/* * Copyright (c) 2016 Google Inc. * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/arm/asm.S" @ All public functions in this file have the following signature: @ typedef void (*vp9_mc_func)(uint8_t *dst, ptrdiff_t dst_stride, @ const uint8_t *ref, ptrdiff_t ref_stride, @ int h, int mx, int my); function ff_vp9_copy64_neon, export=1 ldr r12, [sp] sub r1, r1, #32 sub r3, r3, #32 1: vld1.8 {q0, q1}, [r2]! vst1.8 {q0, q1}, [r0, :128]! vld1.8 {q2, q3}, [r2], r3 subs r12, r12, #1 vst1.8 {q2, q3}, [r0, :128], r1 bne 1b bx lr endfunc function ff_vp9_avg64_neon, export=1 push {lr} ldr r12, [sp, #4] sub r1, r1, #32 sub r3, r3, #32 mov lr, r0 1: vld1.8 {q8, q9}, [r2]! vld1.8 {q0, q1}, [r0, :128]! vld1.8 {q10, q11}, [r2], r3 vrhadd.u8 q0, q0, q8 vld1.8 {q2, q3}, [r0, :128], r1 vrhadd.u8 q1, q1, q9 vrhadd.u8 q2, q2, q10 vst1.8 {q0, q1}, [lr, :128]! vrhadd.u8 q3, q3, q11 vst1.8 {q2, q3}, [lr, :128], r1 subs r12, r12, #1 bne 1b pop {pc} endfunc function ff_vp9_copy32_neon, export=1 ldr r12, [sp] 1: vld1.8 {q0, q1}, [r2], r3 subs r12, r12, #1 vst1.8 {q0, q1}, [r0, :128], r1 bne 1b bx lr endfunc function ff_vp9_avg32_neon, export=1 ldr r12, [sp] 1: vld1.8 {q2, q3}, [r2], r3 vld1.8 {q0, q1}, [r0, :128] vrhadd.u8 q0, q0, q2 vrhadd.u8 q1, q1, q3 subs r12, r12, #1 vst1.8 {q0, q1}, [r0, :128], r1 bne 1b bx lr endfunc function ff_vp9_copy16_neon, export=1 push {r4,lr} ldr r12, [sp, #8] add r4, r0, r1 add lr, r2, r3 add r1, r1, r1 add r3, r3, r3 1: vld1.8 {q0}, [r2], r3 vld1.8 {q1}, [lr], r3 subs r12, r12, #2 vst1.8 {q0}, [r0, :128], r1 vst1.8 {q1}, [r4, :128], r1 bne 1b pop {r4,pc} endfunc function ff_vp9_avg16_neon, export=1 push {lr} ldr r12, [sp, #4] mov lr, r0 1: vld1.8 {q2}, [r2], r3 vld1.8 {q0}, [r0, :128], r1 vld1.8 {q3}, [r2], r3 vrhadd.u8 q0, q0, q2 vld1.8 {q1}, [r0, :128], r1 vrhadd.u8 q1, q1, q3 subs r12, r12, #2 vst1.8 {q0}, [lr, :128], r1 vst1.8 {q1}, [lr, :128], r1 bne 1b pop {pc} endfunc function ff_vp9_copy8_neon, export=1 ldr r12, [sp] 1: vld1.8 {d0}, [r2], r3 vld1.8 {d1}, [r2], r3 subs r12, r12, #2 vst1.8 {d0}, [r0, :64], r1 vst1.8 {d1}, [r0, :64], r1 bne 1b bx lr endfunc function ff_vp9_avg8_neon, export=1 ldr r12, [sp] 1: vld1.8 {d2}, [r2], r3 vld1.8 {d0}, [r0, :64], r1 vld1.8 {d3}, [r2], r3 vrhadd.u8 d0, d0, d2 vld1.8 {d1}, [r0, :64] sub r0, r0, r1 vrhadd.u8 d1, d1, d3 subs r12, r12, #2 vst1.8 {d0}, [r0, :64], r1 vst1.8 {d1}, [r0, :64], r1 bne 1b bx lr endfunc function ff_vp9_copy4_neon, export=1 ldr r12, [sp] 1: vld1.32 {d0[]}, [r2], r3 vld1.32 {d1[]}, [r2], r3 vst1.32 {d0[0]}, [r0, :32], r1 vld1.32 {d2[]}, [r2], r3 vst1.32 {d1[0]}, [r0, :32], r1 vld1.32 {d3[]}, [r2], r3 subs r12, r12, #4 vst1.32 {d2[0]}, [r0, :32], r1 vst1.32 {d3[0]}, [r0, :32], r1 bne 1b bx lr endfunc function ff_vp9_avg4_neon, export=1 