bits(gb, 8);
|
|
if (count == 255)
|
|
count += get_bits(gb, 8);
|
|
if (byte_align)
|
|
align_get_bits(gb);
|
|
|
|
if (get_bits_left(gb) < 8 * count) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err);
|
|
return -1;
|
|
}
|
|
skip_bits_long(gb, 8 * count);
|
|
return 0;
|
|
}
|
|
|
|
static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
|
|
GetBitContext *gb)
|
|
{
|
|
int sfb;
|
|
if (get_bits1(gb)) {
|
|
ics->predictor_reset_group = get_bits(gb, 5);
|
|
if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
|
|
return -1;
|
|
}
|
|
}
|
|
for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) {
|
|
ics->prediction_used[sfb] = get_bits1(gb);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode Long Term Prediction data; reference: table 4.xx.
|
|
*/
|
|
static void decode_ltp(LongTermPrediction *ltp,
|
|
GetBitContext *gb, uint8_t max_sfb)
|
|
{
|
|
int sfb;
|
|
|
|
ltp->lag = get_bits(gb, 11);
|
|
ltp->coef = ltp_coef[get_bits(gb, 3)];
|
|
for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
|
|
ltp->used[sfb] = get_bits1(gb);
|
|
}
|
|
|
|
/**
|
|
* Decode Individual Channel Stream info; reference: table 4.6.
|
|
*/
|
|
static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
|
|
GetBitContext *gb)
|
|
{
|
|
if (get_bits1(gb)) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
ics->window_sequence[1] = ics->window_sequence[0];
|
|
ics->window_sequence[0] = get_bits(gb, 2);
|
|
ics->use_kb_window[1] = ics->use_kb_window[0];
|
|
ics->use_kb_window[0] = get_bits1(gb);
|
|
ics->num_window_groups = 1;
|
|
ics->group_len[0] = 1;
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
|
|
int i;
|
|
ics->max_sfb = get_bits(gb, 4);
|
|
for (i = 0; i < 7; i++) {
|
|
if (get_bits1(gb)) {
|
|
ics->group_len[ics->num_window_groups - 1]++;
|
|
} else {
|
|
ics->num_window_groups++;
|
|
ics->group_len[ics->num_window_groups - 1] = 1;
|
|
}
|
|
}
|
|
ics->num_windows = 8;
|
|
ics->swb_offset = ff_swb_offset_128[ac->oc[1].m4ac.sampling_index];
|
|
ics->num_swb = ff_aac_num_swb_128[ac->oc[1].m4ac.sampling_index];
|
|
ics->tns_max_bands = ff_tns_max_bands_128[ac->oc[1].m4ac.sampling_index];
|
|
ics->predictor_present = 0;
|
|
} else {
|
|
ics->max_sfb = get_bits(gb, 6);
|
|
ics->num_windows = 1;
|
|
ics->swb_offset = ff_swb_offset_1024[ac->oc[1].m4ac.sampling_index];
|
|
ics->num_swb = ff_aac_num_swb_1024[ac->oc[1].m4ac.sampling_index];
|
|
ics->tns_max_bands = ff_tns_max_bands_1024[ac->oc[1].m4ac.sampling_index];
|
|
ics->predictor_present = get_bits1(gb);
|
|
ics->predictor_reset_group = 0;
|
|
if (ics->predictor_present) {
|
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) {
|
|
if (decode_prediction(ac, ics, gb)) {
|
|
goto fail;
|
|
}
|
|
} else if (ac->oc[1].m4ac.object_type == AOT_AAC_LC) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
|
|
goto fail;
|
|
} else {
|
|
if ((ics->ltp.present = get_bits(gb, 1)))
|
|
decode_ltp(&ics->ltp, gb, ics->max_sfb);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ics->max_sfb > ics->num_swb) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
|
|
ics->max_sfb, ics->num_swb);
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
ics->max_sfb = 0;
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/**
|
|
* Decode band types (section_data payload); reference: table 4.46.
|
|
*
|
|
* @param band_type array of the used band type
|
|
* @param band_type_run_end array of the last scalefactor band of a band type run
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int decode_band_types(AACContext *ac, enum BandType band_type[120],
|
|
int band_type_run_end[120], GetBitContext *gb,
|
|
IndividualChannelStream *ics)
|
|
{
|
|
int g, idx = 0;
|
|
const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
|
|
for (g = 0; g < ics->num_window_groups; g++) {
|
|
int k = 0;
|
|
while (k < ics->max_sfb) {
|
|
uint8_t sect_end = k;
|
|
int sect_len_incr;
|
|
int sect_band_type = get_bits(gb, 4);
|
|
if (sect_band_type == 12) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
|
|
return -1;
|
|
}
|
|
do {
|
|
sect_len_incr = get_bits(gb, bits);
|
|
sect_end += sect_len_incr;
|
|
if (get_bits_left(gb) < 0) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err);
|
|
return -1;
|
|
}
|
|
if (sect_end > ics->max_sfb) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Number of bands (%d) exceeds limit (%d).\n",
|
|
sect_end, ics->max_sfb);
|
|
return -1;
|
|
}
|
|
} while (sect_len_incr == (1 << bits) - 1);
|
|
for (; k < sect_end; k++) {
|
|
band_type [idx] = sect_band_type;
|
|
band_type_run_end[idx++] = sect_end;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode scalefactors; reference: table 4.47.
|
|
*
|
|
* @param global_gain first scalefactor value as scalefactors are differentially coded
|
|
* @param band_type array of the used band type
|
|
* @param band_type_run_end array of the last scalefactor band of a band type run
|
|
* @param sf array of scalefactors or intensity stereo positions
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
|
|
unsigned int global_gain,
|
|
IndividualChannelStream *ics,
|
|
enum BandType band_type[120],
|
|
int band_type_run_end[120])
|
|
{
|
|
int g, i, idx = 0;
|
|
int offset[3] = { global_gain, global_gain - 90, 0 };
|
|
int clipped_offset;
|
|
int noise_flag = 1;
|
|
for (g = 0; g < ics->num_window_groups; g++) {
|
|
for (i = 0; i < ics->max_sfb;) {
|
|
int run_end = band_type_run_end[idx];
|
|
if (band_type[idx] == ZERO_BT) {
|
|
for (; i < run_end; i++, idx++)
|
|
sf[idx] = 0.;
|
|
} else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
|
|
for (; i < run_end; i++, idx++) {
|
|
offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
|
|
clipped_offset = av_clip(offset[2], -155, 100);
|
|
if (offset[2] != clipped_offset) {
|
|
av_log_ask_for_sample(ac->avctx, "Intensity stereo "
|
|
"position clipped (%d -> %d).\nIf you heard an "
|
|
"audible artifact, there may be a bug in the "
|
|
"decoder. ", offset[2], clipped_offset);
|
|
}
|
|
sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO];
|
|
}
|
|
} else if (band_type[idx] == NOISE_BT) {
|
|
for (; i < run_end; i++, idx++) {
|
|
if (noise_flag-- > 0)
|
|
offset[1] += get_bits(gb, 9) - 256;
|
|
else
|
|
offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
|
|
clipped_offset = av_clip(offset[1], -100, 155);
|
|
if (offset[1] != clipped_offset) {
|
|
av_log_ask_for_sample(ac->avctx, "Noise gain clipped "
|
|
"(%d -> %d).\nIf you heard an audible "
|
|
"artifact, there may be a bug in the decoder. ",
|
|
offset[1], clipped_offset);
|
|
}
|
|
sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO];
|
|
}
|
|
} else {
|
|
for (; i < run_end; i++, idx++) {
|
|
offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
|
|
if (offset[0] > 255U) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Scalefactor (%d) out of range.\n", offset[0]);
|
|
return -1;
|
|
}
|
|
sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode pulse data; reference: table 4.7.
|
|
*/
|
|
static int decode_pulses(Pulse *pulse, GetBitContext *gb,
|
|
const uint16_t *swb_offset, int num_swb)
|
|
{
|
|
int i, pulse_swb;
|
|
pulse->num_pulse = get_bits(gb, 2) + 1;
|
|
pulse_swb = get_bits(gb, 6);
|
|
if (pulse_swb >= num_swb)
|
|
return -1;
|
|
pulse->pos[0] = swb_offset[pulse_swb];
|
|
pulse->pos[0] += get_bits(gb, 5);
|
|
if (pulse->pos[0] > 1023)
|
|
return -1;
|
|
pulse->amp[0] = get_bits(gb, 4);
|
|
for (i = 1; i < pulse->num_pulse; i++) {
|
|
pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
|
|
if (pulse->pos[i] > 1023)
|
|
return -1;
|
|
pulse->amp[i] = get_bits(gb, 4);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode Temporal Noise Shaping data; reference: table 4.48.
