/* * Indeo Video v3 compatible decoder * Copyright (c) 2009 - 2011 Maxim Poliakovski * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * This is a decoder for Intel Indeo Video v3. * It is based on vector quantization, run-length coding and motion compensation. * Known container formats: .avi and .mov * Known FOURCCs: 'IV31', 'IV32' * * @see http://wiki.multimedia.cx/index.php?title=Indeo_3 */ #include "libavutil/imgutils.h" #include "libavutil/intreadwrite.h" #include "avcodec.h" #include "dsputil.h" #include "bytestream.h" #include "get_bits.h" #include "indeo3data.h" /* RLE opcodes. */ enum { RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line }; /* Some constants for parsing frame bitstream flags. */ #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator #define BS_KEYFRAME (1 << 2) ///< intra frame indicator #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used typedef struct Plane { uint8_t *buffers[2]; uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above uint32_t width; uint32_t height; uint32_t pitch; } Plane; #define CELL_STACK_MAX 20 typedef struct Cell { int16_t xpos; ///< cell coordinates in 4x4 blocks int16_t ypos; int16_t width; ///< cell width in 4x4 blocks int16_t height; ///< cell height in 4x4 blocks uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree const int8_t *mv_ptr; ///< ptr to the motion vector if any } Cell; typedef struct Indeo3DecodeContext { AVCodecContext *avctx; AVFrame frame; DSPContext dsp; GetBitContext gb; int need_resync; int skip_bits; const uint8_t *next_cell_data; const uint8_t *last_byte; const int8_t *mc_vectors; unsigned num_vectors; ///< number of motion vectors in mc_vectors int16_t width, height; uint32_t frame_num; ///< current frame number (zero-based) uint32_t data_size; ///< size of the frame data in bytes uint16_t frame_flags; ///< frame properties uint8_t cb_offset; ///< needed for selecting VQ tables uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary const uint8_t *y_data_ptr; const uint8_t *v_data_ptr; const uint8_t *u_data_ptr; int32_t y_data_size; int32_t v_data_size; int32_t u_data_size; const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4 Plane planes[3]; } Indeo3DecodeContext; static uint8_t requant_tab[8][128]; /* * Build the static requantization table. * This table is used to remap pixel values according to a specific * quant index and thus avoid overflows while adding deltas. */ static av_cold void build_requant_tab(void) { static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 }; static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 }; int i, j, step; for (i = 0; i < 8; i++) { step = i + 2; for (j = 0; j < 128; j++) requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i]; } /* some last elements calculated above will have values >= 128 */ /* pixel values shall never exceed 127 so set them to non-overflowing values */ /* according with the quantization step of the respective section */ requant_tab[0][127] = 126; requant_tab[1][119] = 118; requant_tab[1][120] = 118; requant_tab[2][126] = 124; requant_tab[2][127] = 124; requant_tab[6][124] = 120; requant_tab[6][125] = 120; requant_tab[6][126] = 120; requant_tab[6][127] = 120; /* Patch for compatibility with the Intel's binary decoders */ requant_tab[1][7] = 10; requant_tab[4][8] = 10; } static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx, AVCodecContext *avctx) { int p, luma_width, luma_height, chroma_width, chroma_height; int luma_pitch, chroma_pitch, luma_size, chroma_size; luma_width = ctx->width; luma_height = ctx->height; if (luma_width < 16 || luma_width > 640 || luma_height < 16 || luma_height > 480 || luma_width & 3 || luma_height & 3) { av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n", luma_width, luma_height); return AVERROR_INVALIDDATA; } chroma_width = FFALIGN(luma_width >> 2, 4); chroma_height = FFALIGN(luma_height >> 2, 4); luma_pitch = FFALIGN(luma_width, 16); chroma_pitch = FFALIGN(chroma_width, 16); /* Calculate size of the luminance plane. */ /* Add one line more for INTRA prediction. */ luma_size = luma_pitch * (luma_height + 1); /* Calculate size of a chrominance planes. */ /* Add one line more for INTRA prediction. */ chroma_size = chroma_pitch * (chroma_height + 1); /* allocate frame buffers */ for (p = 0; p < 3; p++) { ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch; ctx->planes[p].width = !p ? luma_width : chroma_width; ctx->planes[p].height = !p ? luma_height : chroma_height; ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size); ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size); /* fill the INTRA prediction lines with the middle pixel value = 64 */ memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch); memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch); /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */ ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch; ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch; memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height); memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height); } return 0; } static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx) { int p; for (p = 0; p < 3; p++) { av_freep(&ctx->planes[p].buffers[0]); av_freep(&ctx->planes[p].buffers[1]); ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0; } } /** * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into * the cell(x, y) in the current frame. * * @param ctx pointer to the decoder context * @param plane pointer to the plane descriptor * @param cell pointer to the cell descriptor */ static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell) { int h, w, mv_x, mv_y, offset, offset_dst; uint8_t *src, *dst; /* setup output and reference pointers */ offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2); dst = plane->pixels[ctx->buf_sel] + offset_dst; mv_y = cell->mv_ptr[0]; mv_x = cell->mv_ptr[1]; offset = offset_dst + mv_y * plane->pitch + mv_x; src = plane->pixels[ctx->buf_sel ^ 1] + offset; h = cell->height << 2; for (w = cell->width; w > 0;) { /* copy using 16xH blocks */ if (!((cell->xpos << 2) & 15) && w >= 4) { for (; w >= 4; src += 16, dst += 16, w -= 4) ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h); } /* copy using 8xH blocks */ if (!((cell->xpos << 2) & 7) && w >= 2) { ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h); w -= 2; src += 8; dst += 8; } if (w >= 1) { copy_block4(dst, src, plane->pitch, plane->pitch, h); w--; src += 4; dst += 4; } } } /* Average 4/8 pixels at once without rounding using SWAR */ #define AVG_32(dst, src, ref) \ AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL) #define AVG_64(dst, src, ref) \ AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL) /* * Replicate each even pixel as follows: * ABCDEFGH -> AACCEEGG */ static inline uint64_t replicate64(uint64_t a) { #if HAVE_BIGENDIAN a &= 0xFF00FF00FF00FF00ULL; a |= a >> 8; #else a &= 0x00FF00FF00FF00FFULL; a |= a << 8; #endif return a; } static inline uint32_t replicate32(uint32_t a) { #if HAVE_BIGENDIAN a &= 0xFF00FF00UL; a |= a >> 8; #else a &= 0x00FF00FFUL; a |= a << 8; #endif return a; } /* Fill n lines with 64bit pixel value pix */ static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n, int32_t row_offset) { for (; n > 0; dst += row_offset, n--) AV_WN64A(dst, pix); } /* Error codes for cell decoding. */ enum { IV3_NOERR = 0, IV3_BAD_RLE = 1, IV3_BAD_DATA = 2, IV3_BAD_COUNTER = 3, IV3_UNSUPPORTED = 4, IV3_OUT_OF_DATA = 5 }; #define BUFFER_PRECHECK \ if (*data_ptr >= last_ptr) \ return IV3_OUT_OF_DATA; \ #define RLE_BLOCK_COPY \ if (cell->mv_ptr || !skip_flag) \ copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom) #define RLE_BLOCK_COPY_8 \ pix64 = AV_RN64A(ref);\ if (is_first_row) {/* special prediction case: top line of a cell */\ pix64 = replicate64(pix64);\ fill_64(dst + row_offset, pix64, 7, row_offset);\ AVG_64(dst, ref, dst + row_offset);\ } else \ fill_64(dst, pix64, 8, row_offset) #define RLE_LINES_COPY \ copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom) #define RLE_LINES_COPY_M10 \ pix64 = AV_RN64A(ref);\ if (is_top_of_cell) {\ pix64 = replicate64(pix64);\ fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\ AVG_64(dst, ref, dst + row_offset);\ } else \ fill_64(dst, pix64, num_lines << 1, row_offset) #define APPLY_DELTA_4 \ AV_WN16A(dst + line_offset ,\ (AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\ AV_WN16A(dst + line_offset + 2,\ (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\ if (mode >= 3) {\ if (is_top_of_cell && !cell->ypos) {\ AV_COPY32(dst, dst + row_offset);\ } else {\ AVG_32(dst, ref, dst + row_offset);\ }\ } #define APPLY_DELTA_8 \ /* apply two 32-bit VQ deltas to next even line */\ if (is_top_of_cell) { \ AV_WN32A(dst + row_offset , \ (replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ AV_WN32A(dst + row_offset + 4, \ (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ } else { \ AV_WN32A(dst + row_offset , \ (AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ AV_WN32A(dst + row_offset + 4, \ (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ } \ /* odd lines are not coded but rather interpolated/replicated */\ /* first line of the cell on the top of image? - replicate */\ /* otherwise - interpolate */\ if (is_top_of_cell && !cell->ypos) {\ AV_COPY64(dst, dst + row_offset);\ } else \ AVG_64(dst, ref, dst + row_offset); #define APPLY_DELTA_1011_INTER \ if (mode == 10) { \ AV_WN32A(dst , \ (AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ AV_WN32A(dst + 4 , \ (AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ AV_WN32A(dst + row_offset , \ (AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ AV_WN32A(dst + row_offset + 4, \ (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ } else { \ AV_WN16A(dst , \ (AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\ AV_WN16A(dst + 2 , \ (AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\ AV_WN16A(dst + row_offset , \ (AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\ AV_WN16A(dst + row_offset + 2, \ (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\ } static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block, int pitch, int h_zoom, int v_zoom, int mode, const vqEntry *delta[2], int swap_quads[2], const uint8_t **data_ptr, const uint8_t *last_ptr) { int x, y, line, num_lines; int rle_blocks = 0; uint8_t code, *dst, *ref; const vqEntry *delta_tab; unsigned int dyad1, dyad2; uint64_t pix64; int skip_flag = 0, is_top_of_cell, is_first_row = 1; int row_offset, blk_row_offset, line_offset; row_offset = pitch; blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2); line_offset = v_zoom ? row_offset : 0; if (cell->height & v_zoom || cell->width & h_zoom) return IV3_BAD_DATA; for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) { for (x = 0; x < cell->width; x += 1 + h_zoom) { ref = ref_block; dst = block; if (rle_blocks > 0) { if (mode <= 4) { RLE_BLOCK_COPY; } else if (mode == 10 && !cell->mv_ptr) { RLE_BLOCK_COPY_8; } rle_blocks--; } else { for (line = 0; line < 4;) { num_lines = 1; is_top_of_cell = is_first_row && !line; /* select primary VQ table for odd, secondary for even lines */ if (mode <= 4) delta_tab = delta[line & 1]; else delta_tab = delta[1]; BUFFER_PRECHECK; code = bytestream_get_byte(data_ptr); if (code < 248) { if (code < delta_tab->num_dyads) { BUFFER_PRECHECK; dyad1 = bytestream_get_byte(data_ptr); dyad2 = code; if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248) return IV3_BAD_DATA; } else { /* process QUADS */ code -= delta_tab->num_dyads; dyad1 = code / delta_tab->quad_exp; dyad2 = code % delta_tab->quad_exp; if (swap_quads[line & 1]) FFSWAP(unsigned int, dyad1, dyad2); } if (mode <= 4) { APPLY_DELTA_4; } else if (mode == 10 && !cell->mv_ptr) { APPLY_DELTA_8; } else { APPLY_DELTA_1011_INTER; } } else { /* process RLE codes */ switch (code) { case RLE_ESC_FC: skip_flag = 0; rle_blocks = 1; code = 253; /* FALLTHROUGH */ case RLE_ESC_FF: case RLE_ESC_FE: case RLE_ESC_FD: num_lines = 257 - code - line; if (num_lines <= 0) return IV3_BAD_RLE; if (mode <= 4) { RLE_LINES_COPY; } else if (mode == 10 && !cell->mv_ptr) { RLE_LINES_COPY_M10; } break; case RLE_ESC_FB: BUFFER_PRECHECK; code = bytestream_get_byte(data_ptr); rle_blocks = (code & 