push {lr} ldr r12, [sp, #4] mov lr, r0 1: vld1.32 {d4[]}, [r2], r3 vld1.32 {d0[]}, [r0, :32], r1 vld1.32 {d5[]}, [r2], r3 vrhadd.u8 d0, d0, d4 vld1.32 {d1[]}, [r0, :32], r1 vld1.32 {d6[]}, [r2], r3 vrhadd.u8 d1, d1, d5 vld1.32 {d2[]}, [r0, :32], r1 vld1.32 {d7[]}, [r2], r3 vrhadd.u8 d2, d2, d6 vld1.32 {d3[]}, [r0, :32], r1 subs r12, r12, #4 vst1.32 {d0[0]}, [lr, :32], r1 vrhadd.u8 d3, d3, d7 vst1.32 {d1[0]}, [lr, :32], r1 vst1.32 {d2[0]}, [lr, :32], r1 vst1.32 {d3[0]}, [lr, :32], r1 bne 1b pop {pc} endfunc @ Helper macros for vmul/vmla with a constant from either d0 or d1 depending on index .macro vmul_lane dst, src, idx .if \idx < 4 vmul.s16 \dst, \src, d0[\idx] .else vmul.s16 \dst, \src, d1[\idx - 4] .endif .endm .macro vmla_lane dst, src, idx .if \idx < 4 vmla.s16 \dst, \src, d0[\idx] .else vmla.s16 \dst, \src, d1[\idx - 4] .endif .endm @ Extract a vector from src1-src2 and src4-src5 (src1-src3 and src4-src6 @ for size >= 16), and multiply-accumulate into dst1 and dst3 (or @ dst1-dst2 and dst3-dst4 for size >= 16) .macro extmla dst1, dst2, dst3, dst4, dst1d, dst3d, src1, src2, src3, src4, src5, src6, offset, size vext.8 q14, \src1, \src2, #(2*\offset) vext.8 q15, \src4, \src5, #(2*\offset) .if \size >= 16 vmla_lane \dst1, q14, \offset vext.8 q5, \src2, \src3, #(2*\offset) vmla_lane \dst3, q15, \offset vext.8 q6, \src5, \src6, #(2*\offset) vmla_lane \dst2, q5, \offset vmla_lane \dst4, q6, \offset .elseif \size == 8 vmla_lane \dst1, q14, \offset vmla_lane \dst3, q15, \offset .else vmla_lane \dst1d, d28, \offset vmla_lane \dst3d, d30, \offset .endif .endm @ The same as above, but don't accumulate straight into the @ destination, but use a temp register and accumulate with saturation. .macro extmulqadd dst1, dst2, dst3, dst4, dst1d, dst3d, src1, src2, src3, src4, src5, src6, offset, size vext.8 q14, \src1, \src2, #(2*\offset) vext.8 q15, \src4, \src5, #(2*\offset) .if \size >= 16 vmul_lane q14, q14, \offset vext.8 q5, \src2, \src3, #(2*\offset) vmul_lane q15, q15, \offset vext.8 q6, \src5, \src6, #(2*\offset) vmul_lane q5, q5, \offset vmul_lane q6, q6, \offset .elseif \size == 8 vmul_lane q14, q14, \offset vmul_lane q15, q15, \offset .else vmul_lane d28, d28, \offset vmul_lane d30, d30, \offset .endif .if \size == 4 vqadd.s16 \dst1d, \dst1d, d28 vqadd.s16 \dst3d, \dst3d, d30 .else vqadd.s16 \dst1, \dst1, q14 vqadd.s16 \dst3, \dst3, q15 .if \size >= 16 vqadd.s16 \dst2, \dst2, q5 vqadd.s16 \dst4, \dst4, q6 .endif .endif .endm @ Instantiate a horizontal filter function for the given size. @ This can work on 4, 8 or 16 pixels in parallel; for larger @ widths it will do 16 pixels at a time and loop horizontally. @ The actual width is passed in r5, the height in r4 and @ the filter coefficients in r12. idx2 