/* * WMA compatible codec * Copyright (c) 2002-2007 The FFmpeg Project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "sinewin.h" #include "wma.h" #include "wmadata.h" #undef NDEBUG #include /* XXX: use same run/length optimization as mpeg decoders */ //FIXME maybe split decode / encode or pass flag static void init_coef_vlc(VLC *vlc, uint16_t **prun_table, float **plevel_table, uint16_t **pint_table, const CoefVLCTable *vlc_table) { int n = vlc_table->n; const uint8_t *table_bits = vlc_table->huffbits; const uint32_t *table_codes = vlc_table->huffcodes; const uint16_t *levels_table = vlc_table->levels; uint16_t *run_table, *level_table, *int_table; float *flevel_table; int i, l, j, k, level; init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0); run_table = av_malloc(n * sizeof(uint16_t)); level_table = av_malloc(n * sizeof(uint16_t)); flevel_table= av_malloc(n * sizeof(*flevel_table)); int_table = av_malloc(n * sizeof(uint16_t)); i = 2; level = 1; k = 0; while (i < n) { int_table[k] = i; l = levels_table[k++]; for (j = 0; j < l; j++) { run_table[i] = j; level_table[i] = level; flevel_table[i]= level; i++; } level++; } *prun_table = run_table; *plevel_table = flevel_table; *pint_table = int_table; av_free(level_table); } /** *@brief Get the samples per frame for this stream. *@param sample_rate output sample_rate *@param version wma version *@param decode_flags codec compression features *@return log2 of the number of output samples per frame */ int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version, unsigned int decode_flags) { int frame_len_bits; if (sample_rate <= 16000) { frame_len_bits = 9; } else if (sample_rate <= 22050 || (sample_rate <= 32000 && version == 1)) { frame_len_bits = 10; } else if (sample_rate <= 48000 || version < 3) { frame_len_bits = 11; } else if (sample_rate <= 96000) { frame_len_bits = 12; } else { frame_len_bits = 13; } if (version == 3) { int tmp = decode_flags & 0x6; if (tmp == 0x2) { ++frame_len_bits; } else if (tmp == 0x4) { --frame_len_bits; } else if (tmp == 0x6) { frame_len_bits -= 2; } } return frame_len_bits; } int ff_wma_init(AVCodecContext *avctx, int flags2) { WMACodecContext *s = avctx->priv_data; int i; float bps1, high_freq; volatile float bps; int sample_rate1; int coef_vlc_table; if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000 || avctx->channels <= 0 || avctx->channels > 8 || avctx->bit_rate <= 0) return -1; s->sample_rate = avctx->sample_rate; s->nb_channels = avctx->channels; s->bit_rate = avctx->bit_rate; s->block_align = avctx->block_align; dsputil_init(&s->dsp, avctx); ff_fmt_convert_init(&s->fmt_conv, avctx); if (avctx->codec->id == CODEC_ID_WMAV1) { s->version = 1; } else { s->version = 2; } /* compute MDCT block size */ s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0); s->next_block_len_bits = s->frame_len_bits; s->prev_block_len_bits = s->frame_len_bits; s->block_len_bits = s->frame_len_bits; s->frame_len = 1 << s->frame_len_bits; if (s->use_variable_block_len) { int nb_max, nb; nb = ((flags2 >> 3) & 3) + 1; if ((s->bit_rate / s->nb_channels) >= 32000) nb += 2; nb_max = s->frame_len_bits - BLOCK_MIN_BITS; if (nb > nb_max) nb = nb_max; s->nb_block_sizes = nb + 1; } else { s->nb_block_sizes = 1; } /* init rate dependent parameters */ s->use_noise_coding = 1; high_freq = s->sample_rate * 0.5; /* if version 2, then the rates are normalized */ sample_rate1 = s->sample_rate; if (s->version == 2) { if (sample_rate1 >= 44100) { sample_rate1 = 44100; } else if (sample_rate1 >= 22050) { sample_rate1 = 22050; } else if (sample_rate1 >= 16000) { sample_rate1 = 16000; } else if (sample_rate1 >= 11025) { sample_rate1 = 11025; } else if (sample_rate1 >= 8000) { sample_rate1 = 8000; } } bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate); s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2; /* compute high frequency value and choose if noise coding should