0x1F) - 1; /* set block counter */ if (code >= 64 || rle_blocks < 0) return IV3_BAD_COUNTER; skip_flag = code & 0x20; num_lines = 4 - line; /* enforce next block processing */ if (mode >= 10 || (cell->mv_ptr || !skip_flag)) { if (mode <= 4) { RLE_LINES_COPY; } else if (mode == 10 && !cell->mv_ptr) { RLE_LINES_COPY_M10; } } break; case RLE_ESC_F9: skip_flag = 1; rle_blocks = 1; /* FALLTHROUGH */ case RLE_ESC_FA: if (line) return IV3_BAD_RLE; num_lines = 4; /* enforce next block processing */ if (cell->mv_ptr) { if (mode <= 4) { RLE_LINES_COPY; } else if (mode == 10 && !cell->mv_ptr) { RLE_LINES_COPY_M10; } } break; default: return IV3_UNSUPPORTED; } } line += num_lines; ref += row_offset * (num_lines << v_zoom); dst += row_offset * (num_lines << v_zoom); } } /* move to next horizontal block */ block += 4 << h_zoom; ref_block += 4 << h_zoom; } /* move to next line of blocks */ ref_block += blk_row_offset; block += blk_row_offset; } return IV3_NOERR; } /** * Decode a vector-quantized cell. * It consists of several routines, each of which handles one or more "modes" * with which a cell can be encoded. * * @param ctx pointer to the decoder context * @param avctx ptr to the AVCodecContext * @param plane pointer to the plane descriptor * @param cell pointer to the cell descriptor * @param data_ptr pointer to the compressed data * @param last_ptr pointer to the last byte to catch reads past end of buffer * @return number of consumed bytes or negative number in case of error */ static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane, Cell *cell, const uint8_t *data_ptr, const uint8_t *last_ptr) { int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx; int zoom_fac; int offset, error = 0, swap_quads[2]; uint8_t code, *block, *ref_block = 0; const vqEntry *delta[2]; const uint8_t *data_start = data_ptr; /* get coding mode and VQ table index from the VQ descriptor byte */ code = *data_ptr++; mode = code >> 4; vq_index = code & 0xF; /* setup output and reference pointers */ offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2); block = plane->pixels[ctx->buf_sel] + offset; if (!cell->mv_ptr) { /* use previous line as reference for INTRA cells */ ref_block = block - plane->pitch; } else if (mode >= 10) { /* for mode 10 and 11 INTER first copy the predicted cell into the current one */ /* so we don't need to do data copying for each RLE code later */ copy_cell(ctx, plane, cell); } else { /* set the pointer to the reference pixels for modes 0-4 INTER */ mv_y = cell->mv_ptr[0]; mv_x = cell->mv_ptr[1]; offset += mv_y * plane->pitch + mv_x; ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset; } /* select VQ tables as follows: */ /* modes 0 and 3 use only the primary table for all lines in a block */ /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */ if (mode == 1 || mode == 4) { code = ctx->alt_quant[vq_index]; prim_indx = (code >> 4) + ctx->cb_offset; second_indx = (code & 0xF) + ctx->cb_offset; } else { vq_index += ctx->cb_offset; prim_indx = second_indx = vq_index; } if (prim_indx >= 24 || second_indx >= 24) { av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n", prim_indx, second_indx); return AVERROR_INVALIDDATA; } delta[0] = &vq_tab[second_indx]; delta[1] = &vq_tab[prim_indx]; swap_quads[0] = second_indx >= 16; swap_quads[1] = prim_indx >= 16; /* requantize the prediction if VQ index of this cell differs from VQ index */ /* of the predicted cell in order to avoid overflows. */ if (vq_index >= 8 && ref_block) { for (x = 0; x < cell->width << 2; x++) ref_block[x] = requant_tab[vq_index & 7][ref_block[x]]; } error = IV3_NOERR; switch (mode) { case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/ case 1: case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/ case 4: if (mode >= 3 && cell->mv_ptr) { av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n"); return AVERROR_INVALIDDATA; } zoom_fac = mode >= 3; error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac, mode, delta, swap_quads, &data_ptr, last_ptr); break; case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/ case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/ if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */ error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1, mode, delta, swap_quads, &data_ptr, last_ptr); } else { /* mode 10 and 11 INTER processing */ if (mode == 11 && !cell->mv_ptr) { av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n"); return AVERROR_INVALIDDATA; } zoom_fac = mode == 10; error = decode_cell_data(cell, block, ref_block, plane->pitch, zoom_fac, 1, mode, delta, swap_quads, &data_ptr, last_ptr); } break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode); return AVERROR_INVALIDDATA; }//switch mode switch (error) { case IV3_BAD_RLE: av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n", mode, data_ptr[-1]); return AVERROR_INVALIDDATA; case IV3_BAD_DATA: av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode); return AVERROR_INVALIDDATA; case IV3_BAD_COUNTER: av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code); return AVERROR_INVALIDDATA; case IV3_UNSUPPORTED: av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]); return AVERROR_INVALIDDATA; case IV3_OUT_OF_DATA: av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode); return AVERROR_INVALIDDATA; } return data_ptr - data_start; /* report number of bytes consumed from the input buffer */ } /* Binary tree codes. */ enum { H_SPLIT = 0, V_SPLIT = 1, INTRA_NULL = 2, INTER_DATA = 3 }; #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1 #define UPDATE_BITPOS(n) \ ctx->skip_bits += (n); \ ctx->need_resync = 1 #define RESYNC_BITSTREAM \ if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \ skip_bits_long(&ctx->gb, ctx->skip_bits); \ ctx->skip_bits = 0; \ ctx->need_resync = 0; \ } #define CHECK_CELL \ if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \ curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \ av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \ curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \ return AVERROR_INVALIDDATA; \ } static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane, int code, Cell *ref_cell, const int depth, const int strip_width) { Cell curr_cell; int bytes_used; if (depth <= 0) { av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n"); return AVERROR_INVALIDDATA; // unwind recursion } curr_cell = *ref_cell; // clone parent cell if (code == H_SPLIT) { SPLIT_CELL(ref_cell->height, curr_cell.height); ref_cell->ypos += curr_cell.height; ref_cell->height -= curr_cell.height; if (ref_cell->height <= 0 || curr_cell.height <= 0) return AVERROR_INVALIDDATA; } else if (code == V_SPLIT) { if (curr_cell.width > strip_width) { /* split strip */ curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width; } else SPLIT_CELL(ref_cell->width, curr_cell.width); ref_cell->xpos += curr_cell.width; ref_cell->width -= curr_cell.width; if (ref_cell->width <= 0 || curr_cell.width <= 0) return AVERROR_INVALIDDATA; } while (1) { /* loop until return */ RESYNC_BITSTREAM; switch (code = get_bits(&ctx->gb, 2)) { case H_SPLIT: case V_SPLIT: if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width)) return AVERROR_INVALIDDATA; break; case INTRA_NULL: if (!curr_cell.tree) { /* MC tree INTRA code */ curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */ curr_cell.tree = 1; /* enter the VQ tree */ } else { /* VQ tree NULL code */ RESYNC_BITSTREAM; code = get_bits(&ctx->gb, 2); if (code >= 2) { av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code); return AVERROR_INVALIDDATA; } if (code == 1) av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n"); CHECK_CELL if (!curr_cell.mv_ptr) return AVERROR_INVALIDDATA; copy_cell(ctx, plane, &curr_cell); return 0; } break; case INTER_DATA: if (!curr_cell.tree) { /* MC tree INTER code */ unsigned mv_idx; /* get motion vector index and setup the pointer to the mv set */ if (!ctx->need_resync) ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3]; mv_idx = *(ctx->next_cell_data++); if (mv_idx >= ctx->num_vectors) { av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n"); return