is the index of the largest @ filter coefficient (3 or 4) and idx1 is the other one of them. .macro do_8tap_h type, size, idx1, idx2 function \type\()_8tap_\size\()h_\idx1\idx2 sub r2, r2, #3 add r6, r0, r1 add r7, r2, r3 add r1, r1, r1 add r3, r3, r3 @ Only size >= 16 loops horizontally and needs @ reduced dst stride .if \size >= 16 sub r1, r1, r5 .endif @ size >= 16 loads two qwords and increments r2, @ for size 4/8 it's enough with one qword and no @ postincrement .if \size >= 16 sub r3, r3, r5 sub r3, r3, #8 .endif @ Load the filter vector vld1.8 {d0}, [r12,:64] vmovl.s8 q0, d0 1: .if \size >= 16 mov r12, r5 .endif @ Load src .if \size >= 16 vld1.8 {d18, d19, d20}, [r2]! vld1.8 {d24, d25, d26}, [r7]! .else vld1.8 {q9}, [r2] vld1.8 {q12}, [r7] .endif vmovl.u8 q8, d18 vmovl.u8 q9, d19 vmovl.u8 q11, d24 vmovl.u8 q12, d25 .if \size >= 16 vmovl.u8 q10, d20 vmovl.u8 q13, d26 .endif 2: @ Accumulate, adding idx2 last with a separate @ saturating add. The positive filter coefficients @ for all indices except idx2 must add up to less @ than 127 for this not to overflow. vmul.s16 q1, q8, d0[0] vmul.s16 q3, q11, d0[0] .if \size >= 16 vmul.s16 q2, q9, d0[0] vmul.s16 q4, q12, d0[0] .endif extmla q1, q2, q3, q4, d2, d6, q8, q9, q10, q11, q12, q13, 1, \size extmla q1, q2, q3, q4, d2, d6, q8, q9, q10, q11, q12, q13, 2, \size extmla q1, q2, q3, q4, d2, d6, q8, q9, q10, q11, q12, q13, \idx1, \size extmla q1, q2, q3, q4, d2, d6, q8, q9, q10, q11, q12, q13, 5, \size extmla q1, q2, q3, q4, d2, d6, q8, q9, q10, q11, q12, q13, 6, \size extmla q1, q2, q3, q4, d2, d6, q8, q9, q10, q11, q12, q13, 7, \size extmulqadd q1, q2, q3, q4, d2, d6, q8, q9, q10, q11, q12, q13, \idx2, \size @ Round, shift and saturate vqrshrun.s16 d2, q1, #7 vqrshrun.s16 d6, q3, #7 .if \size >= 16 vqrshrun.s16 d3, q2, #7 vqrshrun.s16 d7, q4, #7 .endif @ Average .ifc \type,avg .if \size >= 16 vld1.8 {q14}, [r0,:128] vld1.8 {q15}, [r6,:128] vrhadd.u8 q1, q1, q14 vrhadd.u8 q3, q3, q15 .elseif \size == 8 vld1.8 {d28}, [r0,:64] vld1.8 {d30}, [r6,:64] vrhadd.u8 d2, d2, d28 vrhadd.u8 d6, d6, d30 .else @ We only need d28[0], but [] is faster on some cores vld1.32 {d28[]}, [r0,:32] vld1.32 {d30[]}, [r6,:32] vrhadd.u8 d2, d2, d28 vrhadd.u8 d6, d6, d30 .endif .endif @ Store and loop horizontally (for size >= 16) .if \size >= 16 subs r12, r12, #16 vst1.8 {q1}, [r0,:128]! vst1.8 {q3}, [r6,:128]! beq 3f vmov q8, q10 vmov q11, q13 vld1.8 {q10}, [r2]! vld1.8 {q13}, [r7]! vmovl.u8 q9, d20 vmovl.u8 q10, d21 vmovl.u8 q12, d26 vmovl.u8 q13, d27 b 2b .elseif \size == 8 vst1.8 {d2}, [r0,:64] vst1.8 {d6}, [r6,:64] .else @ \size == 4 vst1.32 {d2[0]}, [r0,:32] vst1.32 {d6[0]}, [r6,:32] .endif 3: @ Loop vertically add r0, r0, r1 add r6, r6, r1 add r2, r2, r3 add r7, r7, r3 subs