/* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file libavcodec/h264.h * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #ifndef AVCODEC_H264_H #define AVCODEC_H264_H #include "dsputil.h" #include "cabac.h" #include "mpegvideo.h" #include "h264pred.h" #include "rectangle.h" #define interlaced_dct interlaced_dct_is_a_bad_name #define mb_intra mb_intra_is_not_initialized_see_mb_type #define LUMA_DC_BLOCK_INDEX 25 #define CHROMA_DC_BLOCK_INDEX 26 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8 #define COEFF_TOKEN_VLC_BITS 8 #define TOTAL_ZEROS_VLC_BITS 9 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3 #define RUN_VLC_BITS 3 #define RUN7_VLC_BITS 6 #define MAX_SPS_COUNT 32 #define MAX_PPS_COUNT 256 #define MAX_MMCO_COUNT 66 #define MAX_DELAYED_PIC_COUNT 16 /* Compiling in interlaced support reduces the speed * of progressive decoding by about 2%. */ #define ALLOW_INTERLACE #define ALLOW_NOCHROMA /** * The maximum number of slices supported by the decoder. * must be a power of 2 */ #define MAX_SLICES 16 #ifdef ALLOW_INTERLACE #define MB_MBAFF h->mb_mbaff #define MB_FIELD h->mb_field_decoding_flag #define FRAME_MBAFF h->mb_aff_frame #define FIELD_PICTURE (s->picture_structure != PICT_FRAME) #else #define MB_MBAFF 0 #define MB_FIELD 0 #define FRAME_MBAFF 0 #define FIELD_PICTURE 0 #undef IS_INTERLACED #define IS_INTERLACED(mb_type) 0 #endif #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE) #ifdef ALLOW_NOCHROMA #define CHROMA h->sps.chroma_format_idc #else #define CHROMA 1 #endif #ifndef CABAC #define CABAC h->pps.cabac #endif #define EXTENDED_SAR 255 #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit #define MB_TYPE_8x8DCT 0x01000000 #define IS_REF0(a) ((a) & MB_TYPE_REF0) #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT) /** * Value of Picture.reference when Picture is not a reference picture, but * is held for delayed output. */ #define DELAYED_PIC_REF 4 /* NAL unit types */ enum { NAL_SLICE=1, NAL_DPA, NAL_DPB, NAL_DPC, NAL_IDR_SLICE, NAL_SEI, NAL_SPS, NAL_PPS, NAL_AUD, NAL_END_SEQUENCE, NAL_END_STREAM, NAL_FILLER_DATA, NAL_SPS_EXT, NAL_AUXILIARY_SLICE=19 }; /** * SEI message types */ typedef enum { SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1) SEI_TYPE_PIC_TIMING = 1, ///< picture timing SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync) } SEI_Type; /** * pic_struct in picture timing SEI message */ typedef enum { SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling } SEI_PicStructType; /** * Sequence parameter set */ typedef struct SPS{ int profile_idc; int level_idc; int chroma_format_idc; int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4 int poc_type; ///< pic_order_cnt_type int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4 int delta_pic_order_always_zero_flag; int offset_for_non_ref_pic; int offset_for_top_to_bottom_field; int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle int ref_frame_count; ///< num_ref_frames int gaps_in_frame_num_allowed_flag; int mb_width; ///< pic_width_in_mbs_minus1 + 1 int mb_height; ///< pic_height_in_map_units_minus1 + 1 int frame_mbs_only_flag; int mb_aff; ///b4_stride int b8_stride; int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff int mb_uvlinesize; int emu_edge_width; int emu_edge_height; int halfpel_flag; int thirdpel_flag; int unknown_svq3_flag; int next_slice_index; SPS *sps_buffers[MAX_SPS_COUNT]; SPS sps; ///< current sps PPS *pps_buffers[MAX_PPS_COUNT]; /** * current pps */ PPS pps; //FIXME move to Picture perhaps? (->no) do we need that? uint32_t dequant4_buffer[6][52][16]; uint32_t dequant8_buffer[2][52][64]; uint32_t (*dequant4_coeff[6])[16]; uint32_t (*dequant8_coeff[2])[64]; int dequant_coeff_pps; ///< reinit tables when pps changes int slice_num; uint16_t *slice_table_base; uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1 int slice_type; int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P) int slice_type_fixed; //interlacing specific flags int mb_aff_frame; int mb_field_decoding_flag; int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag DECLARE_ALIGNED_8(uint16_t, sub_mb_type[4]); //POC stuff int poc_lsb; int poc_msb; int delta_poc_bottom; int delta_poc[2]; int frame_num; int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0 int frame_num_offset; ///< for POC type 2 int prev_frame_num_offset; ///< for POC type 2 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2 /** * frame_num for frames or 2*frame_num+1 for field pics. */ int curr_pic_num; /** * max_frame_num or 2*max_frame_num for field pics. */ int max_pic_num; //Weighted pred stuff int use_weight; int use_weight_chroma; int luma_log2_weight_denom; int