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
|
|
GetBitContext *gb, const IndividualChannelStream *ics)
|
|
{
|
|
int w, filt, i, coef_len, coef_res, coef_compress;
|
|
const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
|
|
const int tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
|
|
for (w = 0; w < ics->num_windows; w++) {
|
|
if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
|
|
coef_res = get_bits1(gb);
|
|
|
|
for (filt = 0; filt < tns->n_filt[w]; filt++) {
|
|
int tmp2_idx;
|
|
tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
|
|
|
|
if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
|
|
tns->order[w][filt], tns_max_order);
|
|
tns->order[w][filt] = 0;
|
|
return -1;
|
|
}
|
|
if (tns->order[w][filt]) {
|
|
tns->direction[w][filt] = get_bits1(gb);
|
|
coef_compress = get_bits1(gb);
|
|
coef_len = coef_res + 3 - coef_compress;
|
|
tmp2_idx = 2 * coef_compress + coef_res;
|
|
|
|
for (i = 0; i < tns->order[w][filt]; i++)
|
|
tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode Mid/Side data; reference: table 4.54.
|
|
*
|
|
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
|
|
* [1] mask is decoded from bitstream; [2] mask is all 1s;
|
|
* [3] reserved for scalable AAC
|
|
*/
|
|
static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
|
|
int ms_present)
|
|
{
|
|
int idx;
|
|
if (ms_present == 1) {
|
|
for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
|
|
cpe->ms_mask[idx] = get_bits1(gb);
|
|
} else if (ms_present == 2) {
|
|
memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask[0]) * cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb);
|
|
}
|
|
}
|
|
|
|
#ifndef VMUL2
|
|
static inline float *VMUL2(float *dst, const float *v, unsigned idx,
|
|
const float *scale)
|
|
{
|
|
float s = *scale;
|
|
*dst++ = v[idx & 15] * s;
|
|
*dst++ = v[idx>>4 & 15] * s;
|
|
return dst;
|
|
}
|
|
#endif
|
|
|
|
#ifndef VMUL4
|
|
static inline float *VMUL4(float *dst, const float *v, unsigned idx,
|
|
const float *scale)
|
|
{
|
|
float s = *scale;
|
|
*dst++ = v[idx & 3] * s;
|
|
*dst++ = v[idx>>2 & 3] * s;
|
|
*dst++ = v[idx>>4 & 3] * s;
|
|
*dst++ = v[idx>>6 & 3] * s;
|
|
return dst;
|
|
}
|
|
#endif
|
|
|
|
#ifndef VMUL2S
|
|
static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
|
|
unsigned sign, const float *scale)
|
|
{
|
|
union av_intfloat32 s0, s1;
|
|
|
|
s0.f = s1.f = *scale;
|
|
s0.i ^= sign >> 1 << 31;
|
|
s1.i ^= sign << 31;
|
|
|
|
*dst++ = v[idx & 15] * s0.f;
|
|
*dst++ = v[idx>>4 & 15] * s1.f;
|
|
|
|
return dst;
|
|
}
|
|
#endif
|
|
|
|
#ifndef VMUL4S
|
|
static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
|
|
unsigned sign, const float *scale)
|
|
{
|
|
unsigned nz = idx >> 12;
|
|
union av_intfloat32 s = { .f = *scale };
|
|
union av_intfloat32 t;
|
|
|
|
t.i = s.i ^ (sign & 1U<<31);
|
|
*dst++ = v[idx & 3] * t.f;
|
|
|
|
sign <<= nz & 1; nz >>= 1;
|
|
t.i = s.i ^ (sign & 1U<<31);
|
|
*dst++ = v[idx>>2 & 3] * t.f;
|
|
|
|
sign <<= nz & 1; nz >>= 1;
|
|
t.i = s.i ^ (sign & 1U<<31);
|
|
*dst++ = v[idx>>4 & 3] * t.f;
|
|
|
|
sign <<= nz & 1;
|
|
t.i = s.i ^ (sign & 1U<<31);
|
|
*dst++ = v[idx>>6 & 3] * t.f;
|
|
|
|
return dst;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Decode spectral data; reference: table 4.50.
|
|
* Dequantize and scale spectral data; reference: 4.6.3.3.
|
|
*
|
|
* @param coef array of dequantized, scaled spectral data
|
|
* @param sf array of scalefactors or intensity stereo positions
|
|
* @param pulse_present set if pulses are present
|
|
* @param pulse pointer to pulse data struct
|
|
* @param band_type array of the used band type
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
|
|
GetBitContext *gb, const float sf[120],
|
|
int pulse_present, const Pulse *pulse,
|
|
const IndividualChannelStream *ics,
|
|
enum BandType band_type[120])
|
|
{
|
|
int i, k, g, idx = 0;
|
|
const int c = 1024 / ics->num_windows;
|
|
const uint16_t *offsets = ics->swb_offset;
|
|
float *coef_base = coef;
|
|
|
|
for (g = 0; g < ics->num_windows; g++)
|
|
memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
|
|
|
|
for (g = 0; g < ics->num_window_groups; g++) {
|
|
unsigned g_len = ics->group_len[g];
|
|
|
|
for (i = 0; i < ics->max_sfb; i++, idx++) {
|
|
const unsigned cbt_m1 = band_type[idx] - 1;
|
|
float *cfo = coef + offsets[i];
|
|
int off_len = offsets[i + 1] - offsets[i];
|
|
int group;
|
|
|
|
if (cbt_m1 >= INTENSITY_BT2 - 1) {
|
|
for (group = 0; group < g_len; group++, cfo+=128) {
|
|
memset(cfo, 0, off_len * sizeof(float));
|
|
}
|
|
} else if (cbt_m1 == NOISE_BT - 1) {
|
|
for (group = 0; group < g_len; group++, cfo+=128) {
|
|
float scale;
|
|
float band_energy;
|
|
|
|
for (k = 0; k < off_len; k++) {
|
|
ac->random_state = lcg_random(ac->random_state);
|
|
cfo[k] = ac->random_state;
|
|
}
|
|
|
|
band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
|
|
scale = sf[idx] / sqrtf(band_energy);
|
|
ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
|
|
}
|
|
} else {
|
|
const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
|
|
const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
|
|
VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
|
|
OPEN_READER(re, gb);
|
|
|
|
switch (cbt_m1 >> 1) {
|
|
case 0:
|
|
for (group = 0; group < g_len; group++, cfo+=128) {
|
|
float *cf = cfo;
|
|
int len = off_len;
|
|
|
|
do {
|
|
int code;
|
|
unsigned cb_idx;
|
|
|
|
UPDATE_CACHE(re, gb);
|
|
GET_VLC(code, re, gb, vlc_tab, 8, 2);
|
|
cb_idx = cb_vector_idx[code];
|
|
cf = VMUL4(cf, vq, cb_idx, sf + idx);
|
|
} while (len -= 4);
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
for (group = 0; group < g_len; group++, cfo+=128) {
|
|
float *cf = cfo;
|
|
int len = off_len;
|
|
|
|
do {
|
|
int code;
|
|
unsigned nnz;
|
|
unsigned cb_idx;
|
|
uint32_t bits;
|
|
|
|
UPDATE_CACHE(re, gb);
|
|
GET_VLC(code, re, gb, vlc_tab, 8, 2);
|
|
cb_idx = cb_vector_idx[code];
|
|
nnz = cb_idx >> 8 & 15;
|
|
bits = nnz ? GET_CACHE(re, gb) : 0;
|
|
LAST_SKIP_BITS(re, gb, nnz);
|
|
cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
|
|
} while (len -= 4);
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
for (group = 0; group < g_len; group++, cfo+=128) {
|
|
float *cf = cfo;
|
|
int len = off_len;
|
|
|
|
do {
|
|
int code;
|
|
unsigned cb_idx;
|
|
|
|
UPDATE_CACHE(re, gb);
|
|
GET_VLC(code, re, gb, vlc_tab, 8, 2);
|
|
cb_idx = cb_vector_idx[code];
|
|
cf = VMUL2(cf, vq, cb_idx, sf + idx);
|
|
} while (len -= 2);
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
case 4:
|
|
for (group = 0; group < g_len; group++, cfo+=128) {
|
|
float *cf = cfo;
|
|
int len = off_len;
|
|
|
|
do {
|
|
int code;
|
|
unsigned nnz;
|
|
unsigned cb_idx;
|
|
unsigned sign;
|
|
|
|
UPDATE_CACHE(re, gb);
|
|
GET_VLC(code, re, gb, vlc_tab, 8, 2);
|
|
cb_idx = cb_vector_idx[code];
|
|
nnz = cb_idx >> 8 & 15;
|
|
sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0;
|
|
LAST_SKIP_BITS(re, gb, nnz);
|
|
cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
|
|
} while (len -= 2);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
for (group = 0; group < g_len; group++, cfo+=128) {
|
|
float *cf = cfo;
|
|
uint32_t *icf = (uint32_t *) cf;
|
|
int len = off_len;
|
|
|
|
do {
|
|
int code;
|
|
unsigned nzt, nnz;
|
|
unsigned cb_idx;
|
|
uint32_t bits;
|
|
int j;
|
|
|
|
UPDATE_CACHE(re, gb);
|
|
GET_VLC(code, re, gb, vlc_tab, 8, 2);
|
|
|
|
if (!code) {
|
|
*icf++ = 0;
|
|
*icf++ = 0;
|
|
continue;
|
|
}
|
|
|
|
cb_idx = cb_vector_idx[code];
|
|
nnz = cb_idx >> 12;
|
|
nzt = cb_idx >> 8;
|
|
bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
|
