/* * * Copyright (C) 2002 the xine project * Copyright (C) 2002 the ffmpeg project * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * (SVQ1 Decoder) * Ported to mplayer by Arpi * Ported to libavcodec by Nick Kurshev * * SVQ1 Encoder (c) 2004 Mike Melanson */ /** * @file svq1.c * Sorenson Vector Quantizer #1 (SVQ1) video codec. * For more information of the SVQ1 algorithm, visit: * http://www.pcisys.net/~melanson/codecs/ */ //#define DEBUG_SVQ1 #include #include #include #include #include #include "common.h" #include "avcodec.h" #include "dsputil.h" #include "mpegvideo.h" #include "bswap.h" #undef NDEBUG #include extern const uint8_t mvtab[33][2]; static VLC svq1_block_type; static VLC svq1_motion_component; static VLC svq1_intra_multistage[6]; static VLC svq1_inter_multistage[6]; static VLC svq1_intra_mean; static VLC svq1_inter_mean; #define SVQ1_BLOCK_SKIP 0 #define SVQ1_BLOCK_INTER 1 #define SVQ1_BLOCK_INTER_4V 2 #define SVQ1_BLOCK_INTRA 3 typedef struct SVQ1Context { MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independant of MpegEncContext, so this will be removed then (FIXME/XXX) AVCodecContext *avctx; DSPContext dsp; AVFrame picture; AVFrame current_picture; AVFrame last_picture; PutBitContext pb; GetBitContext gb; PutBitContext reorder_pb[6]; //why ooh why this sick breadth first order, everything is slower and more complex int frame_width; int frame_height; /* Y plane block dimensions */ int y_block_width; int y_block_height; /* U & V plane (C planes) block dimensions */ int c_block_width; int c_block_height; unsigned char *c_plane; uint16_t *mb_type; uint32_t *dummy; int16_t (*motion_val8[3])[2]; int16_t (*motion_val16[3])[2]; int64_t rd_total; } SVQ1Context; /* motion vector (prediction) */ typedef struct svq1_pmv_s { int x; int y; } svq1_pmv_t; #include "svq1_cb.h" #include "svq1_vlc.h" static const uint16_t checksum_table[256] = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF, 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE, 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D, 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC, 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B, 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A, 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49, 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78, 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256, 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634, 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3, 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92, 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1, 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0 }; static const uint8_t string_table[256] = { 0x00, 0xD5, 0x7F, 0xAA, 0xFE, 0x2B, 0x81, 0x54, 0x29, 0xFC, 0x56, 0x83, 0xD7, 0x02, 0xA8, 0x7D, 0x52, 0x87, 0x2D, 0xF8, 0xAC, 0x79, 0xD3, 0x06, 0x7B, 0xAE, 0x04, 0xD1, 0x85, 0x50, 0xFA, 0x2F, 0xA4, 0x71, 0xDB, 0x0E, 0x5A, 0x8F, 0x25, 0xF0, 0x8D, 0x58, 0xF2, 0x27, 0x73, 0xA6, 0x0C, 0xD9, 0xF6, 0x23, 0x89, 0x5C, 0x08, 0xDD, 0x77, 0xA2, 0xDF, 0x0A, 0xA0, 0x75, 0x21, 0xF4, 0x5E, 0x8B, 0x9D, 0x48, 0xE2, 0x37, 0x63, 0xB6, 0x1C, 0xC9, 0xB4, 0x61, 0xCB, 0x1E, 0x4A, 0x9F, 0x35, 0xE0, 0xCF, 0x1A, 0xB0, 0x65, 0x31, 0xE4, 0x4E, 0x9B, 0xE6, 0x33, 0x99, 0x4C, 0x18, 0xCD, 0x67, 0xB2, 0x39, 0xEC, 0x46, 0x93, 0xC7, 0x12, 0xB8, 0x6D, 0x10, 0xC5, 0x6F, 0xBA, 0xEE, 0x3B, 0x91, 0x44, 0x6B, 0xBE, 0x14, 0xC1, 0x95, 0x40, 0xEA, 0x3F, 0x42, 0x97, 0x3D, 0xE8, 0xBC, 0x69, 0xC3, 0x16, 0xEF, 0x3A, 0x90, 0x45, 0x11, 0xC4, 0x6E, 0xBB, 0xC6, 0x13, 0xB9, 0x6C, 0x38, 0xED, 0x47, 0x92, 0xBD, 0x68, 0xC2, 0x17, 0x43, 0x96, 0x3C, 0xE9, 0x94, 0x41, 0xEB, 0x3E, 0x6A, 0xBF, 0x15, 0xC0, 0x4B, 0x9E, 0x34, 0xE1, 0xB5, 0x60, 0xCA, 0x1F, 0x62, 0xB7, 0x1D, 0xC8, 0x9C, 0x49, 0xE3, 0x36, 0x19, 0xCC, 0x66, 0xB3, 0xE7, 0x32, 0x98, 0x4D, 0x30, 0xE5, 0x4F, 0x9A, 0xCE, 0x1B, 0xB1, 0x64, 0x72, 0xA7, 0x0D, 0xD8, 0x8C, 0x59, 0xF3, 0x26, 0x5B, 0x8E, 0x24, 0xF1, 0xA5, 0x70, 0xDA, 0x0F, 0x20, 0xF5, 0x5F, 0x8A, 0xDE, 0x0B, 0xA1, 0x74, 0x09, 0xDC, 0x76, 0xA3, 0xF7, 0x22, 0x88, 0x5D, 0xD6, 0x03, 0xA9, 0x7C, 0x28, 0xFD, 0x57, 0x82, 0xFF, 0x2A, 0x80, 0x55, 0x01, 0xD4, 0x7E, 0xAB, 0x84, 0x51, 0xFB, 0x2E, 0x7A, 0xAF, 0x05, 0xD0, 0xAD, 0x78, 0xD2, 0x07, 0x53, 0x86, 0x2C, 0xF9 }; #define SVQ1_PROCESS_VECTOR()\ for (; level > 0; i++) {\ /* process next depth */\ if (i == m) {\ m = n;\ if (--level == 0)\ break;\ }\ /* divide block if next bit set */\ if (get_bits (bitbuf, 1) == 0)\ break;\ /* add child nodes */\ list[n++] = list[i];\ list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1));\ } #define SVQ1_ADD_CODEBOOK()\ /* add codebook entries to vector */\ for (j=0; j < stages; j++) {\ n3 = codebook[entries[j]] ^ 0x80808080;\ n1 += ((n3 & 0xFF00FF00) >> 8);\ n2 += (n3 & 0x00FF00FF);\ }\ \ /* clip to [0..255] */\ if (n1 & 0xFF00FF00) {\ n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;\ n1 += 0x7F007F00;\ n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;\ n1 &= (n3 & 0x00FF00FF);\ }\ \ if (n2 & 0xFF00FF00) {\ n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;\ n2 += 0x7F007F00;\ n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;\ n2 &= (n3 & 0x00FF00FF);\ } #define SVQ1_DO_CODEBOOK_INTRA()\ for (y=0; y < height; y++) {\ for (x=0; x < (width / 4); x++, codebook++) {\ n1 = n4;\ n2 = n4;\ SVQ1_ADD_CODEBOOK()\ /* store result */\ dst[x] = (n1 << 8) | n2;\ }\ dst += (pitch / 4);\ } #define SVQ1_DO_CODEBOOK_NONINTRA()\ for (y=0; y < height; y++) {\ for (x=0; x < (width / 4); x++, codebook++) {\ n3 = dst[x];\ /* add mean value to vector */\ n1 = ((n3 & 0xFF00FF00) >> 8) + n4;\ n2 = (n3 & 0x00FF00FF) + n4;\ SVQ1_ADD_CODEBOOK()\ /* store