chroma_log2_weight_denom; int luma_weight[2][48]; int luma_offset[2][48]; int chroma_weight[2][48][2]; int chroma_offset[2][48][2]; int implicit_weight[48][48]; //deblock int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0 int slice_alpha_c0_offset; int slice_beta_offset; int redundant_pic_count; int direct_spatial_mv_pred; int dist_scale_factor[16]; int dist_scale_factor_field[2][32]; int map_col_to_list0[2][16+32]; int map_col_to_list0_field[2][2][16+32]; /** * num_ref_idx_l0/1_active_minus1 + 1 */ unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode unsigned int list_count; uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type Picture *short_ref[32]; Picture *long_ref[32]; Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs. Reordered version of default_ref_list according to picture reordering in slice header */ int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size? int outputed_poc; /** * memory management control operations buffer. */ MMCO mmco[MAX_MMCO_COUNT]; int mmco_index; int long_ref_count; ///< number of actual long term references int short_ref_count; ///< number of actual short term references //data partitioning GetBitContext intra_gb; GetBitContext inter_gb; GetBitContext *intra_gb_ptr; GetBitContext *inter_gb_ptr; DECLARE_ALIGNED_16(DCTELEM, mb[16*24]); DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb /** * Cabac */ CABACContext cabac; uint8_t cabac_state[460]; int cabac_init_idc; /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */ uint16_t *cbp_table; int cbp; int top_cbp; int left_cbp; /* chroma_pred_mode for i4x4 or i16x16, else 0 */ uint8_t *chroma_pred_mode_table; int last_qscale_diff; int16_t (*mvd_table[2])[2]; DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]); uint8_t *direct_table; uint8_t direct_cache[5*8]; uint8_t zigzag_scan[16]; uint8_t zigzag_scan8x8[64]; uint8_t zigzag_scan8x8_cavlc[64]; uint8_t field_scan[16]; uint8_t field_scan8x8[64]; uint8_t field_scan8x8_cavlc[64]; const uint8_t *zigzag_scan_q0; const uint8_t *zigzag_scan8x8_q0; const uint8_t *zigzag_scan8x8_cavlc_q0; const uint8_t *field_scan_q0; const uint8_t *field_scan8x8_q0; const uint8_t *field_scan8x8_cavlc_q0; int x264_build; /** * @defgroup multithreading Members for slice based multithreading * @{ */ struct H264Context *thread_context[MAX_THREADS]; /** * current slice number, used to initalize slice_num of each thread/context */ int current_slice; /** * Max number of threads / contexts. * This is equal to AVCodecContext.thread_count unless * multithreaded decoding is impossible, in which case it is * reduced to 1. */ int max_contexts; /** * 1 if the single thread fallback warning has already been * displayed, 0 otherwise. */ int single_decode_warning; int last_slice_type; /** @} */ int mb_xy; uint32_t svq3_watermark_key; /** * pic_struct in picture timing SEI message */ SEI_PicStructType sei_pic_struct; /** * Complement sei_pic_struct * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames. * However, soft telecined frames may have these values. * This is used in an attempt to flag soft telecine progressive. */ int prev_interlaced_frame; /** * Bit set of clock types for fields/frames in picture timing SEI message. * For each found ct_type, appropriate bit is set (e.g., bit 1 for * interlaced). */ int sei_ct_type; /** * dpb_output_delay in picture timing SEI message, see H.264 C.2.2 */ int sei_dpb_output_delay; /** * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2 */ int sei_cpb_removal_delay; /** * recovery_frame_cnt from SEI message * * Set to -1 if no recovery point SEI message found or to number of frames * before playback synchronizes. Frames having recovery point are key * frames. */ int sei_recovery_frame_cnt; int is_complex; int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag // Timestamp stuff int sei_buffering_period_present; ///< Buffering period SEI flag int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs }H264Context; extern const uint8_t ff_h264_chroma_qp[52]; /** * Decode SEI */ int ff_h264_decode_sei(H264Context *h); /** * Decode SPS */ int ff_h264_decode_seq_parameter_set(H264Context *h); /** * Decode PPS */ int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length); /** * Decodes a network abstraction layer unit. * @param consumed is the number of bytes used as input * @param length is the length of the array * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing? * @returns decoded bytes, might be src+1 if no escapes */ const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length); /** * identifies the exact end of the bitstream * @return the length of the trailing, or 0 if