|
LAST_SKIP_BITS(re, gb, nnz);
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
if (nzt & 1<<j) {
|
|
uint32_t b;
|
|
int n;
|
|
/* The total length of escape_sequence must be < 22 bits according
|
|
to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
|
|
UPDATE_CACHE(re, gb);
|
|
b = GET_CACHE(re, gb);
|
|
b = 31 - av_log2(~b);
|
|
|
|
if (b > 8) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
|
|
return -1;
|
|
}
|
|
|
|
SKIP_BITS(re, gb, b + 1);
|
|
b += 4;
|
|
n = (1 << b) + SHOW_UBITS(re, gb, b);
|
|
LAST_SKIP_BITS(re, gb, b);
|
|
*icf++ = cbrt_tab[n] | (bits & 1U<<31);
|
|
bits <<= 1;
|
|
} else {
|
|
unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
|
|
*icf++ = (bits & 1U<<31) | v;
|
|
bits <<= !!v;
|
|
}
|
|
cb_idx >>= 4;
|
|
}
|
|
} while (len -= 2);
|
|
|
|
ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
|
|
}
|
|
}
|
|
|
|
CLOSE_READER(re, gb);
|
|
}
|
|
}
|
|
coef += g_len << 7;
|
|
}
|
|
|
|
if (pulse_present) {
|
|
idx = 0;
|
|
for (i = 0; i < pulse->num_pulse; i++) {
|
|
float co = coef_base[ pulse->pos[i] ];
|
|
while (offsets[idx + 1] <= pulse->pos[i])
|
|
idx++;
|
|
if (band_type[idx] != NOISE_BT && sf[idx]) {
|
|
float ico = -pulse->amp[i];
|
|
if (co) {
|
|
co /= sf[idx];
|
|
ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
|
|
}
|
|
coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static av_always_inline float flt16_round(float pf)
|
|
{
|
|
union av_intfloat32 tmp;
|
|
tmp.f = pf;
|
|
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
|
|
return tmp.f;
|
|
}
|
|
|
|
static av_always_inline float flt16_even(float pf)
|
|
{
|
|
union av_intfloat32 tmp;
|
|
tmp.f = pf;
|
|
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
|
|
return tmp.f;
|
|
}
|
|
|
|
static av_always_inline float flt16_trunc(float pf)
|
|
{
|
|
union av_intfloat32 pun;
|
|
pun.f = pf;
|
|
pun.i &= 0xFFFF0000U;
|
|
return pun.f;
|
|
}
|
|
|
|
static av_always_inline void predict(PredictorState *ps, float *coef,
|
|
int output_enable)
|
|
{
|
|
const float a = 0.953125; // 61.0 / 64
|
|
const float alpha = 0.90625; // 29.0 / 32
|
|
float e0, e1;
|
|
float pv;
|
|
float k1, k2;
|
|
float r0 = ps->r0, r1 = ps->r1;
|
|
float cor0 = ps->cor0, cor1 = ps->cor1;
|
|
float var0 = ps->var0, var1 = ps->var1;
|
|
|
|
k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
|
|
k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
|
|
|
|
pv = flt16_round(k1 * r0 + k2 * r1);
|
|
if (output_enable)
|
|
*coef += pv;
|
|
|
|
e0 = *coef;
|
|
e1 = e0 - k1 * r0;
|
|
|
|
ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
|
|
ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
|
|
ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
|
|
ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
|
|
|
|
ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
|
|
ps->r0 = flt16_trunc(a * e0);
|
|
}
|
|
|
|
/**
|
|
* Apply AAC-Main style frequency domain prediction.
|
|
*/
|
|
static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
|
|
{
|
|
int sfb, k;
|
|
|
|
if (!sce->ics.predictor_initialized) {
|
|
reset_all_predictors(sce->predictor_state);
|
|
sce->ics.predictor_initialized = 1;
|
|
}
|
|
|
|
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
|
|
for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]; sfb++) {
|
|
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
|
|
predict(&sce->predictor_state[k], &sce->coeffs[k],
|
|
sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
|
|
}
|
|
}
|
|
if (sce->ics.predictor_reset_group)
|
|
reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
|
|
} else
|
|
reset_all_predictors(sce->predictor_state);
|
|
}
|
|
|
|
/**
|
|
* Decode an individual_channel_stream payload; reference: table 4.44.
|
|
*
|
|
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
|
|
* @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int decode_ics(AACContext *ac, SingleChannelElement *sce,
|
|
GetBitContext *gb, int common_window, int scale_flag)
|
|
{
|
|
Pulse pulse;
|
|
TemporalNoiseShaping *tns = &sce->tns;
|
|
IndividualChannelStream *ics = &sce->ics;
|
|
float *out = sce->coeffs;
|
|
int global_gain, pulse_present = 0;
|
|
|
|
/* This assignment is to silence a GCC warning about the variable being used
|
|
* uninitialized when in fact it always is.
|
|
*/
|
|
pulse.num_pulse = 0;
|
|
|
|
global_gain = get_bits(gb, 8);
|
|
|
|
if (!common_window && !scale_flag) {
|
|
if (decode_ics_info(ac, ics, gb) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
|
|
return -1;
|
|
if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
|
|
return -1;
|
|
|
|
pulse_present = 0;
|
|
if (!scale_flag) {
|
|
if ((pulse_present = get_bits1(gb))) {
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
|
|
return -1;
|
|
}
|
|
if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
|
|
return -1;
|
|
}
|
|
}
|
|
if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
|
|
return -1;
|
|
if (get_bits1(gb)) {
|
|
av_log_missing_feature(ac->avctx, "SSR", 1);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
}
|
|
|
|
if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
|
|
return -1;
|
|
|
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window)
|
|
apply_prediction(ac, sce);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Mid/Side stereo decoding; reference: 4.6.8.1.3.
|
|
*/
|
|
static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
|
|
{
|
|
const IndividualChannelStream *ics = &cpe->ch[0].ics;
|
|
float *ch0 = cpe->ch[0].coeffs;
|
|
float *ch1 = cpe->ch[1].coeffs;
|
|
int g, i, group, idx = 0;
|
|
const uint16_t *offsets = ics->swb_offset;
|
|
for (g = 0; g < ics->num_window_groups; g++) {
|
|
for (i = 0; i < ics->max_sfb; i++, idx++) {
|
|
if (cpe->ms_mask[idx] &&
|
|
cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
|
|
for (group = 0; group < ics->group_len[g]; group++) {
|
|
ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
|
|
ch1 + group * 128 + offsets[i],
|
|
offsets[i+1] - offsets[i]);
|
|
}
|
|
}
|
|
}
|
|
ch0 += ics->group_len[g] * 128;
|
|
ch1 += ics->group_len[g] * 128;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* intensity stereo decoding; reference: 4.6.8.2.3
|
|
*
|
|
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
|
|
* [1] mask is decoded from bitstream; [2] mask is all 1s;
|
|
* [3] reserved for scalable AAC
|
|
*/
|
|
static void apply_intensity_stereo(AACContext *ac, ChannelElement *cpe, int ms_present)
|
|
{
|
|
const IndividualChannelStream *ics = &cpe->ch[1].ics;
|
|
SingleChannelElement *sce1 = &cpe->ch[1];
|
|
float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
|
|
const uint16_t *offsets = ics->swb_offset;
|
|
int g, group, i, idx = 0;
|
|
int c;
|
|
float scale;
|
|
for (g = 0; g < ics->num_window_groups; g++) {
|
|
for (i = 0; i < ics->max_sfb;) {
|
|
if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
|
|
const int bt_run_end = sce1->band_type_run_end[idx];
|
|
for (; i < bt_run_end; i++, idx++) {
|
|
c = -1 + 2 * (sce1->band_type[idx] - 14);
|
|
if (ms_present)
|
|
c *= 1 - 2 * cpe->ms_mask[idx];
|
|
scale = c * sce1->sf[idx];
|
|
for (group = 0; group < ics->group_len[g]; group++)
|
|
ac->dsp.vector_fmul_scalar(coef1 + group * 128 + offsets[i],
|
|
coef0 + group * 128 + offsets[i],
|
|
scale,
|
|
offsets[i + 1] - offsets[i]);
|
|
}
|
|
} else {
|
|
int bt_run_end = sce1->band_type_run_end[idx];
|
|
idx += bt_run_end - i;
|
|
i = bt_run_end;
|
|
}
|
|
}
|
|
coef0 += ics->group_len[g] * 128;
|
|
coef1 += ics->group_len[g] * 128;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decode a channel_pair_element; reference: table 4.4.