result */\ dst[x] = (n1 << 8) | n2;\ }\ dst += (pitch / 4);\ } #define SVQ1_CALC_CODEBOOK_ENTRIES(cbook)\ codebook = (const uint32_t *) cbook[level];\ bit_cache = get_bits (bitbuf, 4*stages);\ /* calculate codebook entries for this vector */\ for (j=0; j < stages; j++) {\ entries[j] = (((bit_cache >> (4*(stages - j - 1))) & 0xF) + 16*j) << (level + 1);\ }\ mean -= (stages * 128);\ n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF); static int svq1_decode_block_intra (GetBitContext *bitbuf, uint8_t *pixels, int pitch ) { uint32_t bit_cache; uint8_t *list[63]; uint32_t *dst; const uint32_t *codebook; int entries[6]; int i, j, m, n; int mean, stages; unsigned x, y, width, height, level; uint32_t n1, n2, n3, n4; /* initialize list for breadth first processing of vectors */ list[0] = pixels; /* recursively process vector */ for (i=0, m=1, n=1, level=5; i < n; i++) { SVQ1_PROCESS_VECTOR(); /* destination address and vector size */ dst = (uint32_t *) list[i]; width = 1 << ((4 + level) /2); height = 1 << ((3 + level) /2); /* get number of stages (-1 skips vector, 0 for mean only) */ stages = get_vlc2(bitbuf, svq1_intra_multistage[level].table, 3, 3) - 1; if (stages == -1) { for (y=0; y < height; y++) { memset (&dst[y*(pitch / 4)], 0, width); } continue; /* skip vector */ } if ((stages > 0) && (level >= 4)) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "Error (svq1_decode_block_intra): invalid vector: stages=%i level=%i\n",stages,level); #endif return -1; /* invalid vector */ } mean = get_vlc2(bitbuf, svq1_intra_mean.table, 8, 3); if (stages == 0) { for (y=0; y < height; y++) { memset (&dst[y*(pitch / 4)], mean, width); } } else { SVQ1_CALC_CODEBOOK_ENTRIES(svq1_intra_codebooks); SVQ1_DO_CODEBOOK_INTRA() } } return 0; } static int svq1_decode_block_non_intra (GetBitContext *bitbuf, uint8_t *pixels, int pitch ) { uint32_t bit_cache; uint8_t *list[63]; uint32_t *dst; const uint32_t *codebook; int entries[6]; int i, j, m, n; int mean, stages; int x, y, width, height, level; uint32_t n1, n2, n3, n4; /* initialize list for breadth first processing of vectors */ list[0] = pixels; /* recursively process vector */ for (i=0, m=1, n=1, level=5; i < n; i++) { SVQ1_PROCESS_VECTOR(); /* destination address and vector size */ dst = (uint32_t *) list[i]; width = 1 << ((4 + level) /2); height = 1 << ((3 + level) /2); /* get number of stages (-1 skips vector, 0 for mean only) */ stages = get_vlc2(bitbuf, svq1_inter_multistage[level].table, 3, 2) - 1; if (stages == -1) continue; /* skip vector */ if ((stages > 0) && (level >= 4)) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "Error (svq1_decode_block_non_intra): invalid vector: stages=%i level=%i\n",stages,level); #endif return -1; /* invalid vector */ } mean = get_vlc2(bitbuf, svq1_inter_mean.table, 9, 3) - 256; SVQ1_CALC_CODEBOOK_ENTRIES(svq1_inter_codebooks); SVQ1_DO_CODEBOOK_NONINTRA() } return 0; } static int svq1_decode_motion_vector (GetBitContext *bitbuf, svq1_pmv_t *mv, svq1_pmv_t **pmv) { int diff; int i; for (i=0; i < 2; i++) { /* get motion code */ diff = get_vlc2(bitbuf, svq1_motion_component.table, 7, 2); if(diff<0) return -1; else if(diff){ if(get_bits1(bitbuf)) diff= -diff; } /* add median of motion vector predictors and clip result */ if (i == 1) mv->y = ((diff + mid_pred(pmv[0]->y, pmv[1]->y, pmv[2]->y)) << 26) >> 26; else mv->x = ((diff + mid_pred(pmv[0]->x, pmv[1]->x, pmv[2]->x)) << 26) >> 26; } return 0; } static void svq1_skip_block (uint8_t *current, uint8_t *previous, int pitch, int x, int y) { uint8_t *src; uint8_t *dst; int i; src = &previous[x + y*pitch]; dst = current; for (i=0; i < 16; i++) { memcpy (dst, src, 16); src += pitch; dst += pitch; } } static int svq1_motion_inter_block (MpegEncContext *s, GetBitContext *bitbuf, uint8_t *current, uint8_t *previous, int pitch, svq1_pmv_t *motion, int x, int y) { uint8_t *src; uint8_t *dst; svq1_pmv_t mv; svq1_pmv_t *pmv[3]; int result; /* predict and decode motion vector */ pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } result = svq1_decode_motion_vector (bitbuf, &mv, pmv); if (result != 0) return result; motion[0].x = motion[(x / 8) + 2].x = motion[(x / 8) + 3].x = mv.x; motion[0].y = motion[(x / 8) + 2].y = motion[(x / 8) + 3].y = mv.y; if(y + (mv.y >> 1)<0) mv.y= 0; if(x + (mv.x >> 1)<0) mv.x= 0; #if 0 int w= (s->width+15)&~15; int h= (s->height+15)&~15; if(x + (mv.x >> 1)<0 || y + (mv.y >> 1)<0 || x + (mv.x >> 1) + 16 > w || y + (mv.y >> 1) + 16> h) av_log(s->avctx, AV_LOG_INFO, "%d %d %d %d\n", x, y, x + (mv.x >> 1), y + (mv.y >> 1)); #endif src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1))*pitch]; dst = current; s->dsp.put_pixels_tab[0][((mv.y & 1) << 1) | (mv.x & 1)](dst,src,pitch,16); return 0; } static int svq1_motion_inter_4v_block (MpegEncContext *s, GetBitContext *bitbuf, uint8_t *current, uint8_t *previous, int pitch, svq1_pmv_t *motion,int x, int y) { uint8_t *src; uint8_t *dst; svq1_pmv_t mv; svq1_pmv_t *pmv[4]; int i, result; /* predict and decode motion vector (0) */ pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } result = svq1_decode_motion_vector (bitbuf, &mv, pmv); if (result != 0) return result; /* predict and decode motion vector (1) */ pmv[0] = &mv; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 3]; } result = svq1_decode_motion_vector (bitbuf, &motion[0], pmv); if (result != 0) return result; /* predict and decode motion vector (2) */ pmv[1] = &motion[0]; pmv[2] = &motion[(x / 8) + 1]; result = svq1_decode_motion_vector (bitbuf, &motion[(x / 8) + 2], pmv); if (result != 0) return result; /* predict and decode motion vector (3) */ pmv[2] = &motion[(x / 8) + 2]; pmv[3] = &motion[(x / 