damaged */ int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src); /** * frees any data that may have been allocated in the H264 context like SPS, PPS etc. */ av_cold void ff_h264_free_context(H264Context *h); /** * reconstructs bitstream slice_type. */ int ff_h264_get_slice_type(H264Context *h); /** * allocates tables. * needs width/height */ int ff_h264_alloc_tables(H264Context *h); /** * fills the default_ref_list. */ int ff_h264_fill_default_ref_list(H264Context *h); int ff_h264_decode_ref_pic_list_reordering(H264Context *h); void ff_h264_fill_mbaff_ref_list(H264Context *h); void ff_h264_remove_all_refs(H264Context *h); /** * Executes the reference picture marking (memory management control operations). */ int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count); int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb); /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ int ff_h264_check_intra4x4_pred_mode(H264Context *h); /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ int ff_h264_check_intra_pred_mode(H264Context *h, int mode); void ff_h264_write_back_intra_pred_mode(H264Context *h); void ff_h264_hl_decode_mb(H264Context *h); int ff_h264_frame_start(H264Context *h); av_cold int ff_h264_decode_init(AVCodecContext *avctx); av_cold int ff_h264_decode_end(AVCodecContext *avctx); av_cold void ff_h264_decode_init_vlc(void); /** * decodes a macroblock * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed */ int ff_h264_decode_mb_cavlc(H264Context *h); /** * decodes a CABAC coded macroblock * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed */ int ff_h264_decode_mb_cabac(H264Context *h); void ff_h264_init_cabac_states(H264Context *h); void ff_h264_direct_dist_scale_factor(H264Context * const h); void ff_h264_direct_ref_list_init(H264Context * const h); void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type); void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); /** * Reset SEI values at the beginning of the frame. * * @param h H.264 context. */ void ff_h264_reset_sei(H264Context *h); /* o-o o-o / / / o-o o-o ,---' o-o o-o / / / o-o o-o */ //This table must be here because scan8[constant] must be known at compiletime static const uint8_t scan8[16 + 2*4]={ 4+1*8, 5+1*8, 4+2*8, 5+2*8, 6+1*8, 7+1*8, 6+2*8, 7+2*8, 4+3*8, 5+3*8, 4+4*8, 5+4*8, 6+3*8, 7+3*8, 6+4*8, 7+4*8, 1+1*8, 2+1*8, 1+2*8, 2+2*8, 1+4*8, 2+4*8, 1+5*8, 2+5*8, }; static av_always_inline uint32_t pack16to32(int a, int b){ #if HAVE_BIGENDIAN return (b&0xFFFF) + (a<<16); #else return (a&0xFFFF) + (b<<16); #endif } /** * gets the chroma qp. */ static inline int get_chroma_qp(H264Context *h, int t, int qscale){ return h->pps.chroma_qp_table[t][qscale]; } static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my); static av_always_inline int fill_caches(H264Context *h, int mb_type, int for_deblock){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; int topleft_xy, top_xy, topright_xy, left_xy[2]; int topleft_type, top_type, topright_type, left_type[2]; const uint8_t * left_block; int topleft_partition= -1; int i; static const uint8_t left_block_options[4][16]={ {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8}, {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8}, {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}, {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8} }; top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE); //FIXME deblocking could skip the intra and nnz parts. // if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF) // return; /* Wow, what a mess, why didn't they simplify the interlacing & intra * stuff, I can't imagine that these complex rules are worth it. */ topleft_xy = top_xy - 1; topright_xy= top_xy + 1; left_xy[1] = left_xy[0] = mb_xy-1; left_block = left_block_options[0]; if(FRAME_MBAFF){ const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride; const int top_pair_xy = pair_xy - s->mb_stride; const int topleft_pair_xy = top_pair_xy - 1; const int topright_pair_xy = top_pair_xy + 1; const int topleft_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]); const int top_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]); const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]); const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]); const int curr_mb_field_flag = IS_INTERLACED(mb_type); const int bottom = (s->mb_y & 1); tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag); if (curr_mb_field_flag && (bottom || top_mb_field_flag)){ top_xy -= s->mb_stride; } if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){ topleft_xy -= s->mb_stride; } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) { topleft_xy += s->mb_stride; // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition topleft_partition = 0; } if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){ topright_xy -= s->mb_stride; } if (left_mb_field_flag != curr_mb_field_flag) { left_xy[1] = left_xy[0] = pair_xy - 1; if (curr_mb_field_flag) { left_xy[1] += s->mb_stride; left_block = left_block_options[3]; } else { left_block= left_block_options[2 - bottom]; } } } h->top_mb_xy = top_xy; h->left_mb_xy[0] = left_xy[0]; h->left_mb_xy[1] = left_xy[1]; if(for_deblock){ //for sufficiently low qp, filtering wouldn't do anything //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice int qp = s->current_picture.qscale_table[mb_xy]; if(qp <= qp_thresh && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh) && (left_xy[1]<0 || ((qp + s->current_picture.qscale_table[left_xy[1]] + 1)>>1) <= qp_thresh) && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){ return 1; } if(IS_INTRA(mb_type)) return 0; *((uint64_t*)&h->non_zero_count_cache[0+8*1])= *((uint64_t*)&h->non_zero_count[mb_xy][ 0]); *((uint64_t*)&h->non_zero_count_cache[0+8*2])= *((uint64_t*)&h->non_zero_count[mb_xy][ 8]); *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]); *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]); *((uint64_t*)&h->non_zero_count_cache[0+8*4])= *((uint64_t*)&h->non_zero_count[mb_xy][24]); h->cbp= h->cbp_table[mb_xy]; topleft_type = 0; topright_type = 0; top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0; left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0; left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0; if(!IS_INTRA(mb_type)){ int list; for(list=0; listlist_count; list++){ int8_t *ref; int y, b_xy; if(!USES_LIST(mb_type, list)){ fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4); *(uint32_t*)&h->ref_cache[list][scan8[ 0]] = *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = *(uint32_t*)&h->ref_cache[list][scan8[ 8]] = *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101; continue; } ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]]; if(for_deblock){ int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); *(uint32_t*)&h->ref_cache[list][scan8[ 0]] = *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101; ref += h->b8_stride; *(uint32_t*)&h->ref_cache[list][scan8[ 8]] = *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101; }else{ *(uint32_t*)&h->ref_cache[list][scan8[ 0]] = *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101; ref += h->b8_stride; *(uint32_t*)&h->ref_cache[list][scan8[ 8]] = *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101; } b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; for(y=0; y<4; y++){ *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]; *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]; } } } }else{ topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0; top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0; topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0; left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0; left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0; if(IS_INTRA(mb_type)){ int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1; h->topleft_samples_available= h->top_samples_available= h->left_samples_available= 0xFFFF; h->topright_samples_available= 0xEEEA; if(!(top_type & type_mask)){ h->topleft_samples_available= 0xB3FF; h->top_samples_available= 0x33FF; h->topright_samples_available= 0x26EA; } if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){ if(IS_INTERLACED(mb_type)){ if(!(left_type[0] & type_mask)){ h->topleft_samples_available&= 0xDFFF; h->left_samples_available&= 0x5FFF; } if(!(left_type[1] & type_mask)){ h->topleft_samples_available&= 0xFF5F; h->left_samples_available&= 0xFF5F; } }else{ int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0; assert(left_xy[0] == left_xy[1]); if(!((left_typei & type_mask) && (left_type[0] & type_mask))){ h->topleft_samples_available&= 0xDF5F; h->left_samples_available&= 0x5F5F; } } }else{ if(!(left_type[0] & type_mask)){ h->topleft_samples_available&= 0xDF5F; h->left_samples_available&= 0x5F5F; } } if(!(topleft_type & type_mask)) h->topleft_samples_available&= 0x7FFF; if(!(topright_type & type_mask)) h->topright_samples_available&= 0xFBFF; if(IS_INTRA4x4(mb_type)){ if(IS_INTRA4x4(top_type)){ h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4]; h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5]; h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6]; h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3]; }else{ int pred; if(!