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
|
|
{
|
|
int i, ret, common_window, ms_present = 0;
|
|
|
|
common_window = get_bits1(gb);
|
|
if (common_window) {
|
|
if (decode_ics_info(ac, &cpe->ch[0].ics, gb))
|
|
return AVERROR_INVALIDDATA;
|
|
i = cpe->ch[1].ics.use_kb_window[0];
|
|
cpe->ch[1].ics = cpe->ch[0].ics;
|
|
cpe->ch[1].ics.use_kb_window[1] = i;
|
|
if (cpe->ch[1].ics.predictor_present && (ac->oc[1].m4ac.object_type != AOT_AAC_MAIN))
|
|
if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1)))
|
|
decode_ltp(&cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb);
|
|
ms_present = get_bits(gb, 2);
|
|
if (ms_present == 3) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
|
|
return -1;
|
|
} else if (ms_present)
|
|
decode_mid_side_stereo(cpe, gb, ms_present);
|
|
}
|
|
if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
|
|
return ret;
|
|
if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
|
|
return ret;
|
|
|
|
if (common_window) {
|
|
if (ms_present)
|
|
apply_mid_side_stereo(ac, cpe);
|
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) {
|
|
apply_prediction(ac, &cpe->ch[0]);
|
|
apply_prediction(ac, &cpe->ch[1]);
|
|
}
|
|
}
|
|
|
|
apply_intensity_stereo(ac, cpe, ms_present);
|
|
return 0;
|
|
}
|
|
|
|
static const float cce_scale[] = {
|
|
1.09050773266525765921, //2^(1/8)
|
|
1.18920711500272106672, //2^(1/4)
|
|
M_SQRT2,
|
|
2,
|
|
};
|
|
|
|
/**
|
|
* Decode coupling_channel_element; reference: table 4.8.
|
|
*
|
|
* @return Returns error status. 0 - OK, !0 - error
|
|
*/
|
|
static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
|
|
{
|
|
int num_gain = 0;
|
|
int c, g, sfb, ret;
|
|
int sign;
|
|
float scale;
|
|
SingleChannelElement *sce = &che->ch[0];
|
|
ChannelCoupling *coup = &che->coup;
|
|
|
|
coup->coupling_point = 2 * get_bits1(gb);
|
|
coup->num_coupled = get_bits(gb, 3);
|
|
for (c = 0; c <= coup->num_coupled; c++) {
|
|
num_gain++;
|
|
coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
|
|
coup->id_select[c] = get_bits(gb, 4);
|
|
if (coup->type[c] == TYPE_CPE) {
|
|
coup->ch_select[c] = get_bits(gb, 2);
|
|
if (coup->ch_select[c] == 3)
|
|
num_gain++;
|
|
} else
|
|
coup->ch_select[c] = 2;
|
|
}
|
|
coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
|
|
|
|
sign = get_bits(gb, 1);
|
|
scale = cce_scale[get_bits(gb, 2)];
|
|
|
|
if ((ret = decode_ics(ac, sce, gb, 0, 0)))
|
|
return ret;
|
|
|
|
for (c = 0; c < num_gain; c++) {
|
|
int idx = 0;
|
|
int cge = 1;
|
|
int gain = 0;
|
|
float gain_cache = 1.;
|
|
if (c) {
|
|
cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
|
|
gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
|
|
gain_cache = powf(scale, -gain);
|
|
}
|
|
if (coup->coupling_point == AFTER_IMDCT) {
|
|
coup->gain[c][0] = gain_cache;
|
|
} else {
|
|
for (g = 0; g < sce->ics.num_window_groups; g++) {
|
|
for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
|
|
if (sce->band_type[idx] != ZERO_BT) {
|
|
if (!cge) {
|
|
int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
|
|
if (t) {
|
|
int s = 1;
|
|
t = gain += t;
|
|
if (sign) {
|
|
s -= 2 * (t & 0x1);
|
|
t >>= 1;
|
|
}
|
|
gain_cache = powf(scale, -t) * s;
|
|
}
|
|
}
|
|
coup->gain[c][idx] = gain_cache;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
|
|
*
|
|
* @return Returns number of bytes consumed.
|
|
*/
|
|
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
|
|
GetBitContext *gb)
|
|
{
|
|
int i;
|
|
int num_excl_chan = 0;
|
|
|
|
do {
|
|
for (i = 0; i < 7; i++)
|
|
che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
|
|
} while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
|
|
|
|
return num_excl_chan / 7;
|
|
}
|
|
|
|
/**
|
|
* Decode dynamic range information; reference: table 4.52.
|
|
*
|
|
* @return Returns number of bytes consumed.
|
|
*/
|
|
static int decode_dynamic_range(DynamicRangeControl *che_drc,
|
|
GetBitContext *gb)
|
|
{
|
|
int n = 1;
|
|
int drc_num_bands = 1;
|
|
int i;
|
|
|
|
/* pce_tag_present? */
|
|
if (get_bits1(gb)) {
|
|
che_drc->pce_instance_tag = get_bits(gb, 4);
|
|
skip_bits(gb, 4); // tag_reserved_bits
|
|
n++;
|
|
}
|
|
|
|
/* excluded_chns_present? */
|
|
if (get_bits1(gb)) {
|
|
n += decode_drc_channel_exclusions(che_drc, gb);
|
|
}
|
|
|
|
/* drc_bands_present? */
|
|
if (get_bits1(gb)) {
|
|
che_drc->band_incr = get_bits(gb, 4);
|
|
che_drc->interpolation_scheme = get_bits(gb, 4);
|
|
n++;
|
|
drc_num_bands += che_drc->band_incr;
|
|
for (i = 0; i < drc_num_bands; i++) {
|
|
che_drc->band_top[i] = get_bits(gb, 8);
|
|
n++;
|
|
}
|
|
}
|
|
|
|
/* prog_ref_level_present? */
|
|
if (get_bits1(gb)) {
|
|
che_drc->prog_ref_level = get_bits(gb, 7);
|
|
skip_bits1(gb); // prog_ref_level_reserved_bits
|
|
n++;
|
|
}
|
|
|
|
for (i = 0; i < drc_num_bands; i++) {
|
|
che_drc->dyn_rng_sgn[i] = get_bits1(gb);
|
|
che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static int decode_fill(AACContext *ac, GetBitContext *gb, int len) {
|
|
uint8_t buf[256];
|
|
int i, major, minor;
|
|
|
|
if (len < 13+7*8)
|
|
goto unknown;
|
|
|
|
get_bits(gb, 13); len -= 13;
|
|
|
|
for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8)
|
|
buf[i] = get_bits(gb, 8);
|
|
|
|
buf[i] = 0;
|
|
if (ac->avctx->debug & FF_DEBUG_PICT_INFO)
|
|
av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf);
|
|
|
|
if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){
|
|
ac->avctx->internal->skip_samples = 1024;
|
|
}
|
|
|
|
unknown:
|
|
skip_bits_long(gb, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode extension data (incomplete); reference: table 4.51.