r4, r4, #2 bne 1b .if \size >= 16 vpop {q4-q6} .endif pop {r4-r7} bx lr endfunc .endm .macro do_8tap_h_size size do_8tap_h put, \size, 3, 4 do_8tap_h avg, \size, 3, 4 do_8tap_h put, \size, 4, 3 do_8tap_h avg, \size, 4, 3 .endm do_8tap_h_size 4 do_8tap_h_size 8 do_8tap_h_size 16 .macro do_8tap_h_func type, filter, offset, size function ff_vp9_\type\()_\filter\()\size\()_h_neon, export=1 push {r4-r7} .if \size >= 16 vpush {q4-q6} ldr r4, [sp, #64] ldr r5, [sp, #68] .else ldr r4, [sp, #16] ldr r5, [sp, #20] .endif movrelx r12, X(ff_vp9_subpel_filters), r6 add r12, r12, 120*\offset - 8 cmp r5, #8 add r12, r12, r5, lsl #3 mov r5, #\size .if \size >= 16 bge \type\()_8tap_16h_34 b \type\()_8tap_16h_43 .else bge \type\()_8tap_\size\()h_34 b \type\()_8tap_\size\()h_43 .endif endfunc .endm .macro do_8tap_h_filters size do_8tap_h_func put, regular, 1, \size do_8tap_h_func avg, regular, 1, \size do_8tap_h_func put, sharp, 2, \size do_8tap_h_func avg, sharp, 2, \size do_8tap_h_func put, smooth, 0, \size do_8tap_h_func avg, smooth, 0, \size .endm do_8tap_h_filters 64 do_8tap_h_filters 32 do_8tap_h_filters 16 do_8tap_h_filters 8 do_8tap_h_filters 4 .ltorg @ Vertical filters @ Round, shift and saturate and store qreg1-2 over 4 lines .macro do_store4 qreg1, dreg1, qreg2, dreg2, tmp1, tmp2, type vqrshrun.s16 \dreg1, \qreg1, #7 vqrshrun.s16 \dreg2, \qreg2, #7 .ifc \type,avg vld1.32 {\tmp1[]}, [r0,:32], r1 vld1.32 {\tmp2[]}, [r0,:32], r1 vld1.32 {\tmp1[1]}, [r0,:32], r1 vld1.32 {\tmp2[1]}, [r0,:32], r1 vrhadd.u8 \dreg1, \dreg1, \tmp1 vrhadd.u8 \dreg2, \dreg2, \tmp2 sub r0, r0, r1, lsl #2 .endif vst1.32 {\dreg1[0]}, [r0,:32], r1 vst1.32 {\dreg2[0]}, [r0,:32], r1 vst1.32 {\dreg1[1]}, [r0,:32], r1 vst1.32 {\dreg2[1]}, [r0,:32], r1 .endm @ Round, shift and saturate and store qreg1-4 .macro do_store qreg1, dreg1, qreg2, dreg2, qreg3, dreg3, qreg4, dreg4, tmp1, tmp2, tmp3, tmp4, type vqrshrun.s16 \dreg1, \qreg1, #7 vqrshrun.s16 \dreg2, \qreg2, #7 vqrshrun.s16 \dreg3, \qreg3, #7 vqrshrun.s16 \dreg4, \qreg4, #7 .ifc \type,avg vld1.8 {\tmp1}, [r0,:64], r1 vld1.8 {\tmp2}, [r0,:64], r1 vld1.8 {\tmp3}, [r0,:64], r1 vld1.8 {\tmp4}, [r0,:64], r1 vrhadd.u8 \dreg1, \dreg1, \tmp1 vrhadd.u8 \dreg2, \dreg2, \tmp2 vrhadd.u8 \dreg3, \dreg3, \tmp3 vrhadd.u8 \dreg4, \dreg4, \tmp4 sub r0, r0, r1, lsl #2 .endif vst1.8 {\dreg1}, [r0,:64], r1 vst1.8 {\dreg2}, [r0,:64], r1 vst1.8 {\dreg3}, [r0,:64], r1 vst1.8 {\dreg4}, [r0,:64], r1 .endm @ Evaluate the filter twice in parallel, from the inputs src1-src9 into dst1-dst2 @ (src1-src8 into dst1, src2-src9 into dst2), adding idx2 separately @ at the end with saturation. Indices 0 and 7 always have negative or zero @ coefficients, so they can be accumulated into tmp1-tmp2 together with the @ largest coefficient. .macro