8) + 3]; result = svq1_decode_motion_vector (bitbuf, pmv[3], pmv); if (result != 0) return result; /* form predictions */ for (i=0; i < 4; i++) { int mvx= pmv[i]->x + (i&1)*16; int mvy= pmv[i]->y + (i>>1)*16; ///XXX /FIXME cliping or padding? if(y + (mvy >> 1)<0) mvy= 0; if(x + (mvx >> 1)<0) mvx= 0; #if 0 int w= (s->width+15)&~15; int h= (s->height+15)&~15; if(x + (mvx >> 1)<0 || y + (mvy >> 1)<0 || x + (mvx >> 1) + 8 > w || y + (mvy >> 1) + 8> h) av_log(s->avctx, AV_LOG_INFO, "%d %d %d %d\n", x, y, x + (mvx >> 1), y + (mvy >> 1)); #endif src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1))*pitch]; dst = current; s->dsp.put_pixels_tab[1][((mvy & 1) << 1) | (mvx & 1)](dst,src,pitch,8); /* select next block */ if (i & 1) { current += 8*(pitch - 1); } else { current += 8; } } return 0; } static int svq1_decode_delta_block (MpegEncContext *s, GetBitContext *bitbuf, uint8_t *current, uint8_t *previous, int pitch, svq1_pmv_t *motion, int x, int y) { uint32_t block_type; int result = 0; /* get block type */ block_type = get_vlc2(bitbuf, svq1_block_type.table, 2, 2); /* reset motion vectors */ if (block_type == SVQ1_BLOCK_SKIP || block_type == SVQ1_BLOCK_INTRA) { motion[0].x = motion[0].y = motion[(x / 8) + 2].x = motion[(x / 8) + 2].y = motion[(x / 8) + 3].x = motion[(x / 8) + 3].y = 0; } switch (block_type) { case SVQ1_BLOCK_SKIP: svq1_skip_block (current, previous, pitch, x, y); break; case SVQ1_BLOCK_INTER: result = svq1_motion_inter_block (s, bitbuf, current, previous, pitch, motion, x, y); if (result != 0) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "Error in svq1_motion_inter_block %i\n",result); #endif break; } result = svq1_decode_block_non_intra (bitbuf, current, pitch); break; case SVQ1_BLOCK_INTER_4V: result = svq1_motion_inter_4v_block (s, bitbuf, current, previous, pitch, motion, x, y); if (result != 0) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "Error in svq1_motion_inter_4v_block %i\n",result); #endif break; } result = svq1_decode_block_non_intra (bitbuf, current, pitch); break; case SVQ1_BLOCK_INTRA: result = svq1_decode_block_intra (bitbuf, current, pitch); break; } return result; } /* standard video sizes */ static struct { int width; int height; } svq1_frame_size_table[8] = { { 160, 120 }, { 128, 96 }, { 176, 144 }, { 352, 288 }, { 704, 576 }, { 240, 180 }, { 320, 240 }, { -1, -1 } }; static uint16_t svq1_packet_checksum (uint8_t *data, int length, int value) { int i; for (i=0; i < length; i++) { value = checksum_table[data[i] ^ (value >> 8)] ^ ((value & 0xFF) << 8); } return value; } static uint16_t svq1_component_checksum (uint16_t *pixels, int pitch, int width, int height, int value) { int x, y; for (y=0; y < height; y++) { for (x=0; x < width; x++) { value = checksum_table[pixels[x] ^ (value >> 8)] ^ ((value & 0xFF) << 8); } pixels += pitch; } return value; } static void svq1_parse_string (GetBitContext *bitbuf, uint8_t *out) { uint8_t seed; int i; out[0] = get_bits (bitbuf, 8); seed = string_table[out[0]]; for (i=1; i <= out[0]; i++) { out[i] = get_bits (bitbuf, 8) ^ seed; seed = string_table[out[i] ^ seed]; } } static int svq1_decode_frame_header (GetBitContext *bitbuf,MpegEncContext *s) { int frame_size_code; int temporal_reference; temporal_reference = get_bits (bitbuf, 8); /* frame type */ s->pict_type= get_bits (bitbuf, 2)+1; if(s->pict_type==4) return -1; if (s->pict_type == I_TYPE) { /* unknown fields */ if (s->f_code == 0x50 || s->f_code == 0x60) { int csum = get_bits (bitbuf, 16); csum = svq1_packet_checksum ((uint8_t *)bitbuf->buffer, bitbuf->size_in_bits>>3, csum); // av_log(s->avctx, AV_LOG_INFO, "%s checksum (%02x) for packet data\n", // (csum == 0) ? "correct" : "incorrect", csum); } if ((s->f_code ^ 0x10) >= 0x50) { char msg[256]; svq1_parse_string (bitbuf, (char *) msg); av_log(s->avctx, AV_LOG_INFO, "embedded message: \"%s\"\n", (char *) msg); } skip_bits (bitbuf, 2); skip_bits (bitbuf, 2); skip_bits1 (bitbuf); /* load frame size */ frame_size_code = get_bits (bitbuf, 3); if (frame_size_code == 7) { /* load width, height (12 bits each) */ s->width = get_bits (bitbuf, 12); s->height = get_bits (bitbuf, 12); if (!s->width || !s->height) return -1; } else { /* get width, height from table */ s->width = svq1_frame_size_table[frame_size_code].width; s->height = svq1_frame_size_table[frame_size_code].height; } } /* unknown fields */ if (get_bits (bitbuf, 1) == 1) { skip_bits1 (bitbuf); /* use packet checksum if (1) */ skip_bits1 (bitbuf); /* component checksums after image data if (1) */ if (get_bits (bitbuf, 2) != 0) return -1; } if (get_bits (bitbuf, 1) == 1) { skip_bits1 (bitbuf); skip_bits (bitbuf, 4); skip_bits1 (bitbuf); skip_bits (bitbuf, 2); while (get_bits (bitbuf, 1) == 1) { skip_bits (bitbuf, 8); } } return 0; } static int svq1_decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { MpegEncContext *s=avctx->priv_data; uint8_t *current, *previous; int result, i, x, y, width, height; AVFrame *pict = data; *data_size=0; if(buf==NULL && buf_size==0){ return 0; } /* initialize bit buffer */ init_get_bits(&s->gb,buf,buf_size*8); /* decode frame header */ s->f_code = get_bits (&s->gb, 22); if ((s->f_code & ~0x70) || !