|
|
*
|
|
* @param cnt length of TYPE_FIL syntactic element in bytes
|
|
*
|
|
* @return Returns number of bytes consumed
|
|
*/
|
|
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
|
|
ChannelElement *che, enum RawDataBlockType elem_type)
|
|
{
|
|
int crc_flag = 0;
|
|
int res = cnt;
|
|
switch (get_bits(gb, 4)) { // extension type
|
|
case EXT_SBR_DATA_CRC:
|
|
crc_flag++;
|
|
case EXT_SBR_DATA:
|
|
if (!che) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
|
|
return res;
|
|
} else if (!ac->oc[1].m4ac.sbr) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
|
|
skip_bits_long(gb, 8 * cnt - 4);
|
|
return res;
|
|
} else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
|
|
skip_bits_long(gb, 8 * cnt - 4);
|
|
return res;
|
|
} else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && ac->avctx->channels == 1) {
|
|
ac->oc[1].m4ac.sbr = 1;
|
|
ac->oc[1].m4ac.ps = 1;
|
|
output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags,
|
|
ac->oc[1].status);
|
|
} else {
|
|
ac->oc[1].m4ac.sbr = 1;
|
|
}
|
|
res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
|
|
break;
|
|
case EXT_DYNAMIC_RANGE:
|
|
res = decode_dynamic_range(&ac->che_drc, gb);
|
|
break;
|
|
case EXT_FILL:
|
|
decode_fill(ac, gb, 8 * cnt - 4);
|
|
break;
|
|
case EXT_FILL_DATA:
|
|
case EXT_DATA_ELEMENT:
|
|
default:
|
|
skip_bits_long(gb, 8 * cnt - 4);
|
|
break;
|
|
};
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
|
|
*
|
|
* @param decode 1 if tool is used normally, 0 if tool is used in LTP.
|
|
* @param coef spectral coefficients
|
|
*/
|
|
static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
|
|
IndividualChannelStream *ics, int decode)
|
|
{
|
|
const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
|
|
int w, filt, m, i;
|
|
int bottom, top, order, start, end, size, inc;
|
|
float lpc[TNS_MAX_ORDER];
|
|
float tmp[TNS_MAX_ORDER];
|
|
|
|
for (w = 0; w < ics->num_windows; w++) {
|
|
bottom = ics->num_swb;
|
|
for (filt = 0; filt < tns->n_filt[w]; filt++) {
|
|
top = bottom;
|
|
bottom = FFMAX(0, top - tns->length[w][filt]);
|
|
order = tns->order[w][filt];
|
|
if (order == 0)
|
|
continue;
|
|
|
|
// tns_decode_coef
|
|
compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
|
|
|
|
start = ics->swb_offset[FFMIN(bottom, mmm)];
|
|
end = ics->swb_offset[FFMIN( top, mmm)];
|
|
if ((size = end - start) <= 0)
|
|
continue;
|
|
if (tns->direction[w][filt]) {
|
|
inc = -1;
|
|
start = end - 1;
|
|
} else {
|
|
inc = 1;
|
|
}
|
|
start += w * 128;
|
|
|
|
if (decode) {
|
|
// ar filter
|
|
for (m = 0; m < size; m++, start += inc)
|
|
for (i = 1; i <= FFMIN(m, order); i++)
|
|
coef[start] -= coef[start - i * inc] * lpc[i - 1];
|
|
} else {
|
|
// ma filter
|
|
for (m = 0; m < size; m++, start += inc) {
|
|
tmp[0] = coef[start];
|
|
for (i = 1; i <= FFMIN(m, order); i++)
|
|
coef[start] += tmp[i] * lpc[i - 1];
|
|
for (i = order; i > 0; i--)
|
|
tmp[i] = tmp[i - 1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Apply windowing and MDCT to obtain the spectral
|
|
* coefficient from the predicted sample by LTP.
|
|
*/
|
|
static void windowing_and_mdct_ltp(AACContext *ac, float *out,
|
|
float *in, IndividualChannelStream *ics)
|
|
{
|
|
const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
|
|
const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
|
|
const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
|
|
const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
|
|
|
|
if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) {
|
|
ac->fdsp.vector_fmul(in, in, lwindow_prev, 1024);
|
|
} else {
|
|
memset(in, 0, 448 * sizeof(float));
|
|
ac->fdsp.vector_fmul(in + 448, in + 448, swindow_prev, 128);
|
|
}
|
|
if (ics->window_sequence[0] != LONG_START_SEQUENCE) {
|
|
ac->dsp.vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024);
|
|
} else {
|
|
ac->dsp.vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128);
|
|
memset(in + 1024 + 576, 0, 448 * sizeof(float));
|
|
}
|
|
ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in);
|
|
}
|
|
|
|
/**
|
|
* Apply the long term prediction
|
|
*/
|
|
static void apply_ltp(AACContext *ac, SingleChannelElement *sce)
|
|
{
|
|
const LongTermPrediction *ltp = &sce->ics.ltp;
|
|
const uint16_t *offsets = sce->ics.swb_offset;
|
|
int i, sfb;
|
|
|
|
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
|
|
float *predTime = sce->ret;
|
|
float *predFreq = ac->buf_mdct;
|
|
int16_t num_samples = 2048;
|
|
|
|
if (ltp->lag < 1024)
|
|
num_samples = ltp->lag + 1024;
|
|
for (i = 0; i < num_samples; i++)
|
|
predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
|
|
memset(&predTime[i], 0, (2048 - i) * sizeof(float));
|
|
|
|
windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);
|
|
|
|
if (sce->tns.present)
|
|
apply_tns(predFreq, &sce->tns, &sce->ics, 0);
|
|
|
|
for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
|
|
if (ltp->used[sfb])
|
|
for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
|
|
sce->coeffs[i] += predFreq[i];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Update the LTP buffer for next frame
|
|
*/
|
|
static void update_ltp(AACContext *ac, SingleChannelElement *sce)
|
|
{
|
|
IndividualChannelStream *ics = &sce->ics;
|
|
float *saved = sce->saved;
|
|
float *saved_ltp = sce->coeffs;
|
|
const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
|
|
const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
|
|
int i;
|
|
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
|
|
memcpy(saved_ltp, saved, 512 * sizeof(float));
|
|
memset(saved_ltp + 576, 0, 448 * sizeof(float));
|
|
ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
|
|
for (i = 0; i < 64; i++)
|
|
saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
|
|
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
|
|
memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(float));
|
|
memset(saved_ltp + 576, 0, 448 * sizeof(float));
|
|
ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
|
|
for (i = 0; i < 64; i++)
|
|
saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
|
|
} else { // LONG_STOP or ONLY_LONG
|
|
ac->dsp.vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512);
|
|
for (i = 0; i < 512; i++)
|
|
saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i];
|
|
}
|
|
|
|
memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state));
|
|
memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state));
|
|
memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state));
|
|
}
|
|
|
|
/**
|
|
* Conduct IMDCT and windowing.
|
|
*/
|
|
static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
|
|
{
|
|
IndividualChannelStream *ics = &sce->ics;
|
|
float *in = sce->coeffs;
|
|
float *out = sce->ret;
|
|
float *saved = sce->saved;
|
|
const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
|
|
const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
|
|
const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
|
|
float *buf = ac->buf_mdct;
|
|
float *temp = ac->temp;
|
|
int i;
|
|
|
|
// imdct
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
|
|
for (i = 0; i < 1024; i += 128)
|
|
ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
|
|
} else
|
|
ac->mdct.imdct_half(&ac->mdct, buf, in);
|
|
|
|
/* window overlapping
|
|
* NOTE: To simplify the overlapping code, all 'meaningless' short to long
|
|
* and long to short transitions are considered to be short to short
|
|
* transitions. This leaves just two cases (long to long and short to short)
|
|
* with a little special sauce for EIGHT_SHORT_SEQUENCE.
|
|
*/
|
|
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
|
|
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
|
|
ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, 512);
|
|
} else {
|
|
memcpy( out, saved, 448 * sizeof(float));
|
|
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
|
|
ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64);
|
|
ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64);
|
|
ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64);
|
|
ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64);
|
|
ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64);
|
|
memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
|
|
} else {
|
|
ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64);
|
|
memcpy( out + 576, buf + 64, 448 * sizeof(float));
|
|
}
|
|
}
|
|
|
|
// buffer update
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
|
|
memcpy( saved, temp + 64, 64 * sizeof(float));
|
|
ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64);
|
|
ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
|
|
ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
|
|
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
|
|
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
|
|
memcpy( saved, buf + 512, 448 * sizeof(float));
|
|
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
|
|
} else { // LONG_STOP or ONLY_LONG
|
|
memcpy( saved, buf + 512, 512 * sizeof(float));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Apply dependent channel coupling (applied before IMDCT).
|
|
*
|
|
* @param index index into coupling gain array
|
|
*/
|
|
static void apply_dependent_coupling(AACContext *ac,
|
|
SingleChannelElement *target,
|
|
ChannelElement *cce, int index)
|
|
{
|
|
IndividualChannelStream *ics = &cce->ch[0].ics;
|
|
const uint16_t *offsets = ics->swb_offset;
|
|
float *dest = target->coeffs;
|
|
const float *src = cce->ch[0].coeffs;
|
|
int g, i, group, k, idx = 0;
|
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
|
|
av_log(ac->avctx, AV_LOG_ERROR,
|
|
"Dependent coupling is not supported together with LTP\n");
|
|
return;
|
|
}
|
|
for (g = 0; g < ics->num_window_groups; g++) {
|
|
for (i = 0; i < ics->max_sfb; i++, idx++) {
|
|
if (cce->ch[0].band_type[idx] != ZERO_BT) {
|
|
const float gain = cce->coup.gain[index][idx];
|
|
for (group = 0; group < ics->group_len[g]; group++) {
|
|
for (k = offsets[i]; k < offsets[i + 1]; k++) {
|
|
// XXX dsputil-ize
|
|
dest[group * 128 + k] += gain * src[group * 128 + k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
dest += ics->group_len[g] * 128;
|
|
src += ics->group_len[g] * 128;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Apply independent channel coupling (applied after IMDCT).
