/* * DCA XLL extension * * Copyright (C) 2012 Paul B Mahol * Copyright (C) 2014 Niels Möller * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/attributes.h" #include "libavutil/common.h" #include "libavutil/internal.h" #include "avcodec.h" #include "dca.h" #include "dcadata.h" #include "get_bits.h" #include "unary.h" /* Sign as bit 0 */ static inline int get_bits_sm(GetBitContext *s, unsigned n) { int x = get_bits(s, n); if (x & 1) return -(x >> 1) - 1; else return x >> 1; } /* Return -1 on error. */ static int32_t get_dmix_coeff(DCAContext *s, int inverse) { unsigned code = get_bits(&s->gb, 9); int32_t sign = (int32_t) (code >> 8) - 1; unsigned idx = code & 0xff; int inv_offset = FF_DCA_DMIXTABLE_SIZE -FF_DCA_INV_DMIXTABLE_SIZE; if (idx >= FF_DCA_DMIXTABLE_SIZE) { av_log(s->avctx, AV_LOG_ERROR, "XLL: Invalid channel set downmix code %x\n", code); return -1; } else if (!inverse) { return (ff_dca_dmixtable[idx] ^ sign) - sign; } else if (idx < inv_offset) { av_log(s->avctx, AV_LOG_ERROR, "XLL: Invalid channel set inverse downmix code %x\n", code); return -1; } else { return (ff_dca_inv_dmixtable[idx - inv_offset] ^ sign) - sign; } } static int32_t dca_get_dmix_coeff(DCAContext *s) { return get_dmix_coeff(s, 0); } static int32_t dca_get_inv_dmix_coeff(DCAContext *s) { return get_dmix_coeff(s, 1); } /* parse XLL header */ int ff_dca_xll_decode_header(DCAContext *s) { int hdr_pos, hdr_size; av_unused int version, frame_size; int i, chset_index; /* get bit position of sync header */ hdr_pos = get_bits_count(&s->gb) - 32; version = get_bits(&s->gb, 4) + 1; hdr_size = get_bits(&s->gb, 8) + 1; frame_size = get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1) + 1; s->xll_channels = s->xll_residual_channels = 0; s->xll_nch_sets = get_bits(&s->gb, 4) + 1; s->xll_segments = 1 << get_bits(&s->gb, 4); s->xll_log_smpl_in_seg = get_bits(&s->gb, 4); s->xll_smpl_in_seg = 1 << s->xll_log_smpl_in_seg; s->xll_bits4seg_size = get_bits(&s->gb, 5) + 1; s->xll_banddata_crc = get_bits(&s->gb, 2); s->xll_scalable_lsb = get_bits1(&s->gb); s->xll_bits4ch_mask = get_bits(&s->gb, 5) + 1; if (s->xll_scalable_lsb) { s->xll_fixed_lsb_width = get_bits(&s->gb, 4); if (s->xll_fixed_lsb_width) av_log(s->avctx, AV_LOG_WARNING, "XLL: fixed lsb width = %d, non-zero not supported.\n", s->xll_fixed_lsb_width); } /* skip to the end of the common header */ i = get_bits_count(&s->gb); if (hdr_pos + hdr_size * 8 > i) skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i); for (chset_index = 0; chset_index < s->xll_nch_sets; chset_index++) { XllChSetSubHeader *chset = &s->xll_chsets[chset_index]; hdr_pos = get_bits_count(&s->gb); hdr_size = get_bits(&s->gb, 10) + 1; chset->channels = get_bits(&s->gb, 4) + 1; chset->residual_encode = get_bits(&s->gb, chset->channels); chset->bit_resolution = get_bits(&s->gb, 5) + 1; chset->bit_width = get_bits(&s->gb, 5) + 1; chset->sampling_frequency = ff_dca_sampling_freqs[get_bits(&s->gb, 4)]; chset->samp_freq_interp = get_bits(&s->gb, 2); chset->replacement_set = get_bits(&s->gb, 2); if (chset->replacement_set) chset->active_replace_set = get_bits(&s->gb, 1); if (s->one2one_map_chtospkr) { chset->primary_ch_set = get_bits(&s->gb, 1); chset->downmix_coeff_code_embedded = get_bits(&s->gb, 1); if (chset->downmix_coeff_code_embedded) { chset->downmix_embedded = get_bits(&s->gb, 1); if (chset->primary_ch_set) { chset->downmix_type = get_bits(&s->gb, 3); if (chset->downmix_type > 6) { av_log(s->avctx, AV_LOG_ERROR, "XLL: Invalid channel set downmix type\n"); return AVERROR_INVALIDDATA; } } } chset->hier_chset = get_bits(&s->gb, 1); if (chset->downmix_coeff_code_embedded) { /* nDownmixCoeffs is specified as N * M. For a primary * channel set, it appears that N = number of * channels, and M is the number of downmix channels. * * For a non-primary channel set, N is specified as * number of channels + 1, and M is derived from the * channel set hierarchy, and at least in simple cases * M is the number of channels in preceding channel * sets. */ if (chset->primary_ch_set) { static const char dmix_table[7] = { 1, 2, 2, 3, 3, 4, 4 }; chset->downmix_ncoeffs = chset->channels * dmix_table[chset->downmix_type]; } else chset->downmix_ncoeffs = (chset->channels + 1) * s->xll_channels; if (chset->downmix_ncoeffs > DCA_XLL_DMIX_NCOEFFS_MAX) { avpriv_request_sample(s->avctx, "XLL: More than %d downmix coefficients", DCA_XLL_DMIX_NCOEFFS_MAX); return AVERROR_PATCHWELCOME; } else if (chset->primary_ch_set) { for (i = 0; i < chset->downmix_ncoeffs; i++) if ((chset->downmix_coeffs[i] = dca_get_dmix_coeff(s)) == -1) return AVERROR_INVALIDDATA; } else { unsigned c, r; for (c = 0, i = 0; c < s->xll_channels; c++, i += chset->channels + 1) { if ((chset->downmix_coeffs[i] = dca_get_inv_dmix_coeff(s)) == -1) return AVERROR_INVALIDDATA; for (r = 1; r <= chset->channels; r++) { int32_t coeff = dca_get_dmix_coeff(s); if (coeff == -1) return AVERROR_INVALIDDATA; chset->downmix_coeffs[i + r] = (chset->downmix_coeffs[i] * (int64_t) coeff + (1 << 15)) >> 16; } } } } chset->ch_mask_enabled = get_bits(&s->gb, 1); if (chset->ch_mask_enabled) chset->ch_mask = get_bits(&s->gb, s->xll_bits4ch_mask); else /* Skip speaker configuration bits */ skip_bits_long(&s->gb, 25 * chset->channels); } else { chset->primary_ch_set = 1; chset->downmix_coeff_code_embedded = 0; /* Spec: NumChHierChSet = 0, NumDwnMixCodeCoeffs = 0, whatever that means. */ chset->mapping_coeffs_present = get_bits(&s->gb, 1); if (chset->mapping_coeffs_present) { avpriv_report_missing_feature(s->avctx, "XLL: mapping coefficients"); return AVERROR_PATCHWELCOME; } } if (chset->sampling_frequency > 96000) chset->num_freq_bands = 2 * (1 + get_bits(&s->gb, 1)); else chset->num_freq_bands = 1; if (chset->num_freq_bands > 1) { avpriv_report_missing_feature(s->avctx, "XLL: num_freq_bands > 1"); return AVERROR_PATCHWELCOME; } if (get_bits(&s->gb, 1)) { /* pw_ch_decor_enabled */ int bits = av_ceil_log2(chset->channels); for (i = 0; i < chset->channels; i++) { unsigned j = get_bits(&s->gb, bits); if (j >= chset->channels) { av_log(s->avctx, AV_LOG_ERROR, "Original channel order value %u too large, only %d channels.