(s->f_code & 0x60)) return -1; /* swap some header bytes (why?) */ if (s->f_code != 0x20) { uint32_t *src = (uint32_t *) (buf + 4); for (i=0; i < 4; i++) { src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i]; } } result = svq1_decode_frame_header (&s->gb, s); if (result != 0) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "Error in svq1_decode_frame_header %i\n",result); #endif return result; } //FIXME this avoids some confusion for "B frames" without 2 references //this should be removed after libavcodec can handle more flexible picture types & ordering if(s->pict_type==B_TYPE && s->last_picture_ptr==NULL) return buf_size; if(avctx->hurry_up && s->pict_type==B_TYPE) return buf_size; if(MPV_frame_start(s, avctx) < 0) return -1; /* decode y, u and v components */ for (i=0; i < 3; i++) { int linesize; if (i == 0) { width = (s->width+15)&~15; height = (s->height+15)&~15; linesize= s->linesize; } else { if(s->flags&CODEC_FLAG_GRAY) break; width = (s->width/4+15)&~15; height = (s->height/4+15)&~15; linesize= s->uvlinesize; } current = s->current_picture.data[i]; if(s->pict_type==B_TYPE){ previous = s->next_picture.data[i]; }else{ previous = s->last_picture.data[i]; } if (s->pict_type == I_TYPE) { /* keyframe */ for (y=0; y < height; y+=16) { for (x=0; x < width; x+=16) { result = svq1_decode_block_intra (&s->gb, ¤t[x], linesize); if (result != 0) { //#ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "Error in svq1_decode_block %i (keyframe)\n",result); //#endif return result; } } current += 16*linesize; } } else { svq1_pmv_t pmv[width/8+3]; /* delta frame */ memset (pmv, 0, ((width / 8) + 3) * sizeof(svq1_pmv_t)); for (y=0; y < height; y+=16) { for (x=0; x < width; x+=16) { result = svq1_decode_delta_block (s, &s->gb, ¤t[x], previous, linesize, pmv, x, y); if (result != 0) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "Error in svq1_decode_delta_block %i\n",result); #endif return result; } } pmv[0].x = pmv[0].y = 0; current += 16*linesize; } } } *pict = *(AVFrame*)&s->current_picture; MPV_frame_end(s); *data_size=sizeof(AVFrame); return buf_size; } static int svq1_decode_init(AVCodecContext *avctx) { MpegEncContext *s = avctx->priv_data; int i; MPV_decode_defaults(s); s->avctx = avctx; s->width = (avctx->width+3)&~3; s->height = (avctx->height+3)&~3; s->codec_id= avctx->codec->id; avctx->pix_fmt = PIX_FMT_YUV410P; avctx->has_b_frames= 1; // not true, but DP frames and these behave like unidirectional b frames s->flags= avctx->flags; if (MPV_common_init(s) < 0) return -1; init_vlc(&svq1_block_type, 2, 4, &svq1_block_type_vlc[0][1], 2, 1, &svq1_block_type_vlc[0][0], 2, 1); init_vlc(&svq1_motion_component, 7, 33, &mvtab[0][1], 2, 1, &mvtab[0][0], 2, 1); for (i = 0; i < 6; i++) { init_vlc(&svq1_intra_multistage[i], 3, 8, &svq1_intra_multistage_vlc[i][0][1], 2, 1, &svq1_intra_multistage_vlc[i][0][0], 2, 1); init_vlc(&svq1_inter_multistage[i], 3, 8, &svq1_inter_multistage_vlc[i][0][1], 2, 1, &svq1_inter_multistage_vlc[i][0][0], 2, 1); } init_vlc(&svq1_intra_mean, 8, 256, &svq1_intra_mean_vlc[0][1], 4, 2, &svq1_intra_mean_vlc[0][0], 4, 2); init_vlc(&svq1_inter_mean, 9, 512, &svq1_inter_mean_vlc[0][1], 4, 2, &svq1_inter_mean_vlc[0][0], 4, 2); return 0; } static int svq1_decode_end(AVCodecContext *avctx) { MpegEncContext *s = avctx->priv_data; MPV_common_end(s); return 0; } static void svq1_write_header(SVQ1Context *s, int frame_type) { /* frame code */ put_bits(&s->pb, 22, 0x20); /* temporal reference (sure hope this is a "don't care") */ put_bits(&s->pb, 8, 0x00); /* frame type */ put_bits(&s->pb, 2, frame_type - 1); if (frame_type == I_TYPE) { /* no checksum since frame code is 0x20 */ /* no embedded string either */ /* output 5 unknown bits (2 + 2 + 1) */ put_bits(&s->pb, 5, 0); /* forget about matching up resolutions, just use the free-form * resolution code (7) for now */ put_bits(&s->pb, 3, 7); put_bits(&s->pb, 12, s->frame_width); put_bits(&s->pb, 12, s->frame_height); } /* no checksum or extra data (next 2 bits get 0) */ put_bits(&s->pb, 2, 0); } int level_sizes[6] = { 8, 16, 32, 64, 128, 256 }; int level_log2_sizes[6] = { 3, 4, 5, 6, 7, 8 }; #define IABS(x) ((x < 0) ? (-(x)) : x) //#define USE_MAD_ALGORITHM #ifdef USE_MAD_ALGORITHM #define QUALITY_THRESHOLD 100 #define THRESHOLD_MULTIPLIER 0.6 /* This function calculates vector differences using mean absolute * difference (MAD). */ static int encode_vector(SVQ1Context *s, unsigned char *vector, unsigned int level, int threshold) { int i, j, k; int mean; signed short work_vector[256]; int best_codebook; int best_score; int multistage_codebooks[6]; int number_of_stages = 0; int8_t *current_codebook; int total_deviation; int ret; #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " ** recursive entry point: encoding level %d vector at threshold %d\n", level, threshold); #endif if (level > 5) { av_log(s->avctx, AV_LOG_INFO, " help! level %d > 5\n", level); return 0; } #ifdef DEBUG_SVQ1 for (i = 0; i < level_sizes[level]; i++) av_log(s->avctx, AV_LOG_INFO, " %02X", vector[i]); av_log(s->avctx, AV_LOG_INFO, "\n"); #endif /* calculate the mean */ mean = 0; for (i = 0; i < level_sizes[level]; i++) mean += vector[i]; mean >>= level_log2_sizes[level]; #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " vector mean = 0x%02X\n", mean); #endif /* remove the mean from the vector */ total_deviation = 0; for (i = 0; i < level_sizes[level]; i++) { work_vector[i] = (signed short)vector[i] - mean; total_deviation += IABS(work_vector[i]); #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " %d", work_vector[i]); #endif } #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "\n total deviation = %d\n", total_deviation); #endif if (total_deviation < threshold) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " mean-only encoding found for level %d vector, mean = %d\n", level, mean); #endif /* indicate that this is the end of the subdivisions */ if (level > 0) put_bits(&s->pb, 1, 0); /* index 1 in the table indicates mean-only encoding */ put_bits(&s->pb, svq1_intra_multistage_vlc[level][1][1], svq1_intra_multistage_vlc[level][1][0]); put_bits(&s->pb, svq1_intra_mean_vlc[mean][1], svq1_intra_mean_vlc[mean][0]); #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " mean-only L%d, VLC = (0x%X, %d), mean = %d (0x%X, %d)\n", level, svq1_intra_multistage_vlc[level][1 + number_of_stages][0], svq1_intra_multistage_vlc[level][1 + number_of_stages][1], mean, svq1_intra_mean_vlc[mean][0], svq1_intra_mean_vlc[mean][1]); #endif ret = 0; } else { if (level <= 3) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " multistage VQ search...