convolve dst1, dst2, src1, src2, src3, src4, src5, src6, src7, src8, src9, idx1, idx2, tmp1, tmp2 vmul.s16 \dst1, \src2, d0[1] vmul.s16 \dst2, \src3, d0[1] vmul.s16 \tmp1, \src1, d0[0] vmul.s16 \tmp2, \src2, d0[0] vmla.s16 \dst1, \src3, d0[2] vmla.s16 \dst2, \src4, d0[2] .if \idx1 == 3 vmla.s16 \dst1, \src4, d0[3] vmla.s16 \dst2, \src5, d0[3] .else vmla.s16 \dst1, \src5, d1[0] vmla.s16 \dst2, \src6, d1[0] .endif vmla.s16 \dst1, \src6, d1[1] vmla.s16 \dst2, \src7, d1[1] vmla.s16 \tmp1, \src8, d1[3] vmla.s16 \tmp2, \src9, d1[3] vmla.s16 \dst1, \src7, d1[2] vmla.s16 \dst2, \src8, d1[2] .if \idx2 == 3 vmla.s16 \tmp1, \src4, d0[3] vmla.s16 \tmp2, \src5, d0[3] .else vmla.s16 \tmp1, \src5, d1[0] vmla.s16 \tmp2, \src6, d1[0] .endif vqadd.s16 \dst1, \dst1, \tmp1 vqadd.s16 \dst2, \dst2, \tmp2 .endm @ Load pixels and extend them to 16 bit .macro loadl dst1, dst2, dst3, dst4 vld1.8 {d2}, [r2], r3 vld1.8 {d3}, [r2], r3 vld1.8 {d4}, [r2], r3 .ifnb \dst4 vld1.8 {d5}, [r2], r3 .endif vmovl.u8 \dst1, d2 vmovl.u8 \dst2, d3 vmovl.u8 \dst3, d4 .ifnb \dst4 vmovl.u8 \dst4, d5 .endif .endm @ Instantiate a vertical filter function for filtering 8 pixels at a time. @ The height is passed in r4, the width in r5 and the filter coefficients @ in r12. idx2 is the index of the largest filter coefficient (3 or 4) @ and idx1 is the other one of them. .macro do_8tap_8v type, idx1, idx2 function \type\()_8tap_8v_\idx1\idx2 sub r2, r2, r3, lsl #1 sub r2, r2, r3 vld1.8 {d0}, [r12, :64] vmovl.s8 q0, d0 1: mov r12, r4 loadl q5, q6, q7 loadl q8, q9, q10, q11 2: loadl q12, q13, q14, q15 convolve q1, q2, q5, q6, q7, q8, q9, q10, q11, q12, q13, \idx1, \idx2, q4, q5 convolve q3, q4, q7, q8, q9, q10, q11, q12, q13, q14, q15, \idx1, \idx2, q5, q6 do_store q1, d2, q2, d4, q3, d6, q4, d8, d3, d5, d7, d9, \type subs r12, r12, #4 beq 8f loadl q4, q5, q6, q7 convolve q1, q2, q9, q10, q11, q12, q13, q14, q15, q4, q5, \idx1, \idx2, q8, q9 convolve q3, q8, q11, q12, q13, q14, q15, q4, q5, q6, q7, \idx1, \idx2, q9, q10 do_store q1, d2, q2, d4, q3, d6, q8, d16, d3, d5, d7, d17, \type subs r12, r12, #4 beq 8f loadl q8, q9, q10, q11 convolve q1, q2, q13, q14, q15, q4, q5, q6, q7, q8, q9, \idx1, \idx2, q12, q13 convolve q3, q12, q15, q4, q5, q6, q7, q8, q9, q10, q11, \idx1, \idx2, q13, q14 do_store q1, d2, q2, d4, q3, d6, q12, d24, d3, d5, d7, d25, \type subs r12, r12, #4 bne 2b 8: subs r5, r5, #8 beq 9f @ r0 -= h * dst_stride mls r0, r1, r4, r0 @ r2 -= h * src_stride mls r2, r3, r4, r2 @ r2 -= 8 * src_stride sub r2, r2, r3, lsl #3 @ r2 += 1 * src_stride add r2, r2, r3 add r2, r2, #8 add r0, r0, #8 b 1b 9: vpop {q4-q7} pop {r4-r5} bx lr endfunc .endm do_8tap_8v put, 3, 4 do_8tap_8v put, 4, 3 do_8tap_8v avg, 3, 4 do_8tap_8v avg, 4, 3 @ Instantiate a vertical