\n", j, chset->channels); return AVERROR_INVALIDDATA; } chset->orig_chan_order[0][i] = j; chset->orig_chan_order_inv[0][j] = i; } for (i = 0; i < chset->channels / 2; i++) { if (get_bits(&s->gb, 1)) /* bChPFlag */ chset->pw_ch_pairs_coeffs[0][i] = get_bits_sm(&s->gb, 7); else chset->pw_ch_pairs_coeffs[0][i] = 0; } } else { for (i = 0; i < chset->channels; i++) chset->orig_chan_order[0][i] = chset->orig_chan_order_inv[0][i] = i; for (i = 0; i < chset->channels / 2; i++) chset->pw_ch_pairs_coeffs[0][i] = 0; } /* Adaptive prediction order */ chset->adapt_order_max[0] = 0; for (i = 0; i < chset->channels; i++) { chset->adapt_order[0][i] = get_bits(&s->gb, 4); if (chset->adapt_order_max[0] < chset->adapt_order[0][i]) chset->adapt_order_max[0] = chset->adapt_order[0][i]; } /* Fixed prediction order, used in case the adaptive order * above is zero */ for (i = 0; i < chset->channels; i++) chset->fixed_order[0][i] = chset->adapt_order[0][i] ? 0 : get_bits(&s->gb, 2); for (i = 0; i < chset->channels; i++) { unsigned j; for (j = 0; j < chset->adapt_order[0][i]; j++) chset->lpc_refl_coeffs_q_ind[0][i][j] = get_bits(&s->gb, 8); } if (s->xll_scalable_lsb) { chset->lsb_fsize[0] = get_bits(&s->gb, s->xll_bits4seg_size); for (i = 0; i < chset->channels; i++) chset->scalable_lsbs[0][i] = get_bits(&s->gb, 4); for (i = 0; i < chset->channels; i++) chset->bit_width_adj_per_ch[0][i] = get_bits(&s->gb, 4); } else { memset(chset->scalable_lsbs[0], 0, chset->channels * sizeof(chset->scalable_lsbs[0][0])); memset(chset->bit_width_adj_per_ch[0], 0, chset->channels * sizeof(chset->bit_width_adj_per_ch[0][0])); } s->xll_channels += chset->channels; s->xll_residual_channels += chset->channels - av_popcount(chset->residual_encode); /* FIXME: Parse header data for extra frequency bands. */ /* Skip to end of channel set sub header. */ i = get_bits_count(&s->gb); if (hdr_pos + 8 * hdr_size < i) { av_log(s->avctx, AV_LOG_ERROR, "chset header too large, %d bits, should be <= %d bits\n", i - hdr_pos, 8 * hdr_size); return AVERROR_INVALIDDATA; } if (hdr_pos + 8 * hdr_size > i) skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i); } return 0; } /* parse XLL navigation table */ int ff_dca_xll_decode_navi(DCAContext *s, int asset_end) { int nbands, band, chset, seg, data_start; /* FIXME: Supports only a single frequency band */ nbands = 1; for (band = 0; band < nbands; band++) { s->xll_navi.band_size[band] = 0; for (seg = 0; seg < s->xll_segments; seg++) { /* Note: The spec, ETSI TS 102 114 V1.4.1 (2012-09), says * we should read a base value for segment_size from the * stream, before reading the sizes of the channel sets. * But that's apparently incorrect. */ s->xll_navi.segment_size[band][seg] = 0; for (chset = 0; chset < s->xll_nch_sets; chset++) if (band < s->xll_chsets[chset].num_freq_bands) { s->xll_navi.chset_size[band][seg][chset] = get_bits(&s->gb, s->xll_bits4seg_size) + 1; s->xll_navi.segment_size[band][seg] += s->xll_navi.chset_size[band][seg][chset]; } s->xll_navi.band_size[band] += s->xll_navi.segment_size[band][seg]; } } /* Align to 8 bits and skip 16-bit CRC. */ skip_bits_long(&s->gb, 16 + ((-get_bits_count(&s->gb)) & 7)); data_start = get_bits_count(&s->gb); if (data_start + 8 * s->xll_navi.band_size[0] > asset_end) { av_log(s->avctx, AV_LOG_ERROR, "XLL: Data in NAVI table exceeds