\n"); #endif /* conduct multistage VQ search, for each stage... */ for (i = 0; i < 6; i++) { best_codebook = 0; best_score = 0x7FFFFFFF; /* for each codebook in stage */ for (j = 0; j < 16; j++) { total_deviation = 0; current_codebook = &svq1_intra_codebooks[level] [i * level_sizes[level] * 16 + j * level_sizes[level]]; /* calculate the total deviation for the vector */ for (k = 0; k < level_sizes[level]; k++) { total_deviation += IABS(work_vector[k] - current_codebook[k]); } /* lowest score so far? */ if (total_deviation < best_score) { best_score = total_deviation; best_codebook = j; } #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " after %d, %d, best codebook is %d with a score of %d (score was %d)\n", i, j, best_codebook, best_score, total_deviation); #endif } /* apply the winning codebook to the work vector and check if * the vector meets the quality threshold */ total_deviation = 0; current_codebook = &svq1_intra_codebooks[level] [i * level_sizes[level] * 16 + j * level_sizes[level]]; multistage_codebooks[number_of_stages++] = best_codebook; for (j = 0; j < level_sizes[level]; j++) { work_vector[j] = work_vector[j] - current_codebook[j]; total_deviation += IABS(work_vector[j]); } /* do not go forward with the rest of the search if an acceptable * codebook combination has been found */ if (total_deviation < threshold) break; } } if ((total_deviation < threshold) || (level == 0)) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " level %d VQ encoding found using mean %d and codebooks", level, mean); for (i = 0; i < number_of_stages; i++) av_log(s->avctx, AV_LOG_INFO, " %d", multistage_codebooks[i]); av_log(s->avctx, AV_LOG_INFO, "\n"); #endif /* indicate that this is the end of the subdivisions */ if (level > 0) put_bits(&s->pb, 1, 0); /* output the encoding */ put_bits(&s->pb, svq1_intra_multistage_vlc[level][1 + number_of_stages][1], svq1_intra_multistage_vlc[level][1 + number_of_stages][0]); put_bits(&s->pb, svq1_intra_mean_vlc[mean][1], svq1_intra_mean_vlc[mean][0]); #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " L%d: multistage = %d (0x%X, %d), mean = %d (0x%X, %d), codebooks = ", level, number_of_stages, svq1_intra_multistage_vlc[level][1 + number_of_stages][0], svq1_intra_multistage_vlc[level][1 + number_of_stages][1], mean, svq1_intra_mean_vlc[mean][0], svq1_intra_mean_vlc[mean][1]); #endif for (i = 0; i < number_of_stages; i++) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "%d ", multistage_codebooks[i]); #endif put_bits(&s->pb, 4, multistage_codebooks[i]); } #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "\n"); #endif ret = 0; } else { /* output a subdivision bit to the encoded stream and signal to * the calling function that this vector could not be * coded at the requested threshold and needs to be subdivided */ put_bits(&s->pb, 1, 1); ret = 1; } } return ret; } #else #define QUALITY_THRESHOLD 100 #define THRESHOLD_MULTIPLIER 0.6 /* This function calculates vector differences using mean square * error (MSE). */ static int encode_vector(SVQ1Context *s, unsigned char *vector, unsigned int level, int threshold) { int i, j, k; int mean; signed short work_vector[256]; int best_codebook; int best_score; int multistage_codebooks[6]; int number_of_stages = 0; int8_t *current_codebook; int mse; int diff; int ret; #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " ** recursive entry point: encoding level %d vector at threshold %d\n", level, threshold); #endif if (level > 5) { av_log(s->avctx, AV_LOG_INFO, " help! level %d > 5\n", level); return 0; } #ifdef DEBUG_SVQ1 for (i = 0; i < level_sizes[level]; i++) av_log(s->avctx, AV_LOG_INFO, " %02X", vector[i]); av_log(s->avctx, AV_LOG_INFO, "\n"); #endif /* calculate the mean */ mean = 0; for (i = 0; i < level_sizes[level]; i++) mean += vector[i]; mean >>= level_log2_sizes[level]; #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " vector mean = 0x%02X\n", mean); #endif /* remove the mean from the vector and compute the resulting MSE */ mse = 0; for (i = 0; i < level_sizes[level]; i++) { work_vector[i] = (signed short)vector[i] - mean; mse += (work_vector[i] * work_vector[i]); #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " %d", work_vector[i]); #endif } mse >>= level_log2_sizes[level]; #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "\n MSE = %d\n", mse); #endif if (mse < threshold) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " mean-only encoding found for level %d vector, mean = %d\n", level, mean); #endif /* indicate that this is the end of the subdivisions */ if (level > 0) put_bits(&s->pb, 1, 0); /* index 1 in the table indicates mean-only encoding */ put_bits(&s->pb, svq1_intra_multistage_vlc[level][1][1], svq1_intra_multistage_vlc[level][1][0]); put_bits(&s->pb, svq1_intra_mean_vlc[mean][1], svq1_intra_mean_vlc[mean][0]); #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " mean-only L%d, VLC = (0x%X, %d), mean = %d (0x%X, %d)\n", level, svq1_intra_multistage_vlc[level][1 + number_of_stages][0], svq1_intra_multistage_vlc[level][1 + number_of_stages][1], mean, svq1_intra_mean_vlc[mean][0], svq1_intra_mean_vlc[mean][1]); #endif ret = 0; } else { if (level <= 3) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " multistage VQ search...