filter function for filtering a 4 pixels wide @ slice. The first half of the registers contain one row, while the second @ half of a register contains the second-next row (also stored in the first @ half of the register two steps ahead). The convolution does two outputs @ at a time; the output of q5-q12 into one, and q4-q13 into another one. @ The first half of first output is the first output row, the first half @ of the other output is the second output row. The second halves of the @ registers are rows 3 and 4. @ This only is designed to work for 4 or 8 output lines. .macro do_8tap_4v type, idx1, idx2 function \type\()_8tap_4v_\idx1\idx2 sub r2, r2, r3, lsl #1 sub r2, r2, r3 vld1.8 {d0}, [r12, :64] vmovl.s8 q0, d0 vld1.32 {d2[]}, [r2], r3 vld1.32 {d3[]}, [r2], r3 vld1.32 {d4[]}, [r2], r3 vld1.32 {d5[]}, [r2], r3 vld1.32 {d6[]}, [r2], r3 vld1.32 {d7[]}, [r2], r3 vext.8 d2, d2, d4, #4 vld1.32 {d8[]}, [r2], r3 vext.8 d3, d3, d5, #4 vld1.32 {d9[]}, [r2], r3 vmovl.u8 q5, d2 vext.8 d4, d4, d6, #4 vld1.32 {d28[]}, [r2], r3 vmovl.u8 q6, d3 vext.8 d5, d5, d7, #4 vld1.32 {d29[]}, [r2], r3 vmovl.u8 q7, d4 vext.8 d6, d6, d8, #4 vld1.32 {d30[]}, [r2], r3 vmovl.u8 q8, d5 vext.8 d7, d7, d9, #4 vmovl.u8 q9, d6 vext.8 d8, d8, d28, #4 vmovl.u8 q10, d7 vext.8 d9, d9, d29, #4 vmovl.u8 q11, d8 vext.8 d28, d28, d30, #4 vmovl.u8 q12, d9 vmovl.u8 q13, d28 convolve q1, q2, q5, q6, q7, q8, q9, q10, q11, q12, q13, \idx1, \idx2, q4, q3 do_store4 q1, d2, q2, d4, d3, d5, \type subs r4, r4, #4 beq 9f vld1.32 {d2[]}, [r2], r3 vld1.32 {d3[]}, [r2], r3 vext.8 d29, d29, d2, #4 vext.8 d30, d30, d3, #4 vld1.32 {d2[1]}, [r2], r3 vmovl.u8 q14, d29 vld1.32 {d3[1]}, [r2], r3 vmovl.u8 q15, d30 vmovl.u8 q5, d2 vmovl.u8 q6, d3 convolve q1, q2, q9, q10, q11, q12, q13, q14, q15, q5, q6, \idx1, \idx2, q4, q3 do_store4 q1, d2, q2, d4, d3, d5, \type 9: vpop {q4-q7} pop {r4-r5} bx lr endfunc .endm do_8tap_4v put, 3, 4 do_8tap_4v put, 4, 3 do_8tap_4v avg, 3, 4 do_8tap_4v avg, 4, 3 .macro do_8tap_v_func type, filter, offset, size function ff_vp9_\type\()_\filter\()\size\()_v_neon, export=1 push {r4-r5} vpush {q4-q7} ldr r4, [sp, #72] movrelx r12, X(ff_vp9_subpel_filters), r5 ldr r5, [sp, #80] add r12, r12, 120*\offset - 8 add r12, r12, r5, lsl #3 cmp r5, #8 mov r5, #\size .if \size >= 8 bge \type\()_8tap_8v_34 b \type\()_8tap_8v_43 .else bge \type\()_8tap_4v_34 b \type\()_8tap_4v_43 .endif endfunc .endm .macro do_8tap_v_filters size do_8tap_v_func put, regular, 1, \size do_8tap_v_func avg, regular, 1, \size do_8tap_v_func put, sharp, 2, \size do_8tap_v_func avg, sharp, 2, \size do_8tap_v_func put, smooth, 0, \size do_8tap_v_func avg, smooth, 0, \size .endm do_8tap_v_filters 64 do_8tap_v_filters 32 do_8tap_v_filters 16 do_8tap_v_filters 8 do_8tap_v_filters 4