(top_type & type_mask)) pred= -1; else{ pred= 2; } h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode_cache[7+8*0]= pred; } for(i=0; i<2; i++){ if(IS_INTRA4x4(left_type[i])){ h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]]; h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]]; }else{ int pred; if(!(left_type[i] & type_mask)) pred= -1; else{ pred= 2; } h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred; } } } } } /* 0 . T T. T T T T 1 L . .L . . . . 2 L . .L . . . . 3 . T TL . . . . 4 L . .L . . . . 5 L . .. . . . . */ //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec) if(top_type){ *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8]; if(!for_deblock){ h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8]; h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8]; h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8]; h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8]; } }else{ if(for_deblock){ *(uint32_t*)&h->non_zero_count_cache[4+8*0]= 0; }else{ h->non_zero_count_cache[1+8*0]= h->non_zero_count_cache[2+8*0]= h->non_zero_count_cache[1+8*3]= h->non_zero_count_cache[2+8*3]= *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040; } } for (i=0; i<2; i++) { if(left_type[i]){ h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]]; h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]]; if(!for_deblock){ h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]]; h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]]; } }else{ if(for_deblock){ h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count_cache[3+8*2 + 2*8*i]= 0; }else{ h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64; } } } // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs if(for_deblock && !CABAC && h->pps.transform_8x8_mode){ if(IS_8x8DCT(top_type)){ h->non_zero_count_cache[4+8*0]= h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4; h->non_zero_count_cache[6+8*0]= h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8; } if(IS_8x8DCT(left_type[0])){ h->non_zero_count_cache[3+8*1]= h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF } if(IS_8x8DCT(left_type[1])){ h->non_zero_count_cache[3+8*3]= h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF } if(IS_8x8DCT(mb_type)){ h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]= h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp_table[mb_xy] & 1; h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]= h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp_table[mb_xy] & 2; h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]= h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp_table[mb_xy] & 4; h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]= h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp_table[mb_xy] & 8; } } if( CABAC && !for_deblock) { // top_cbp if(top_type) { h->top_cbp = h->cbp_table[top_xy]; } else if(IS_INTRA(mb_type)) { h->top_cbp = 0x1C0; } else { h->top_cbp = 0; } // left_cbp if (left_type[0]) { h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0; } else if(IS_INTRA(mb_type)) { h->left_cbp = 0x1C0; } else { h->left_cbp = 0; } if (left_type[0]) { h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1; } if (left_type[1]) { h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3; } } #if 1 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){ int list; for(list=0; listlist_count; list++){ if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){ /*if(!h->mv_cache_clean[list]){ memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all? memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t)); h->mv_cache_clean[list]= 1; }*/ continue; } h->mv_cache_clean[list]= 0; if(USES_LIST(top_type, list)){ const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride; *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0]; *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1]; *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2]; *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3]; if(for_deblock){ int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); h->ref_cache[list][scan8[0] + 0 - 1*8]= h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]]; h->ref_cache[list][scan8[0] + 2 - 1*8]= h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]]; }else{ h->ref_cache[list][scan8[0] + 0 - 1*8]= h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0]; h->ref_cache[list][scan8[0] + 2 - 1*8]= h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1]; } }else{ *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0; *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= (((for_deblock||top_type) ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101; } for(i=0; i<2; i++){ int cache_idx = scan8[0] - 1 + i*2*8; if(USES_LIST(left_type[i], list)){ const int b_xy= h->mb2b_xy[left_xy[i]] + 3; const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1; *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]; *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]; if(for_deblock){ int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[i]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); h->ref_cache[list][cache_idx ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]]; h->ref_cache[list][cache_idx+8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]]; }else{ h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]; h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]; } }else{ *(uint32_t*)h->mv_cache [list][cache_idx ]= *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0; h->ref_cache[list][cache_idx ]= h->ref_cache[list][cache_idx+8]= (for_deblock||left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF)) continue; if(USES_LIST(topleft_type, list)){ const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride); const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride); *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy]; }else{ *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0; h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } if(USES_LIST(topright_type, list)){ const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride; const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride; *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy]; }else{ *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0; h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF) continue; h->ref_cache[list][scan8[5 ]+1] = h->ref_cache[list][scan8[7 ]+1] = h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else) h->ref_cache[list][scan8[4 ]] = h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE; *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]= *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]= *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else) *(uint32_t*)h->mv_cache [list][scan8[4 ]]= *(uint32_t*)h->mv_cache [list][scan8[12]]= 0; if( CABAC ) { /* XXX beurk, Load mvd */ if(USES_LIST(top_type, list)){ const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0]; *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1]; *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2]; *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3]; }else{ *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0; } if(USES_LIST(left_type[0], list)){ const int b_xy= h->mb2b_xy[left_xy[0]] + 3; *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]]; *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]]; }else{ *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0; } if(USES_LIST(left_type[1], list)){ const int b_xy= h->mb2b_xy[left_xy[1]] + 3; *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]]; *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]]; }else{ *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0; } *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]= *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]= *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else) *(uint32_t*)h->mvd_cache [list][scan8[4 ]]= *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0; if(h->slice_type_nos == FF_B_TYPE){ fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1); if(IS_DIRECT(top_type)){ *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101; }else if(IS_8X8(top_type)){ int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride; h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy]; h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1]; }else{ *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0; } if(IS_DIRECT(left_type[0])) h->direct_cache[scan8[0] - 1 + 0*8]= 1; else if(IS_8X8(left_type[0])) h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)]; else h->direct_cache[scan8[0] - 1 + 0*8]= 0; if(IS_DIRECT(left_type[1])) h->direct_cache[scan8[0] - 1 + 2*8]= 1; else if(IS_8X8(left_type[1])) h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)]; else h->direct_cache[scan8[0] - 1 + 2*8]= 0; } } if(FRAME_MBAFF){ #define MAP_MVS\ MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\ MAP_F2F(scan8[0] + 0 - 1*8, top_type)\ MAP_F2F(scan8[0] + 1 - 1*8, top_type)\ MAP_F2F(scan8[0] + 2 - 1*8, top_type)\ MAP_F2F(scan8[0] + 3 - 1*8, top_type)\ MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\ MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\ MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\ MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\ MAP_F2F(scan8[0] - 