\n"); #endif /* conduct multistage VQ search, for each stage... */ for (i = 0; i < 6; i++) { best_codebook = 0; best_score = 0x7FFFFFFF; /* for each codebook in stage */ for (j = 0; j < 16; j++) { mse = 0; current_codebook = &svq1_intra_codebooks[level] [i * level_sizes[level] * 16 + j * level_sizes[level]]; /* calculate the MSE for this vector */ for (k = 0; k < level_sizes[level]; k++) { diff = work_vector[k] - current_codebook[k]; mse += (diff * diff); } mse >>= level_log2_sizes[level]; /* lowest score so far? */ if (mse < best_score) { best_score = mse; best_codebook = j; } #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " after %d, %d, best codebook is %d with a score of %d (score was %d)\n", i, j, best_codebook, best_score, mse); #endif } /* apply the winning codebook to the work vector and check if * the vector meets the quality threshold */ mse = 0; current_codebook = &svq1_intra_codebooks[level] [i * level_sizes[level] * 16 + j * level_sizes[level]]; multistage_codebooks[number_of_stages++] = best_codebook; for (j = 0; j < level_sizes[level]; j++) { work_vector[j] = work_vector[j] - current_codebook[j]; mse += (work_vector[j] * work_vector[j]); } mse >>= level_log2_sizes[level]; /* do not go forward with the rest of the search if an acceptable * codebook combination has been found */ if (mse < threshold) break; } } if ((mse < threshold) || (level == 0)) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " level %d VQ encoding found using mean %d and codebooks", level, mean); for (i = 0; i < number_of_stages; i++) av_log(s->avctx, AV_LOG_INFO, " %d", multistage_codebooks[i]); av_log(s->avctx, AV_LOG_INFO, "\n"); #endif /* indicate that this is the end of the subdivisions */ if (level > 0) put_bits(&s->pb, 1, 0); /* output the encoding */ put_bits(&s->pb, svq1_intra_multistage_vlc[level][1 + number_of_stages][1], svq1_intra_multistage_vlc[level][1 + number_of_stages][0]); put_bits(&s->pb, svq1_intra_mean_vlc[mean][1], svq1_intra_mean_vlc[mean][0]); #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " L%d: multistage = %d (0x%X, %d), mean = %d (0x%X, %d), codebooks = ", level, number_of_stages, svq1_intra_multistage_vlc[level][1 + number_of_stages][0], svq1_intra_multistage_vlc[level][1 + number_of_stages][1], mean, svq1_intra_mean_vlc[mean][0], svq1_intra_mean_vlc[mean][1]); #endif for (i = 0; i < number_of_stages; i++) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "%d ", multistage_codebooks[i]); #endif put_bits(&s->pb, 4, multistage_codebooks[i]); } #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "\n"); #endif ret = 0; } else { /* output a subdivision bit to the encoded stream and signal to * the calling function that this vector could not be * coded at the requested threshold and needs to be subdivided */ put_bits(&s->pb, 1, 1); ret = 1; } } return ret; } #endif static int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra){ int count, y, x, i, j, split, best_mean, best_score, best_count; int best_vector[6]; int block_sum[7]= {0, 0, 0, 0, 0, 0}; int w= 2<<((level+2)>>1); int h= 2<<((level+1)>>1); int size=w*h; int16_t block[7][256]; const int8_t *codebook_sum, *codebook; const uint16_t (*mean_vlc)[2]; const uint8_t (*multistage_vlc)[2]; best_score=0; //FIXME optimize, this doenst need to be done multiple times if(intra){ codebook_sum= svq1_intra_codebook_sum[level]; codebook= svq1_intra_codebooks[level]; mean_vlc= svq1_intra_mean_vlc; multistage_vlc= svq1_intra_multistage_vlc[level]; for(y=0; y>(level+3)); best_mean= (block_sum[0] + (size>>1)) >> (level+3); if(level<4){ for(count=1; count<7; count++){ int best_vector_score= INT_MAX; int best_vector_sum=-999, best_vector_mean=-999; const int stage= count-1; const int8_t *vector; for(i=0; i<16; i++){ int sum= codebook_sum[stage*16 + i]; int sqr=0; int diff, mean, score; vector = codebook + stage*size*16 + i*size; for(j=0; j>1)) >> (level+3); assert(mean >-300 && mean<300); if(intra) mean= clip(mean, 0, 255); else mean= clip(mean, -256, 255); score= sqr - ((diff*(int64_t)diff)>>(level+3)); //FIXME 64bit slooow if(score < best_vector_score){ best_vector_score= score; best_vector[stage]= i; best_vector_sum= sum; best_vector_mean= mean; } } assert(best_vector_mean != -999); vector= codebook + stage*size*16 + best_vector[stage]*size; for(j=0; j threshold && level){ int score=0; int offset= (level&1) ? stride*h/2 : w/2; PutBitContext backup[6]; for(i=level-1; i>=0; i--){ backup[i]= s->reorder_pb[i]; } score += encode_block(s, src , ref , decoded , stride, level-1, threshold>>1, lambda, intra); score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level-1, threshold>>1, lambda, intra); score += lambda; if(score < best_score){ best_score= score; split=1; }else{ for(i=level-1; i>=0; i--){ s->reorder_pb[i]= backup[i]; } } } if (level > 0) put_bits(&s->reorder_pb[level], 1, split); if(!split){ assert((best_mean >= 0 && best_mean<256) || !intra); assert(best_mean >= -256 && best_mean<256); assert(best_count >=0 && best_count<7); assert(level<4 || best_count==0); /* output the encoding */ put_bits(&s->reorder_pb[level], multistage_vlc[1 + best_count][1], multistage_vlc[1 + best_count][0]); put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1], mean_vlc[best_mean][0]); for (i = 0; i < best_count; i++){ assert(best_vector[i]>=0 && best_vector[i]<16); put_bits(&s->reorder_pb[level], 4, best_vector[i]); } for(y=0; ypicture.quality*s->picture.quality) >> (2*FF_LAMBDA_SHIFT); static int frame = 0; #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "********* frame #%d\n", frame++); #endif /* figure out the acceptable