|
|
*
|
|
* @param index index into coupling gain array
|
|
*/
|
|
static void apply_independent_coupling(AACContext *ac,
|
|
SingleChannelElement *target,
|
|
ChannelElement *cce, int index)
|
|
{
|
|
int i;
|
|
const float gain = cce->coup.gain[index][0];
|
|
const float *src = cce->ch[0].ret;
|
|
float *dest = target->ret;
|
|
const int len = 1024 << (ac->oc[1].m4ac.sbr == 1);
|
|
|
|
for (i = 0; i < len; i++)
|
|
dest[i] += gain * src[i];
|
|
}
|
|
|
|
/**
|
|
* channel coupling transformation interface
|
|
*
|
|
* @param apply_coupling_method pointer to (in)dependent coupling function
|
|
*/
|
|
static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
|
|
enum RawDataBlockType type, int elem_id,
|
|
enum CouplingPoint coupling_point,
|
|
void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
|
|
{
|
|
int i, c;
|
|
|
|
for (i = 0; i < MAX_ELEM_ID; i++) {
|
|
ChannelElement *cce = ac->che[TYPE_CCE][i];
|
|
int index = 0;
|
|
|
|
if (cce && cce->coup.coupling_point == coupling_point) {
|
|
ChannelCoupling *coup = &cce->coup;
|
|
|
|
for (c = 0; c <= coup->num_coupled; c++) {
|
|
if (coup->type[c] == type && coup->id_select[c] == elem_id) {
|
|
if (coup->ch_select[c] != 1) {
|
|
apply_coupling_method(ac, &cc->ch[0], cce, index);
|
|
if (coup->ch_select[c] != 0)
|
|
index++;
|
|
}
|
|
if (coup->ch_select[c] != 2)
|
|
apply_coupling_method(ac, &cc->ch[1], cce, index++);
|
|
} else
|
|
index += 1 + (coup->ch_select[c] == 3);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convert spectral data to float samples, applying all supported tools as appropriate.
|
|
*/
|
|
static void spectral_to_sample(AACContext *ac)
|
|
{
|
|
int i, type;
|
|
for (type = 3; type >= 0; type--) {
|
|
for (i = 0; i < MAX_ELEM_ID; i++) {
|
|
ChannelElement *che = ac->che[type][i];
|
|
if (che) {
|
|
if (type <= TYPE_CPE)
|
|
apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
|
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
|
|
if (che->ch[0].ics.predictor_present) {
|
|
if (che->ch[0].ics.ltp.present)
|
|
apply_ltp(ac, &che->ch[0]);
|
|
if (che->ch[1].ics.ltp.present && type == TYPE_CPE)
|
|
apply_ltp(ac, &che->ch[1]);
|
|
}
|
|
}
|
|
if (che->ch[0].tns.present)
|
|
apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
|
|
if (che->ch[1].tns.present)
|
|
apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
|
|
if (type <= TYPE_CPE)
|
|
apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
|
|
if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
|
|
imdct_and_windowing(ac, &che->ch[0]);
|
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
|
|
update_ltp(ac, &che->ch[0]);
|
|
if (type == TYPE_CPE) {
|
|
imdct_and_windowing(ac, &che->ch[1]);
|
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
|
|
update_ltp(ac, &che->ch[1]);
|
|
}
|
|
if (ac->oc[1].m4ac.sbr > 0) {
|
|
ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
|
|
}
|
|
}
|
|
if (type <= TYPE_CCE)
|
|
apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
|
|
{
|
|
int size;
|
|
AACADTSHeaderInfo hdr_info;
|
|
uint8_t layout_map[MAX_ELEM_ID*4][3];
|
|
int layout_map_tags;
|
|
|
|
size = avpriv_aac_parse_header(gb, &hdr_info);
|
|
if (size > 0) {
|
|
if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) {
|
|
// This is 2 for "VLB " audio in NSV files.
|
|
// See samples/nsv/vlb_audio.
|
|
av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame", 0);
|
|
ac->warned_num_aac_frames = 1;
|
|
}
|
|
push_output_configuration(ac);
|
|
if (hdr_info.chan_config) {
|
|
ac->oc[1].m4ac.chan_config = hdr_info.chan_config;
|
|
if (set_default_channel_config(ac->avctx, layout_map,
|
|
&layout_map_tags, hdr_info.chan_config))
|
|
return -7;
|
|
if (output_configure(ac, layout_map, layout_map_tags,
|
|
FFMAX(ac->oc[1].status, OC_TRIAL_FRAME)))
|
|
return -7;
|
|
} else {
|
|
ac->oc[1].m4ac.chan_config = 0;
|
|
/**
|
|
* dual mono frames in Japanese DTV can have chan_config 0
|
|
* WITHOUT specifying PCE.
|
|
* thus, set dual mono as default.
|
|
*/
|
|
if (ac->enable_jp_dmono && ac->oc[0].status == OC_NONE) {
|
|
layout_map_tags = 2;
|
|
layout_map[0][0] = layout_map[1][0] = TYPE_SCE;
|
|
layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT;
|
|
layout_map[0][1] = 0;
|
|
layout_map[1][1] = 1;
|
|
if (output_configure(ac, layout_map, layout_map_tags,
|
|
OC_TRIAL_FRAME))
|
|
return -7;
|
|
}
|
|
}
|
|
ac->oc[1].m4ac.sample_rate = hdr_info.sample_rate;
|
|
ac->oc[1].m4ac.sampling_index = hdr_info.sampling_index;
|
|
ac->oc[1].m4ac.object_type = hdr_info.object_type;
|
|
if (ac->oc[0].status != OC_LOCKED ||
|
|
ac->oc[0].m4ac.chan_config != hdr_info.chan_config ||
|
|
ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) {
|
|
ac->oc[1].m4ac.sbr = -1;
|
|
ac->oc[1].m4ac.ps = -1;
|
|
}
|
|
if (!hdr_info.crc_absent)
|
|
skip_bits(gb, 16);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static int aac_decode_frame_int(AVCodecContext *avctx, void *data,
|
|
int *got_frame_ptr, GetBitContext *gb, AVPacket *avpkt)
|
|
{
|
|
AACContext *ac = avctx->priv_data;
|
|
ChannelElement *che = NULL, *che_prev = NULL;
|
|
enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
|
|
int err, elem_id;
|
|
int samples = 0, multiplier, audio_found = 0, pce_found = 0;
|
|
int is_dmono, sce_count = 0;
|
|
float *tmp = NULL;
|
|
|
|
if (show_bits(gb, 12) == 0xfff) {
|
|
if (parse_adts_frame_header(ac, gb) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
|
|
err = -1;
|
|
goto fail;
|
|
}
|
|
if (ac->oc[1].m4ac.sampling_index > 12) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index);
|
|
err = -1;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
ac->tags_mapped = 0;
|
|
// parse
|
|
while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
|
|
elem_id = get_bits(gb, 4);
|
|
|
|
if (elem_type < TYPE_DSE) {
|
|
if (!(che=get_che(ac, elem_type, elem_id))) {
|
|
av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
|
|
elem_type, elem_id);
|
|
err = -1;
|
|
goto fail;
|
|
}
|
|
samples = 1024;
|
|
}
|
|
|
|
switch (elem_type) {
|
|
|
|
case TYPE_SCE:
|
|
err = decode_ics(ac, &che->ch[0], gb, 0, 0);
|
|
audio_found = 1;
|
|
sce_count++;
|
|
break;
|
|
|
|
case TYPE_CPE:
|
|
err = decode_cpe(ac, gb, che);
|
|
audio_found = 1;
|
|
break;
|
|
|
|
case TYPE_CCE:
|
|
err = decode_cce(ac, gb, che);
|
|
break;
|
|
|
|
case TYPE_LFE:
|
|
err = decode_ics(ac, &che->ch[0], gb, 0, 0);
|
|
audio_found = 1;
|
|
break;
|
|
|
|
case TYPE_DSE:
|
|
err = skip_data_stream_element(ac, gb);
|
|
break;
|
|
|
|
case TYPE_PCE: {
|
|
uint8_t layout_map[MAX_ELEM_ID*4][3];
|
|
int tags;
|
|
push_output_configuration(ac);
|
|
tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb);
|
|
if (tags < 0) {
|
|
err = tags;
|
|
break;
|
|
}
|
|
if (pce_found) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Not evaluating a further program_config_element as this construct is dubious at best.\n");
|
|
pop_output_configuration(ac);
|
|
} else {
|
|
err = output_configure(ac, layout_map, tags, OC_TRIAL_PCE);