1 + 3*8, left_type[1]) if(MB_FIELD){ #define MAP_F2F(idx, mb_type)\ if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ h->ref_cache[list][idx] <<= 1;\ h->mv_cache[list][idx][1] /= 2;\ h->mvd_cache[list][idx][1] /= 2;\ } MAP_MVS #undef MAP_F2F }else{ #define MAP_F2F(idx, mb_type)\ if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ h->ref_cache[list][idx] >>= 1;\ h->mv_cache[list][idx][1] <<= 1;\ h->mvd_cache[list][idx][1] <<= 1;\ } MAP_MVS #undef MAP_F2F } } } } #endif if(!for_deblock) h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]); return 0; } static void fill_decode_caches(H264Context *h, int mb_type){ fill_caches(h, mb_type, 0); } /** * * @returns non zero if the loop filter can be skiped */ static int fill_filter_caches(H264Context *h, int mb_type){ return fill_caches(h, mb_type, 1); } /** * gets the predicted intra4x4 prediction mode. */ static inline int pred_intra_mode(H264Context *h, int n){ const int index8= scan8[n]; const int left= h->intra4x4_pred_mode_cache[index8 - 1]; const int top = h->intra4x4_pred_mode_cache[index8 - 8]; const int min= FFMIN(left, top); tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min); if(min<0) return DC_PRED; else return min; } static inline void write_back_non_zero_count(H264Context *h){ const int mb_xy= h->mb_xy; *((uint64_t*)&h->non_zero_count[mb_xy][ 0]) = *((uint64_t*)&h->non_zero_count_cache[0+8*1]); *((uint64_t*)&h->non_zero_count[mb_xy][ 8]) = *((uint64_t*)&h->non_zero_count_cache[0+8*2]); *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]); *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]); *((uint64_t*)&h->non_zero_count[mb_xy][24]) = *((uint64_t*)&h->non_zero_count_cache[0+8*4]); } static inline void write_back_motion(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride; int list; if(!USES_LIST(mb_type, 0)) fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1); for(list=0; listlist_count; list++){ int y; if(!USES_LIST(mb_type, list)) continue; for(y=0; y<4; y++){ *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]; *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]; } if( CABAC ) { if(IS_SKIP(mb_type)) fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4); else for(y=0; y<4; y++){ *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y]; *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y]; } } { int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy]; ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]]; ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]]; ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]]; ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]]; } } if(h->slice_type_nos == FF_B_TYPE && CABAC){ if(IS_8X8(mb_type)){ uint8_t *direct_table = &h->direct_table[b8_xy]; direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0; direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0; direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0; } } } static inline int get_dct8x8_allowed(H264Context *h){ if(h->sps.direct_8x8_inference_flag) return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL)); else return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL)); } static void predict_field_decoding_flag(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; int mb_type = (h->slice_table[mb_xy-1] == h->slice_num) ? s->current_picture.mb_type[mb_xy-1] : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num) ? s->current_picture.mb_type[mb_xy-s->mb_stride] : 0; h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; } /** * decodes a P_SKIP or B_SKIP macroblock */ static void decode_mb_skip(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; int mb_type=0; memset(h->non_zero_count[mb_xy], 0, 32); memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui if(MB_FIELD) mb_type|= MB_TYPE_INTERLACED; if( h->slice_type_nos == FF_B_TYPE ) { // just for fill_caches. pred_direct_motion will set the real mb_type mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP; fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ... ff_h264_pred_direct_motion(h, &mb_type); mb_type|= MB_TYPE_SKIP; } else { int mx, my; mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP; fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ... pred_pskip_motion(h, &mx, &my); fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1); fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4); } write_back_motion(h, mb_type); s->current_picture.mb_type[mb_xy]= mb_type; s->current_picture.qscale_table[mb_xy]= s->qscale; h->slice_table[ mb_xy ]= h->slice_num; h->prev_mb_skipped= 1; } #include "h264_mvpred.h" //For pred_pskip_motion() #endif /* AVCODEC_H264_H */