level thresholds in advance */ threshold[5] = QUALITY_THRESHOLD; for (level = 4; level >= 0; level--) threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER; block_width = (width + 15) / 16; block_height = (height + 15) / 16; if(s->picture.pict_type == P_TYPE){ s->m.avctx= s->avctx; s->m.current_picture_ptr= &s->m.current_picture; s->m.last_picture_ptr = &s->m.last_picture; s->m.last_picture.data[0]= ref_plane; s->m.linesize= s->m.last_picture.linesize[0]= s->m.new_picture.linesize[0]= s->m.current_picture.linesize[0]= stride; s->m.width= width; s->m.height= height; s->m.mb_width= block_width; s->m.mb_height= block_height; s->m.mb_stride= s->m.mb_width+1; s->m.b8_stride= 2*s->m.mb_width+1; s->m.f_code=1; s->m.pict_type= s->picture.pict_type; s->m.qscale= s->picture.quality/FF_QP2LAMBDA; s->m.me_method= s->avctx->me_method; if(!s->motion_val8[plane]){ s->motion_val8 [plane]= av_mallocz(s->m.b8_stride*block_height*2*2*sizeof(int16_t)); s->motion_val16[plane]= av_mallocz(s->m.mb_stride*block_height*2*sizeof(int16_t)); } s->m.mb_type= s->mb_type; //dummies, to avoid segfaults s->m.current_picture.mb_mean= s->dummy; s->m.current_picture.mb_var= s->dummy; s->m.current_picture.mc_mb_var= s->dummy; s->m.current_picture.mb_type= s->dummy; s->m.current_picture.motion_val[0]= s->motion_val8[plane]; s->m.p_mv_table= s->motion_val16[plane]; s->m.dsp= s->dsp; //move ff_init_me(&s->m); s->m.me.dia_size= s->avctx->dia_size; s->m.first_slice_line=1; for (y = 0; y < block_height; y++) { uint8_t src[stride*16]; s->m.new_picture.data[0]= src - y*16*stride; //ugly s->m.mb_y= y; for(i=0; i<16 && i + 16*ym.mb_x= x; ff_init_block_index(&s->m); ff_update_block_index(&s->m); ff_estimate_p_frame_motion(&s->m, x, y); } s->m.first_slice_line=0; } ff_fix_long_p_mvs(&s->m); ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0); } s->m.first_slice_line=1; for (y = 0; y < block_height; y++) { uint8_t src[stride*16]; for(i=0; i<16 && i + 16*ym.mb_y= y; for (x = 0; x < block_width; x++) { uint8_t reorder_buffer[3][6][7*32]; int count[3][6]; int offset = y * 16 * stride + x * 16; uint8_t *decoded= decoded_plane + offset; uint8_t *ref= ref_plane + offset; int score[4]={0,0,0,0}, best; uint8_t temp[16*stride]; s->m.mb_x= x; ff_init_block_index(&s->m); ff_update_block_index(&s->m); #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, "* level 5 vector @ %d, %d:\n", x * 16, y * 16); #endif if(s->picture.pict_type == I_TYPE || (s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTRA)){ for(i=0; i<6; i++){ init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7*32); } if(s->picture.pict_type == P_TYPE){ const uint8_t *vlc= svq1_block_type_vlc[SVQ1_BLOCK_INTRA]; put_bits(&s->reorder_pb[5], vlc[1], vlc[0]); score[0]= vlc[1]*lambda; } score[0]+= encode_block(s, src+16*x, NULL, temp, stride, 5, 64, lambda, 1); for(i=0; i<6; i++){ count[0][i]= put_bits_count(&s->reorder_pb[i]); flush_put_bits(&s->reorder_pb[i]); } }else score[0]= INT_MAX; best=0; if(s->picture.pict_type == P_TYPE){ const uint8_t *vlc= svq1_block_type_vlc[SVQ1_BLOCK_INTER]; int mx, my, pred_x, pred_y, dxy; int16_t *motion_ptr; motion_ptr= h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y); if(s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTER){ for(i=0; i<6; i++) init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7*32); put_bits(&s->reorder_pb[5], vlc[1], vlc[0]); s->m.pb= s->reorder_pb[5]; mx= motion_ptr[0]; my= motion_ptr[1]; assert(mx>=-32 && mx<=31); assert(my>=-32 && my<=31); assert(pred_x>=-32 && pred_x<=31); assert(pred_y>=-32 && pred_y<=31); ff_h263_encode_motion(&s->m, mx - pred_x, 1); ff_h263_encode_motion(&s->m, my - pred_y, 1); s->reorder_pb[5]= s->m.pb; score[1] += lambda*put_bits_count(&s->reorder_pb[5]); dxy= (mx&1) + 2*(my&1); s->dsp.put_pixels_tab[0][dxy](temp+16, ref + (mx>>1) + stride*(my>>1), stride, 16); score[1]+= encode_block(s, src+16*x, temp+16, decoded, stride, 5, 64, lambda, 0); best= score[1] <= score[0]; vlc= svq1_block_type_vlc[SVQ1_BLOCK_SKIP]; score[2]= s->dsp.sse[0](NULL, src+16*x, ref, stride, 16); score[2]+= vlc[1]*lambda; if(score[2] < score[best] && mx==0 && my==0){ best=2; s->dsp.put_pixels_tab[0][0](decoded, ref, stride, 16); for(i=0; i<6; i++){ count[2][i]=0; } put_bits(&s->pb, vlc[1], vlc[0]); } } if(best==1){ for(i=0; i<6; i++){ count[1][i]= put_bits_count(&s->reorder_pb[i]); flush_put_bits(&s->reorder_pb[i]); } }else{ motion_ptr[0 ] = motion_ptr[1 ]= motion_ptr[2 ] = motion_ptr[3 ]= motion_ptr[0+2*s->m.b8_stride] = motion_ptr[1+2*s->m.b8_stride]= motion_ptr[2+2*s->m.b8_stride] = motion_ptr[3+2*s->m.b8_stride]=0; } } s->rd_total += score[best]; for(i=5; i>=0; i--){ ff_copy_bits(&s->pb, reorder_buffer[best][i], count[best][i]); } if(best==0){ s->dsp.put_pixels_tab[0][0](decoded, temp, stride, 16); } #if 0 for (i = 0; i < 256; i += 16) { memcpy(&buffer0[i], &plane[left_edge], 16); left_edge += stride; } current_buffer = 1; /* this will toggle to 0 immediately */ /* perform a breadth-first tree encoding for each vector level */ subvector_count = 1; /* one subvector at level 5 */ for (level = 5; level >= 0; level--) { vector_count = subvector_count; subvector_count = 0; if (current_buffer == 0) { current_buffer = 1; vector = buffer1; subvectors = buffer0; } else { current_buffer = 0; vector = buffer0; subvectors = buffer1; } /* iterate through each vector in the list */ for (i = 0; i < vector_count; i++) { if (encode_vector(s, vector, level, threshold[level])) { #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " split to level %d\n", level - 1); #endif /* subdivide into 2 subvectors for later processing */ subvector_count += 2; if (level - 1 == 3) { /* subdivide 