|
|
if (!err)
|
|
ac->oc[1].m4ac.chan_config = 0;
|
|
pce_found = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TYPE_FIL:
|
|
if (elem_id == 15)
|
|
elem_id += get_bits(gb, 8) - 1;
|
|
if (get_bits_left(gb) < 8 * elem_id) {
|
|
av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err);
|
|
err = -1;
|
|
goto fail;
|
|
}
|
|
while (elem_id > 0)
|
|
elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev);
|
|
err = 0; /* FIXME */
|
|
break;
|
|
|
|
default:
|
|
err = -1; /* should not happen, but keeps compiler happy */
|
|
break;
|
|
}
|
|
|
|
che_prev = che;
|
|
elem_type_prev = elem_type;
|
|
|
|
if (err)
|
|
goto fail;
|
|
|
|
if (get_bits_left(gb) < 3) {
|
|
av_log(avctx, AV_LOG_ERROR, overread_err);
|
|
err = -1;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
spectral_to_sample(ac);
|
|
|
|
multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0;
|
|
samples <<= multiplier;
|
|
|
|
/* for dual-mono audio (SCE + SCE) */
|
|
is_dmono = ac->enable_jp_dmono && sce_count == 2 &&
|
|
ac->oc[1].channel_layout == (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT);
|
|
|
|
if (is_dmono) {
|
|
if (ac->dmono_mode == 0) {
|
|
tmp = ac->output_data[1];
|
|
ac->output_data[1] = ac->output_data[0];
|
|
} else if (ac->dmono_mode == 1) {
|
|
tmp = ac->output_data[0];
|
|
ac->output_data[0] = ac->output_data[1];
|
|
}
|
|
}
|
|
|
|
if (samples) {
|
|
/* get output buffer */
|
|
ac->frame.nb_samples = samples;
|
|
if ((err = avctx->get_buffer(avctx, &ac->frame)) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
|
err = -1;
|
|
goto fail;
|
|
}
|
|
|
|
if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT)
|
|
ac->fmt_conv.float_interleave((float *)ac->frame.data[0],
|
|
(const float **)ac->output_data,
|
|
samples, avctx->channels);
|
|
else
|
|
ac->fmt_conv.float_to_int16_interleave((int16_t *)ac->frame.data[0],
|
|
(const float **)ac->output_data,
|
|
samples, avctx->channels);
|
|
|
|
*(AVFrame *)data = ac->frame;
|
|
}
|
|
*got_frame_ptr = !!samples;
|
|
|
|
if (is_dmono) {
|
|
if (ac->dmono_mode == 0)
|
|
ac->output_data[1] = tmp;
|
|
else if (ac->dmono_mode == 1)
|
|
ac->output_data[0] = tmp;
|
|
}
|
|
|
|
if (ac->oc[1].status && audio_found) {
|
|
avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier;
|
|
avctx->frame_size = samples;
|
|
ac->oc[1].status = OC_LOCKED;
|
|
}
|
|
|
|
if (multiplier) {
|
|
int side_size;
|
|
uint32_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, &side_size);
|
|
if (side && side_size>=4)
|
|
AV_WL32(side, 2*AV_RL32(side));
|
|
}
|
|
return 0;
|
|
fail:
|
|
pop_output_configuration(ac);
|
|
return err;
|
|
}
|
|
|
|
static int aac_decode_frame(AVCodecContext *avctx, void *data,
|
|
int *got_frame_ptr, AVPacket *avpkt)
|
|
{
|
|
AACContext *ac = avctx->priv_data;
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
GetBitContext gb;
|
|
int buf_consumed;
|
|
int buf_offset;
|
|
int err;
|
|
int new_extradata_size;
|
|
const uint8_t *new_extradata = av_packet_get_side_data(avpkt,
|
|
AV_PKT_DATA_NEW_EXTRADATA,
|
|
&new_extradata_size);
|
|
int jp_dualmono_size;
|
|
const uint8_t *jp_dualmono = av_packet_get_side_data(avpkt,
|
|
AV_PKT_DATA_JP_DUALMONO,
|
|
&jp_dualmono_size);
|
|
|
|
if (new_extradata && 0) {
|
|
av_free(avctx->extradata);
|
|
avctx->extradata = av_mallocz(new_extradata_size +
|
|
FF_INPUT_BUFFER_PADDING_SIZE);
|
|
if (!avctx->extradata)
|
|
return AVERROR(ENOMEM);
|
|
avctx->extradata_size = new_extradata_size;
|
|
memcpy(avctx->extradata, new_extradata, new_extradata_size);
|
|
push_output_configuration(ac);
|
|
if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac,
|
|
avctx->extradata,
|
|
avctx->extradata_size*8, 1) < 0) {
|
|
pop_output_configuration(ac);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
|
|
ac->enable_jp_dmono = !!jp_dualmono;
|
|
ac->dmono_mode = 0;
|
|
if (jp_dualmono && jp_dualmono_size > 0)
|
|
ac->dmono_mode = *jp_dualmono;
|
|
|
|
init_get_bits(&gb, buf, buf_size * 8);
|
|
|
|
if ((err = aac_decode_frame_int(avctx, data, got_frame_ptr, &gb, avpkt)) < 0)
|
|
return err;
|
|
|
|
buf_consumed = (get_bits_count(&gb) + 7) >> 3;
|
|
for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
|
|
if (buf[buf_offset])
|
|
break;
|
|
|
|
return buf_size > buf_offset ? buf_consumed : buf_size;
|
|
}
|
|
|
|
static av_cold int aac_decode_close(AVCodecContext *avctx)
|
|
{
|
|
AACContext *ac = avctx->priv_data;
|
|
int i, type;
|
|
|
|
for (i = 0; i < MAX_ELEM_ID; i++) {
|
|
for (type = 0; type < 4; type++) {
|
|
if (ac->che[type][i])
|
|
ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
|
|
av_freep(&ac->che[type][i]);
|
|
}
|
|
}
|
|
|
|
ff_mdct_end(&ac->mdct);
|
|
ff_mdct_end(&ac->mdct_small);
|
|
ff_mdct_end(&ac->mdct_ltp);
|
|
return 0;
|
|
}
|
|
|
|
|
|
#define LOAS_SYNC_WORD 0x2b7 ///< 11 bits LOAS sync word
|
|
|
|
struct LATMContext {
|
|
AACContext aac_ctx; ///< containing AACContext
|
|
int initialized; ///< initialized after a valid extradata was seen
|
|
|
|
// parser data
|
|
int audio_mux_version_A; ///< LATM syntax version
|
|
int frame_length_type; ///< 0/1 variable/fixed frame length
|
|
int frame_length; ///< frame length for fixed frame length
|
|
};
|
|
|
|
static inline uint32_t latm_get_value(GetBitContext *b)
|
|
{
|
|
int length = get_bits(b, 2);
|
|
|
|
return get_bits_long(b, (length+1)*8);
|
|
}
|
|
|
|
static int latm_decode_audio_specific_config(struct LATMContext *latmctx,
|
|
GetBitContext *gb, int asclen)
|
|
{
|
|
AACContext *ac = &latmctx->aac_ctx;
|
|
AVCodecContext *avctx = ac->avctx;
|
|
MPEG4AudioConfig m4ac = { 0 };
|
|
int config_start_bit = get_bits_count(gb);
|
|
int sync_extension = 0;
|
|
int bits_consumed, esize;
|
|
|
|
if (asclen) {
|
|
sync_extension = 1;
|
|
asclen = FFMIN(asclen, get_bits_left(gb));
|
|
} else
|
|
asclen = get_bits_left(gb);
|
|
|
|
if (config_start_bit % 8) {
|
|
av_log_missing_feature(latmctx->aac_ctx.avctx,
|
|
"Non-byte-aligned audio-specific config", 1);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
if (asclen <= 0)
|
|
return AVERROR_INVALIDDATA;
|
|
bits_consumed = decode_audio_specific_config(NULL, avctx, &m4ac,
|
|
gb->buffer + (config_start_bit / 8),
|
|
asclen, sync_extension);
|
|
|
|
if (bits_consumed < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if (!latmctx->initialized ||
|
|
ac->oc[1].m4ac.sample_rate != m4ac.sample_rate ||
|
|
ac->oc[1].m4ac.chan_config != m4ac.chan_config) {
|
|
|
|
if(latmctx->initialized) {
|
|
av_log(avctx, AV_LOG_INFO, "audio config changed\n");
|
|
} else {
|
|
av_log(avctx, AV_LOG_INFO, "initializing latmctx\n");
|
|
}
|
|
latmctx->initialized = 0;
|
|
|
|
esize = (bits_consumed+7) / 8;
|
|
|
|
if (avctx->extradata_size < esize) {
|
|
av_free(avctx->extradata);
|
|
avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE);
|
|
if (!avctx->extradata)
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
avctx->extradata_size = esize;
|
|
memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
|
|
memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
|
|
}
|
|
skip_bits_long(gb, bits_consumed);
|
|
|
|
return bits_consumed;
|
|
}
|
|
|
|
static int read_stream_mux_config(struct LATMContext *latmctx,
|
|
GetBitContext *gb)
|
|
{
|
|
int ret, audio_mux_version = get_bits(gb, 1);
|
|
|
|
latmctx->audio_mux_version_A = 0;
|
|
if (audio_mux_version)
|
|
latmctx->audio_mux_version_A = get_bits(gb, 1);
|
|
|
|
if (!latmctx->audio_mux_version_A) {
|
|
|
|
if (audio_mux_version)
|
|
latm_get_value(gb); // taraFullness
|
|
|
|
skip_bits(gb, 1); // allStreamSameTimeFraming
|
|
skip_bits(gb, 6); // numSubFrames
|
|
// numPrograms
|
|
if (get_bits(gb, 4)) { // numPrograms
|
|
av_log_missing_feature(latmctx->aac_ctx.avctx,
|
|
"Multiple programs", 1);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
// for each program (which there is only one in DVB)
|
|
|
|
// for each layer (which there is only one in DVB)
|
|
if (get_bits(gb, 3)) { // numLayer
|
|
av_log_missing_feature(latmctx->aac_ctx.avctx,
|
|
"Multiple layers", 1);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
// for all but first stream: use_same_config = get_bits(gb, 1);
|
|
if (!audio_mux_version) {
|
|
if ((ret = latm_decode_audio_specific_config(latmctx, gb, 0)) < 0)
|
|
return ret;
|
|
} else {
|
|
int ascLen = latm_get_value(gb);
|
|
if ((ret = latm_decode_audio_specific_config(latmctx, gb, ascLen)) < 0)
|
|
return ret;
|
|
ascLen -= ret;
|
|
skip_bits_long(gb, ascLen);
|
|
}
|
|
|
|
latmctx->frame_length_type = get_bits(gb, 3);
|
|
switch (latmctx->frame_length_type) {
|
|
case 0:
|
|
skip_bits(gb, 8); // latmBufferFullness
|
|
break;
|
|
case 1:
|
|
latmctx->frame_length = get_bits(gb, 9);
|
|
break;
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
skip_bits(gb, 6); // CELP frame length table index
|
|
break;
|
|
case 6:
|
|
case 7:
|
|
skip_bits(gb, 1); // HVXC frame length table index
|
|
break;
|
|
}
|
|
|
|
if (get_bits(gb, 1)) { // other data
|
|
if (audio_mux_version) {
|
|
latm_get_value(gb); // other_data_bits
|
|
} else {
|
|
int esc;
|
|
do {
|
|
esc = get_bits(gb, 1);
|
|
skip_bits(gb, 8);
|
|
} while (esc);
|
|
}
|
|
}
|
|
|
|
if (get_bits(gb, 1)) // crc present
|
|
skip_bits(gb, 8); // config_crc
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb)
|
|
{
|
|
uint8_t tmp;
|
|
|
|
if (ctx->frame_length_type == 0) {
|
|
int mux_slot_length = 0;
|
|
do {
|
|
tmp = get_bits(gb, 8);
|
|
mux_slot_length += tmp;
|
|
} while (tmp == 255);
|
|
return mux_slot_length;
|
|
} else if (ctx->frame_length_type == 1) {
|
|
return ctx->frame_length;
|
|
} else if (ctx->frame_length_type == 3 ||
|
|
ctx->frame_length_type == 5 ||
|
|
ctx->frame_length_type == 7) {
|
|
skip_bits(gb, 2); // mux_slot_length_coded
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int read_audio_mux_element(struct LATMContext *latmctx,
|
|
GetBitContext *gb)
|
|
{
|
|
int err;
|
|
uint8_t use_same_mux = get_bits(gb, 1);
|
|
if (!use_same_mux) {
|
|
if ((err = read_stream_mux_config(latmctx, gb)) < 0)
|
|
return err;
|
|
} else if (!latmctx->aac_ctx.avctx->extradata) {
|
|
av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG,
|
|
"no decoder config found\n");
|
|
return AVERROR(EAGAIN);
|
|
}
|
|
if (latmctx->audio_mux_version_A == 0) {
|
|
int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
|
|
if (mux_slot_length_bytes * 8 > get_bits_left(gb)) {
|
|
av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
|
|
return AVERROR_INVALIDDATA;
|
|
} else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) {
|
|
av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
|
|
"frame length mismatch %d << %d\n",
|
|
mux_slot_length_bytes * 8, get_bits_left(gb));
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int latm_decode_frame(AVCodecContext *avctx, void *out,
|
|
int *got_frame_ptr, AVPacket *avpkt)
|
|
{
|
|
struct LATMContext *latmctx = avctx->priv_data;
|
|
int muxlength, err;
|
|
GetBitContext gb;
|
|
|
|
init_get_bits(&gb, avpkt->data, avpkt->size * 8);
|
|
|
|
// check for LOAS sync word
|
|
if (get_bits(&gb, 11) != LOAS_SYNC_WORD)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
muxlength = get_bits(&gb, 13) + 3;
|
|
// not enough data, the parser should have sorted this out
|
|
if (muxlength > avpkt->size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if ((err = read_audio_mux_element(latmctx, &gb)) < 0)
|
|
return err;
|
|
|
|
if (!latmctx->initialized) {
|
|
if (!avctx->extradata) {
|
|
*got_frame_ptr = 0;
|
|
return avpkt->size;
|
|
} else {
|
|
push_output_configuration(&latmctx->aac_ctx);
|
|
if ((err = decode_audio_specific_config(
|
|
&latmctx->aac_ctx, avctx, &latmctx->aac_ctx.oc[1].m4ac,
|
|
avctx->extradata, avctx->extradata_size*8, 1)) < 0) {
|
|
pop_output_configuration(&latmctx->aac_ctx);
|
|
return err;
|
|
}
|
|
latmctx->initialized = 1;
|
|
}
|
|
}
|
|
|
|
if (show_bits(&gb, 12) == 0xfff) {
|
|
av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
|
|
"ADTS header detected, probably as result of configuration "
|
|
"misparsing\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if ((err = aac_decode_frame_int(avctx, out, got_frame_ptr, &gb, avpkt)) < 0)
|
|
return err;
|
|
|
|
return muxlength;
|
|
}
|
|
|
|
static av_cold int latm_decode_init(AVCodecContext *avctx)
|
|
{
|
|
struct LATMContext *latmctx = avctx->priv_data;
|
|
int ret = aac_decode_init(avctx);
|
|
|
|
if (avctx->extradata_size > 0)
|
|
latmctx->initialized = !ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
AVCodec ff_aac_decoder = {
|
|
.name = "aac",
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = AV_CODEC_ID_AAC,
|
|
.priv_data_size = sizeof(AACContext),
|
|
.init = aac_decode_init,
|
|
.close = aac_decode_close,
|
|
.decode = aac_decode_frame,
|
|
.long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
|
|
.sample_fmts = (const enum AVSampleFormat[]) {
|
|
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
|
|
},
|
|
.capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
|
|
.channel_layouts = aac_channel_layout,
|
|
.flush = flush,
|
|
};
|
|
|
|
/*
|
|
Note: This decoder filter is intended to decode LATM streams transferred
|
|
in MPEG transport streams which only contain one program.
|
|
To do a more complex LATM demuxing a separate LATM demuxer should be used.
|
|
*/
|
|
AVCodec ff_aac_latm_decoder = {
|
|
.name = "aac_latm",
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = AV_CODEC_ID_AAC_LATM,
|
|
.priv_data_size = sizeof(struct LATMContext),
|
|
.init = latm_decode_init,
|
|
.close = aac_decode_close,
|
|
.decode = latm_decode_frame,
|
|
.long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Coding LATM syntax)"),
|
|
.sample_fmts = (const enum AVSampleFormat[]) {
|
|
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
|
|
},
|
|
.capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
|
|
.channel_layouts = aac_channel_layout,
|
|
.flush = flush,
|
|
};
|