be activated */ bps1 = bps; if (s->nb_channels == 2) bps1 = bps * 1.6; if (sample_rate1 == 44100) { if (bps1 >= 0.61) { s->use_noise_coding = 0; } else { high_freq = high_freq * 0.4; } } else if (sample_rate1 == 22050) { if (bps1 >= 1.16) { s->use_noise_coding = 0; } else if (bps1 >= 0.72) { high_freq = high_freq * 0.7; } else { high_freq = high_freq * 0.6; } } else if (sample_rate1 == 16000) { if (bps > 0.5) { high_freq = high_freq * 0.5; } else { high_freq = high_freq * 0.3; } } else if (sample_rate1 == 11025) { high_freq = high_freq * 0.7; } else if (sample_rate1 == 8000) { if (bps <= 0.625) { high_freq = high_freq * 0.5; } else if (bps > 0.75) { s->use_noise_coding = 0; } else { high_freq = high_freq * 0.65; } } else { if (bps >= 0.8) { high_freq = high_freq * 0.75; } else if (bps >= 0.6) { high_freq = high_freq * 0.6; } else { high_freq = high_freq * 0.5; } } av_dlog(s->avctx, "flags2=0x%x\n", flags2); av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n", s->version, s->nb_channels, s->sample_rate, s->bit_rate, s->block_align); av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n", bps, bps1, high_freq, s->byte_offset_bits); av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n", s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes); /* compute the scale factor band sizes for each MDCT block size */ { int a, b, pos, lpos, k, block_len, i, j, n; const uint8_t *table; if (s->version == 1) { s->coefs_start = 3; } else { s->coefs_start = 0; } for (k = 0; k < s->nb_block_sizes; k++) { block_len = s->frame_len >> k; if (s->version == 1) { lpos = 0; for (i = 0; i < 25; i++) { a = ff_wma_critical_freqs[i]; b = s->sample_rate; pos = ((block_len * 2 * a) + (b >> 1)) / b; if (pos > block_len) pos = block_len; s->exponent_bands[0][i] = pos - lpos; if (pos >= block_len) { i++; break; } lpos = pos; } s->exponent_sizes[0] = i; } else { /* hardcoded tables */ table = NULL; a = s->frame_len_bits - BLOCK_MIN_BITS - k; if (a < 3) { if (s->sample_rate >= 44100) { table = exponent_band_44100[a]; } else if (s->sample_rate >= 32000) { table = exponent_band_32000[a]; } else if (s->sample_rate >= 22050) { table = exponent_band_22050[a]; } } if (table) { n = *table++; for (i = 0; i < n; i++) s->exponent_bands[k][i] = table[i]; s->exponent_sizes[k] = n; } else { j = 0; lpos = 0; for (i = 0; i < 25; i++) { a = ff_wma_critical_freqs[i]; b = s->sample_rate; pos = ((block_len * 2 * a) + (b << 1)) / (4 * b); pos <<= 2; if (pos > block_len) pos = block_len; if (pos > lpos) s->exponent_bands[k][j++] = pos - lpos; if (pos >= block_len) break; lpos = pos; } s->exponent_sizes[k] = j; } } /* max number of coefs */ s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k; /* high freq computation */ s->high_band_start[k] = (int)((block_len * 2 * high_freq) / s->sample_rate + 0.5); n = s->exponent_sizes[k]; j = 0; pos = 0; for (i = 0; i < n; i++) { int start, end; start = pos; pos += s->exponent_bands[k][i]; end = pos; if (start < s->high_band_start[k]) start = s->high_band_start[k]; if (end > s->coefs_end[k]) end = s->coefs_end[k]; if (end > start) s->exponent_high_bands[k][j++] = end - start; } s->exponent_high_sizes[k] = j; #if 0 tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ", s->frame_len >> k, s->coefs_end[k], s->high_band_start[k], s->exponent_high_sizes[k]); for (j = 0; j < s->exponent_high_sizes[k]; j++) tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]); tprintf(s->avctx, "\n"); #endif } } #ifdef TRACE { int i, j; for (i = 0; i < s->nb_block_sizes; i++) { tprintf(s->avctx, "%5d: n=%2d:", s->frame_len >> i, s->exponent_sizes[i]); for (j = 0; j < s->exponent_sizes[i]; j++) tprintf(s->avctx, " %d", s->exponent_bands[i][j]); tprintf(s->avctx, "\n"); } } #endif /* init MDCT windows : simple sinus window */ for (i = 0; i < s->nb_block_sizes; i++) { ff_init_ff_sine_windows(s->frame_len_bits - i); s->windows[i] = ff_sine_windows[s->frame_len_bits - i]; } s->reset_block_lengths = 1; if (s->use_noise_coding) { /* init the noise generator */ if (s->use_exp_vlc) { s->noise_mult = 0.02; } else { s->noise_mult = 0.04; } #ifdef TRACE for (i = 0; i < NOISE_TAB_SIZE; i++) s->noise_table[i] = 1.0 * s->noise_mult; #else { unsigned int seed; float norm; seed = 1; norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult; for (i = 0; i < NOISE_TAB_SIZE; i++) { seed = seed * 314159 + 1; s->noise_table[i] = (float)((int)seed) * norm; } } #endif } /* choose the VLC tables for the coefficients */ coef_vlc_table = 2; if (s->sample_rate >= 32000) { if (bps1 < 0.72) { coef_vlc_table = 0; } else if (bps1 < 1.16) { coef_vlc_table = 1; } } s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ]; s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1]; init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0], s->coef_vlcs[0]); init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1], s->coef_vlcs[1]); return 0; } int ff_wma_total_gain_to_bits(int total_gain) { if (total_gain < 15) return 13; else if (total_gain < 32) return 12; else if (total_gain < 40) return 11; else if (total_gain < 45) return 10; else return 9; } int ff_wma_end(AVCodecContext *avctx) { WMACodecContext *s = avctx->priv_data; int i; for (i = 0; i < s->nb_block_sizes; i++) ff_mdct_end(&s->mdct_ctx[i]); if (s->use_exp_vlc) { ff_free_vlc(&s->exp_vlc); } if (s->use_noise_coding) { ff_free_vlc(&s->hgain_vlc); } for (i = 0; i < 2; i++) { ff_free_vlc(&s->coef_vlc[i]); av_free(s->run_table[i]); av_free(s->level_table[i]); av_free(s->int_table[i]); } return 0; } /** * Decode an uncompressed coefficient. * @param gb GetBitContext * @return the decoded coefficient */ unsigned int ff_wma_get_large_val(GetBitContext* gb) { /** consumes up to 34 bits */ int n_bits = 8; /** decode length */ if (get_bits1(gb)) { n_bits += 8; if (get_bits1(gb)) { n_bits += 8; if (get_bits1(gb)) { n_bits += 7; } } } return get_bits_long(gb, n_bits); } /** * Decode run level compressed coefficients. * @param avctx codec context * @param gb bitstream reader context * @param vlc vlc table for get_vlc2 * @param level_table level codes * @param run_table run codes * @param version 0 for wma1,2 1 for wmapro * @param ptr output buffer * @param offset offset in the output buffer * @param num_coefs number of input coefficents * @param block_len input buffer length (2^n) * @param frame_len_bits number of bits for escaped run codes * @param coef_nb_bits number of bits for escaped level codes * @return 0 on success, -1 otherwise */ int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb, VLC *vlc, const float *level_table, const uint16_t *run_table, int version, WMACoef *ptr, int offset, int num_coefs, int block_len, int frame_len_bits, int coef_nb_bits) { int code, level, sign; const uint32_t *ilvl = (const uint32_t*)level_table; uint32_t *iptr = (uint32_t*)ptr; const unsigned int coef_mask = block_len - 1; for (; offset < num_coefs; offset++) { code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX); if (code > 1) { /** normal code */ offset += run_table[code]; sign = get_bits1(gb) - 1; iptr[offset & coef_mask] = ilvl[code] ^ sign<<31; } else if (code == 1) { /** EOB */ break; } else { /** escape */ if (!version) { level = get_bits(gb, coef_nb_bits); /** NOTE: this is rather suboptimal. reading block_len_bits would be better */ offset += get_bits(gb, frame_len_bits); } else { level = ff_wma_get_large_val(gb); /** escape decode */ if (get_bits1(gb)) { if (get_bits1(gb)) { if (get_bits1(gb)) { av_log(avctx,AV_LOG_ERROR, "broken escape sequence\n"); return -1; } else offset += get_bits(gb, frame_len_bits) + 4; } else offset += get_bits(gb, 2) + 1; } } sign = get_bits1(gb) - 1; ptr[offset & coef_mask] = (level^sign) - sign; } } /** NOTE: EOB can be omitted */ if (offset > num_coefs) { av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n"); return -1; } return 0; }