containing asset\n" "start: %d (bit), size %u (bytes), end %d (bit), error %u\n", data_start, s->xll_navi.band_size[0], asset_end, data_start + 8 * s->xll_navi.band_size[0] - asset_end); return AVERROR_INVALIDDATA; } init_get_bits(&s->xll_navi.gb, s->gb.buffer + data_start / 8, 8 * s->xll_navi.band_size[0]); return 0; } static void dca_xll_inv_adapt_pred(int *samples, int nsamples, unsigned order, const int *prev, const uint8_t *q_ind) { static const uint16_t table[0x81] = { 0, 3070, 5110, 7140, 9156, 11154, 13132, 15085, 17010, 18904, 20764, 22588, 24373, 26117, 27818, 29474, 31085, 32648, 34164, 35631, 37049, 38418, 39738, 41008, 42230, 43404, 44530, 45609, 46642, 47630, 48575, 49477, 50337, 51157, 51937, 52681, 53387, 54059, 54697, 55302, 55876, 56421, 56937, 57426, 57888, 58326, 58741, 59132, 59502, 59852, 60182, 60494, 60789, 61066, 61328, 61576, 61809, 62029, 62236, 62431, 62615, 62788, 62951, 63105, 63250, 63386, 63514, 63635, 63749, 63855, 63956, 64051, 64140, 64224, 64302, 64376, 64446, 64512, 64573, 64631, 64686, 64737, 64785, 64830, 64873, 64913, 64950, 64986, 65019, 65050, 65079, 65107, 65133, 65157, 65180, 65202, 65222, 65241, 65259, 65275, 65291, 65306, 65320, 65333, 65345, 65357, 65368, 65378, 65387, 65396, 65405, 65413, 65420, 65427, 65434, 65440, 65446, 65451, 65456, 65461, 65466, 65470, 65474, 65478, 65481, 65485, 65488, 65491, 65535, /* Final value is for the -128 corner case, see below. */ }; int c[DCA_XLL_AORDER_MAX]; int64_t s; unsigned i, j; for (i = 0; i < order; i++) { if (q_ind[i] & 1) /* The index value 0xff corresponds to a lookup of entry 0x80 in * the table, and no value is provided in the specification. */ c[i] = -table[(q_ind[i] >> 1) + 1]; else c[i] = table[q_ind[i] >> 1]; } /* The description in the spec is a bit convoluted. We can convert * the reflected values to direct values in place, using a * sequence of reflections operating on two values. */ for (i = 1; i < order; i++) { /* i = 1: scale c[0] * i = 2: reflect c[0] <-> c[1] * i = 3: scale c[1], reflect c[0] <-> c[2] * i = 4: reflect c[0] <-> c[3] reflect c[1] <-> c[2] * ... */ if (i & 1) c[i / 2] += ((int64_t) c[i] * c[i / 2] + 0x8000) >> 16; for (j = 0; j < i / 2; j++) { int r0 = c[j]; int r1 = c[i - j - 1]; c[j] += ((int64_t) c[i] * r1 + 0x8000) >> 16; c[i - j - 1] += ((int64_t) c[i] * r0 + 0x8000) >> 16; } } /* Apply predictor. */ /* NOTE: Processing samples in this order means that the * predictor is applied to the newly reconstructed samples. */ if (prev) { for (i = 0; i < order; i++) { for (j = s = 0; j < i; j++) s += (int64_t) c[j] * samples[i - 1 - j]; for (; j < order; j++) s += (int64_t) c[j] * prev[DCA_XLL_AORDER_MAX + i - 1 - j]; samples[i] -= av_clip((s + 0x8000) >> 16, -0x1000000, 0xffffff); } } for (i = order; i < nsamples; i++) { for (j = s = 0; j < order; j++) s += (int64_t) c[j] * samples[i - 1 - j]; /* NOTE: Equations seem to imply addition, while the * pseudocode seems to use subtraction.