AVERROR_INVALIDDATA; } curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1]; curr_cell.tree = 1; /* enter the VQ tree */ UPDATE_BITPOS(8); } else { /* VQ tree DATA code */ if (!ctx->need_resync) ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3]; CHECK_CELL bytes_used = decode_cell(ctx, avctx, plane, &curr_cell, ctx->next_cell_data, ctx->last_byte); if (bytes_used < 0) return AVERROR_INVALIDDATA; UPDATE_BITPOS(bytes_used << 3); ctx->next_cell_data += bytes_used; return 0; } break; } }//while return 0; } static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane, const uint8_t *data, int32_t data_size, int32_t strip_width) { Cell curr_cell; unsigned num_vectors; /* each plane data starts with mc_vector_count field, */ /* an optional array of motion vectors followed by the vq data */ num_vectors = bytestream_get_le32(&data); if (num_vectors > 256) { av_log(ctx->avctx, AV_LOG_ERROR, "Read invalid number of motion vectors %d\n", num_vectors); return AVERROR_INVALIDDATA; } if (num_vectors * 2 >= data_size) return AVERROR_INVALIDDATA; ctx->num_vectors = num_vectors; ctx->mc_vectors = num_vectors ? data : 0; /* init the bitreader */ init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3); ctx->skip_bits = 0; ctx->need_resync = 0; ctx->last_byte = data + data_size - 1; /* initialize the 1st cell and set its dimensions to whole plane */ curr_cell.xpos = curr_cell.ypos = 0; curr_cell.width = plane->width >> 2; curr_cell.height = plane->height >> 2; curr_cell.tree = 0; // we are in the MC tree now curr_cell.mv_ptr = 0; // no motion vector = INTRA cell return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width); } #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H') static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx, const uint8_t *buf, int buf_size) { const uint8_t *buf_ptr = buf, *bs_hdr; uint32_t frame_num, word2, check_sum, data_size; uint32_t y_offset, u_offset, v_offset, starts[3], ends[3]; uint16_t height, width; int i, j; /* parse and check the OS header */ frame_num = bytestream_get_le32(&buf_ptr); word2 = bytestream_get_le32(&buf_ptr); check_sum = bytestream_get_le32(&buf_ptr); data_size = bytestream_get_le32(&buf_ptr); if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) { av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n"); return AVERROR_INVALIDDATA; } /* parse the bitstream header */ bs_hdr = buf_ptr; if (bytestream_get_le16(&buf_ptr) != 32) { av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n"); return AVERROR_INVALIDDATA; } ctx->frame_num = frame_num; ctx->frame_flags = bytestream_get_le16(&buf_ptr); ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3; ctx->cb_offset = *buf_ptr++; if (ctx->data_size == 16) return 4; if (ctx->data_size > buf_size) ctx->data_size = buf_size; buf_ptr += 3; // skip reserved byte and checksum /* check frame dimensions */ height = bytestream_get_le16(&buf_ptr); width = bytestream_get_le16(&buf_ptr); if (av_image_check_size(width, height, 0, avctx)) return AVERROR_INVALIDDATA; if (width != ctx->width || height != ctx->height) { int res; av_dlog(avctx, "Frame dimensions changed!\n"); if (width < 16 || width > 640 || height < 16 || height > 480 || width & 3 || height & 3) { av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n", width, height); return AVERROR_INVALIDDATA; } ctx->width = width; ctx->height = height; free_frame_buffers(ctx); if ((res = allocate_frame_buffers(ctx, avctx)) < 0) return res; avcodec_set_dimensions(avctx, width, height); } y_offset = bytestream_get_le32(&buf_ptr); v_offset = bytestream_get_le32(&buf_ptr); u_offset = bytestream_get_le32(&buf_ptr); /* unfortunately there is no common order of planes in the buffer */ /* so we use that sorting algo for determining planes data sizes */ starts[0] = y_offset; starts[1] = v_offset; starts[2] = u_offset; for (j = 0; j < 3; j++) { ends[j] = ctx->data_size; for (i = 2; i >= 0; i--) if (starts[i] < ends[j] && starts[i] > starts[j]) ends[j] = starts[i]; } ctx->y_data_size = ends[0] - starts[0]; ctx->v_data_size = ends[1] - starts[1]; ctx->u_data_size = ends[2] - starts[2]; if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 || FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) { av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n"); return AVERROR_INVALIDDATA; } ctx->y_data_ptr = bs_hdr + y_offset; ctx->v_data_ptr = bs_hdr + v_offset; ctx->u_data_ptr = bs_hdr + u_offset; ctx->alt_quant = buf_ptr + sizeof(uint32_t); if (ctx->data_size == 16) { av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n"); return 16; } if (ctx->frame_flags & BS_8BIT_PEL) { av_log_ask_for_sample(avctx, "8-bit pixel format\n"); return AVERROR_PATCHWELCOME; } if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) { av_log_ask_for_sample(avctx, "halfpel motion vectors\n"); return AVERROR_PATCHWELCOME; } return 0; } /** * Convert and output the current plane. * All pixel values will be upsampled by shifting right by one bit. * * @param[in] plane pointer to the descriptor of the plane being processed * @param[in] buf_sel indicates which frame buffer the input data stored in * @param[out] dst pointer to the buffer receiving converted pixels * @param[in] dst_pitch pitch for moving to the next y line * @param[in] dst_height output plane height */ static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch, int dst_height) { int x,y; const uint8_t *src = plane->pixels[buf_sel]; uint32_t pitch = plane->pitch; dst_height = FFMIN(dst_height, plane->height); for (y = 0; y < dst_height; y++) { /* convert four pixels at once using SWAR */ for (x = 0; x < plane->width >> 2; x++) { AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1); src += 4; dst += 4; } for (x <<= 2; x < plane->width; x++) *dst++ = *src++ << 1; src += pitch - plane->width; dst += dst_pitch - plane->width; } } static av_cold int decode_init(AVCodecContext *avctx) { Indeo3DecodeContext *ctx = avctx->priv_data; ctx->avctx = avctx; ctx->width = avctx->width; ctx->height = avctx->height; avctx->pix_fmt = AV_PIX_FMT_YUV410P; build_requant_tab(); ff_dsputil_init(&ctx->dsp, avctx); allocate_frame_buffers(ctx, avctx); return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { Indeo3DecodeContext *ctx = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; int res; res = decode_frame_headers(ctx, avctx, buf, buf_size); if (res < 0) return res; /* skip sync(null) frames */ if (res) { // we have processed 16 bytes but no data was decoded *data_size = 0; return buf_size; } /* skip droppable INTER frames if requested */ if (ctx->frame_flags & BS_NONREF && (avctx->skip_frame >= AVDISCARD_NONREF)) return 0; /* skip INTER frames if requested */ if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY) return 0; /* use BS_BUFFER flag for buffer switching */ ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1; /* decode luma plane */ if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40))) return res; /* decode chroma planes */ if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10))) return res; if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10))) return res; if (ctx->frame.data[0]) avctx->release_buffer(avctx, &ctx->frame); ctx->frame.reference = 0; if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) { av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return res; } output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0], avctx->height); output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1], (avctx->height + 3) >> 2); output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2], (avctx->height + 3) >> 2); *data_size = sizeof(AVFrame); *(AVFrame*)data = ctx->frame; return buf_size; } static av_cold int decode_close(AVCodecContext *avctx) { Indeo3DecodeContext *ctx = avctx->priv_data; free_frame_buffers(avctx->priv_data); if (ctx->frame.data[0]) avctx->release_buffer(avctx, &ctx->frame); return 0; } AVCodec ff_indeo3_decoder = { .name = "indeo3", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_INDEO3, .priv_data_size = sizeof(Indeo3DecodeContext), .init = decode_init, .close = decode_close, .decode = decode_frame, .capabilities = CODEC_CAP_DR1, .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"), .capabilities = CODEC_CAP_DR1, };