16x8 -> 2 8x8 */ for (j = 0; j < 8; j++) { /* left half */ memcpy(subvectors + j * 8, vector + j * 16, 8); /* right half */ memcpy(subvectors + 64 + j * 8, vector + 8 + j * 16, 8); } subvectors += 128; } else if (level - 1 == 1) { /* subdivide 8x4 -> 2 4x4 */ for (j = 0; j < 4; j++) { /* left half */ memcpy(subvectors + j * 4, vector + j * 8, 4); /* right half */ memcpy(subvectors + 16 + j * 4, vector + 4 + j * 8, 4); } subvectors += 32; } else { /* first half */ memcpy(subvectors, vector, level_sizes[level - 1]); subvectors += level_sizes[level - 1]; /* second half */ memcpy(subvectors, vector + level_sizes[level - 1], level_sizes[level - 1]); subvectors += level_sizes[level - 1]; } } vector += level_sizes[level]; } /* if there are no more subvectors, break early */ if (!subvector_count) break; } #endif } s->m.first_slice_line=0; } } /* output a plane with a constant mean value; good for debugging and for * greyscale encoding but only valid for intra frames */ static void svq1_output_intra_constant_mean(SVQ1Context *s, int block_width, int block_height, unsigned char mean) { int i; /* for each level 5 vector, output the specified mean value */ for (i = 0; i < block_width * block_height; i++) { /* output a 0 before each vector indicating no subdivision */ put_bits(&s->pb, 1, 0); /* output a 0 indicating mean-only encoding; use index 1 as that * maps to code 0 */ put_bits(&s->pb, svq1_intra_multistage_vlc[5][1][1], svq1_intra_multistage_vlc[5][1][0]); /* output a constant mean */ put_bits(&s->pb, svq1_intra_mean_vlc[mean][1], svq1_intra_mean_vlc[mean][0]); #ifdef DEBUG_SVQ1 av_log(s->avctx, AV_LOG_INFO, " const L5 %d/%d: multistage = 0 (0x%X, %d), mean = %d (0x%X, %d)\n", i, block_width * block_height, svq1_intra_multistage_vlc[5][1][0], svq1_intra_multistage_vlc[5][1][1], mean, svq1_intra_mean_vlc[mean][0], svq1_intra_mean_vlc[mean][1]); #endif } } static int svq1_encode_init(AVCodecContext *avctx) { SVQ1Context * const s = avctx->priv_data; int i; unsigned char least_bits_value = 0; int least_bits; dsputil_init(&s->dsp, avctx); avctx->coded_frame= (AVFrame*)&s->picture; s->frame_width = avctx->width; s->frame_height = avctx->height; s->y_block_width = (s->frame_width + 15) / 16; s->y_block_height = (s->frame_height + 15) / 16; s->c_block_width = (s->frame_width / 4 + 15) / 16; s->c_block_height = (s->frame_height / 4 + 15) / 16; s->avctx= avctx; s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t)); s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->mb_type = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int16_t)); s->dummy = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int32_t)); h263_encode_init(&s->m); //mv_penalty av_log(s->avctx, AV_LOG_INFO, " Hey: %d x %d, %d x %d, %d x %d\n", s->frame_width, s->frame_height, s->y_block_width, s->y_block_height, s->c_block_width, s->c_block_height); /* allocate a plane for the U & V planes (color, or C, planes) and * initialize them to the value that is represented by the fewest bits * in the mean table; the reasoning behind this is that when the border * vectors are operated upon and possibly subdivided, the mean will be * removed resulting in a perfect deviation score of 0 and encoded with * the minimal possible bits */ s->c_plane = av_malloc(s->c_block_width * s->c_block_height * 16 * 16); least_bits = 10000; for (i = 0; i < 256; i++) if (svq1_intra_mean_vlc[i][1] < least_bits) { least_bits = svq1_intra_mean_vlc[i][1]; least_bits_value = i; } memset(s->c_plane, least_bits_value, s->c_block_width * s->c_block_height * 16 * 16); return 0; } static int svq1_encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data) { SVQ1Context * const s = avctx->priv_data; AVFrame *pict = data; AVFrame * const p= (AVFrame*)&s->picture; AVFrame temp; int i; if(avctx->pix_fmt != PIX_FMT_YUV410P){ av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n"); return -1; } if(!s->current_picture.data[0]){ avctx->get_buffer(avctx, &s->current_picture); avctx->get_buffer(avctx, &s->last_picture); } temp= s->current_picture; s->current_picture= s->last_picture; s->last_picture= temp; init_put_bits(&s->pb, buf, buf_size); *p = *pict; p->pict_type = avctx->frame_number % avctx->gop_size ? P_TYPE : I_TYPE; p->key_frame = p->pict_type == I_TYPE; svq1_write_header(s, p->pict_type); for(i=0; i<3; i++){ svq1_encode_plane(s, i, s->picture.data[i], s->last_picture.data[i], s->current_picture.data[i], s->frame_width / (i?4:1), s->frame_height / (i?4:1), s->picture.linesize[i], s->current_picture.linesize[i]); } // align_put_bits(&s->pb); while(put_bits_count(&s->pb) & 31) put_bits(&s->pb, 1, 0); flush_put_bits(&s->pb); return (put_bits_count(&s->pb) / 8); } static int svq1_encode_end(AVCodecContext *avctx) { SVQ1Context * const s = avctx->priv_data; int i; av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total/(double)(avctx->width*avctx->height*avctx->frame_number)); av_freep(&s->c_plane); av_freep(&s->m.me.scratchpad); av_freep(&s->m.me.map); av_freep(&s->m.me.score_map); av_freep(&s->mb_type); av_freep(&s->dummy); for(i=0; i<3; i++){ av_freep(&s->motion_val8[i]); av_freep(&s->motion_val16[i]); } return 0; } AVCodec svq1_decoder = { "svq1", CODEC_TYPE_VIDEO, CODEC_ID_SVQ1, sizeof(MpegEncContext), svq1_decode_init, NULL, svq1_decode_end, svq1_decode_frame, CODEC_CAP_DR1, .flush= ff_mpeg_flush, .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV410P, -1}, }; #ifdef CONFIG_ENCODERS AVCodec svq1_encoder = { "svq1", CODEC_TYPE_VIDEO, CODEC_ID_SVQ1, sizeof(SVQ1Context), svq1_encode_init, svq1_encode_frame, svq1_encode_end, .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV410P, -1}, }; #endif //CONFIG_ENCODERS