*/ samples[i] -= av_clip((s + 0x8000) >> 16, -0x1000000, 0xffffff); } } int ff_dca_xll_decode_audio(DCAContext *s, AVFrame *frame) { /* FIXME: Decodes only the first frequency band. */ int seg, chset_i; /* Coding parameters for each channel set. */ struct coding_params { int seg_type; int rice_code_flag[16]; int pancAuxABIT[16]; int pancABIT0[16]; /* Not sure what this is */ int pancABIT[16]; /* Not sure what this is */ int nSamplPart0[16]; } param_state[16]; GetBitContext *gb = &s->xll_navi.gb; int *history; /* Layout: First the sample buffer for one segment per channel, * followed by history buffers of DCA_XLL_AORDER_MAX samples for * each channel. */ av_fast_malloc(&s->xll_sample_buf, &s->xll_sample_buf_size, (s->xll_smpl_in_seg + DCA_XLL_AORDER_MAX) * s->xll_channels * sizeof(*s->xll_sample_buf)); if (!s->xll_sample_buf) return AVERROR(ENOMEM); history = s->xll_sample_buf + s->xll_smpl_in_seg * s->xll_channels; for (seg = 0; seg < s->xll_segments; seg++) { unsigned in_channel; for (chset_i = in_channel = 0; chset_i < s->xll_nch_sets; chset_i++) { /* The spec isn't very explicit, but I think the NAVI sizes are in bytes. */ int end_pos = get_bits_count(gb) + 8 * s->xll_navi.chset_size[0][seg][chset_i]; int i, j; struct coding_params *params = ¶m_state[chset_i]; /* I think this flag means that we should keep seg_type and * other parameters from the previous segment. */ int use_seg_state_code_param; XllChSetSubHeader *chset = &s->xll_chsets[chset_i]; if (in_channel >= s->avctx->channels) /* FIXME: Could go directly to next segment */ goto next_chset; if (s->avctx->sample_rate != chset->sampling_frequency) { av_log(s->avctx, AV_LOG_WARNING, "XLL: unexpected chset sample rate %d, expected %d\n", chset->sampling_frequency, s->avctx->sample_rate); goto next_chset; } if (seg != 0) use_seg_state_code_param = get_bits(gb, 1); else use_seg_state_code_param = 0; if (!use_seg_state_code_param) { int num_param_sets, i; unsigned bits4ABIT; params->seg_type = get_bits(gb, 1); num_param_sets = params->seg_type ? 1 : chset->channels; if (chset->bit_width > 16) { bits4ABIT = 5; } else { if (chset->bit_width > 8) bits4ABIT = 4; else bits4ABIT = 3; if (s->xll_nch_sets > 1) bits4ABIT++; } for (i = 0; i < num_param_sets; i++) { params->rice_code_flag[i] = get_bits(gb, 1); if (!params->seg_type && params->rice_code_flag[i] && get_bits(gb, 1)) params->pancAuxABIT[i] = get_bits(gb, bits4ABIT) + 1; else params->pancAuxABIT[i] = 0; } for (i = 0; i < num_param_sets; i++) { if (!seg) { /* Parameters for part 1 */ params->pancABIT0[i] = get_bits(gb, bits4ABIT); if (params->rice_code_flag[i] == 0 && params->pancABIT0[i] > 0) /* For linear code */ params->pancABIT0[i]++; /* NOTE: In the spec, not indexed by band??? */ if (params->seg_type == 0) params->nSamplPart0[i] = chset->adapt_order[0][i]; else params->nSamplPart0[i] = chset->adapt_order_max[0]; } else params->nSamplPart0[i] = 0; /* Parameters for part 2 */ params->pancABIT[i] = get_bits(gb, bits4ABIT); if (params->rice_code_flag[i] == 0 && params->pancABIT[i] > 0) /* For linear code */ params->pancABIT[i]++; } } for (i = 0; i < chset->channels; i++) { int param_index = params->seg_type ? 0 : i; int bits = params->pancABIT0[param_index]; int part0 = params->nSamplPart0[param_index]; int *sample_buf = s->xll_sample_buf + (in_channel + i) * s->xll_smpl_in_seg; if (!params->rice_code_flag[param_index]) { /* Linear code */ if (bits) for (j = 0; j < part0; j++) sample_buf[j] = get_bits_sm(gb, bits); else memset(sample_buf, 0, part0 * sizeof(sample_buf[0])); /* Second part */ bits = params->pancABIT[param_index]; if (bits) for (j = part0; j < s->xll_smpl_in_seg; j++) sample_buf[j] = get_bits_sm(gb, bits); else memset(sample_buf + part0, 0, (s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0])); } else { int aux_bits = params->pancAuxABIT[param_index]; for (j = 0; j < part0; j++) { /* FIXME: Is this identical to Golomb code? */ int t = get_unary(gb, 1, 33) << bits; /* FIXME: Could move this test outside of the loop, for efficiency. */ if (bits) t |= get_bits(gb, bits); sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1); } /* Second part */ bits = params->pancABIT[param_index]; /* Follow the spec's suggestion of using the * buffer also to store the hybrid-rice flags. */ memset(sample_buf + part0, 0, (s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0])); if (aux_bits > 0) { /* For hybrid rice encoding, some samples are linearly * coded. According to the spec, "nBits4SamplLoci" bits * are used for each index, but this value is not * defined. I guess we should use log2(xll_smpl_in_seg) * bits. */ int count = get_bits(gb, s->xll_log_smpl_in_seg); av_log(s->avctx, AV_LOG_DEBUG, "aux count %d (bits %d)\n", count, s->xll_log_smpl_in_seg); for (j = 0; j < count; j++) sample_buf[get_bits(gb, s->xll_log_smpl_in_seg)] = 1; } for (j = part0; j < s->xll_smpl_in_seg; j++) { if (!sample_buf[j]) { int t = get_unary(gb, 1, 33); if (bits) t = (t << bits) | get_bits(gb, bits); sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1); } else sample_buf[j] = get_bits_sm(gb, aux_bits); } } } for (i = 0; i < chset->channels; i++) { unsigned adapt_order = chset->adapt_order[0][i]; int *sample_buf = s->xll_sample_buf + (in_channel + i) * s->xll_smpl_in_seg; int *prev = history + (in_channel + i) * DCA_XLL_AORDER_MAX; if (!adapt_order) { unsigned order; for (order = chset->fixed_order[0][i]; order > 0; order--) { unsigned j; for (j = 1; j < s->xll_smpl_in_seg; j++) sample_buf[j] += sample_buf[j - 1]; } } else /* Inverse adaptive prediction, in place. */ dca_xll_inv_adapt_pred(sample_buf, s->xll_smpl_in_seg, adapt_order, seg ? prev : NULL, chset->lpc_refl_coeffs_q_ind[0][i]); memcpy(prev, sample_buf + s->xll_smpl_in_seg - DCA_XLL_AORDER_MAX, DCA_XLL_AORDER_MAX * sizeof(*prev)); } for (i = 1; i < chset->channels; i += 2) { int coeff = chset->pw_ch_pairs_coeffs[0][i / 2]; if (coeff != 0) { int *sample_buf = s->xll_sample_buf + (in_channel + i) * s->xll_smpl_in_seg; int *prev = sample_buf - s->xll_smpl_in_seg; unsigned j; for (j = 0; j < s->xll_smpl_in_seg; j++) /* Shift is unspecified, but should apparently be 3. */ sample_buf[j] += ((int64_t) coeff * prev[j] + 4) >> 3; } } if (s->xll_scalable_lsb) { int lsb_start = end_pos - 8 * chset->lsb_fsize[0] - 8 * (s->xll_banddata_crc & 2); int done; i = get_bits_count(gb); if (i > lsb_start) { av_log(s->avctx, AV_LOG_ERROR, "chset data lsb exceeds NAVI size, end_pos %d, lsb_start %d, pos %d\n", end_pos, lsb_start, i); return AVERROR_INVALIDDATA; } if (i < lsb_start) skip_bits_long(gb, lsb_start - i); for (i = done = 0; i < chset->channels; i++) { int bits = chset->scalable_lsbs[0][i]; if (bits > 0) { /* The channel reordering is conceptually done * before adding the lsb:s, so we need to do * the inverse permutation here. */ unsigned pi = chset->orig_chan_order_inv[0][i]; int *sample_buf = s->xll_sample_buf + (in_channel + pi) * s->xll_smpl_in_seg; int adj = chset->bit_width_adj_per_ch[0][i]; int msb_shift = bits; unsigned j; if (adj > 0) msb_shift += adj - 1; for (j = 0; j < s->xll_smpl_in_seg; j++) sample_buf[j] = (sample_buf[j] << msb_shift) + (get_bits(gb, bits) << adj); done += bits * s->xll_smpl_in_seg; } } if (done > 8 * chset->lsb_fsize[0]) { av_log(s->avctx, AV_LOG_ERROR, "chset lsb exceeds lsb_size\n"); return AVERROR_INVALIDDATA; } } /* Store output. */ for (i = 0; i < chset->channels; i++) { int *sample_buf = s->xll_sample_buf + (in_channel + i) * s->xll_smpl_in_seg; int shift = 1 - chset->bit_resolution; int out_channel = chset->orig_chan_order[0][i]; float *out; /* XLL uses the channel order C, L, R, and we want L, * R, C. FIXME: Generalize. */ if (chset->ch_mask_enabled && (chset->ch_mask & 7) == 7 && out_channel < 3) out_channel = out_channel ? out_channel - 1 : 2; out_channel += in_channel; if (out_channel >= s->avctx->channels) continue; out = (float *) frame->extended_data[out_channel]; out += seg * s->xll_smpl_in_seg; /* NOTE: A one bit means residual encoding is *not* used. */ if ((chset->residual_encode >> i) & 1) { /* Replace channel samples. * FIXME: Most likely not the right thing to do. */ for (j = 0; j < s->xll_smpl_in_seg; j++) out[j] = ldexpf(sample_buf[j], shift); } else { /* Add residual signal to core channel */ for (j = 0; j < s->xll_smpl_in_seg; j++) out[j] += ldexpf(sample_buf[j], shift); } } if (chset->downmix_coeff_code_embedded && !chset->primary_ch_set && chset->hier_chset) { /* Undo hierarchical downmix of earlier channels. */ unsigned mix_channel; for (mix_channel = 0; mix_channel < in_channel; mix_channel++) { float *mix_buf; const int *col; float coeff; unsigned row; /* Similar channel reorder C, L, R vs L, R, C reorder. */ if (chset->ch_mask_enabled && (chset->ch_mask & 7) == 7 && mix_channel < 3) mix_buf = (float *) frame->extended_data[mix_channel ? mix_channel - 1 : 2]; else mix_buf = (float *) frame->extended_data[mix_channel]; mix_buf += seg * s->xll_smpl_in_seg; col = &chset->downmix_coeffs[mix_channel * (chset->channels + 1)]; /* Scale */ coeff = ldexpf(col[0], -16); for (j = 0; j < s->xll_smpl_in_seg; j++) mix_buf[j] *= coeff; for (row = 0; row < chset->channels && in_channel + row < s->avctx->channels; row++) if (col[row + 1]) { const float *new_channel = (const float *) frame->extended_data[in_channel + row]; new_channel += seg * s->xll_smpl_in_seg; coeff = ldexpf(col[row + 1], -15); for (j = 0; j < s->xll_smpl_in_seg; j++) mix_buf[j] -= coeff * new_channel[j]; } } } next_chset: in_channel += chset->channels; /* Skip to next channel set using the NAVI info. */ i = get_bits_count(gb); if (i > end_pos) { av_log(s->avctx, AV_LOG_ERROR, "chset data exceeds NAVI size\n"); return AVERROR_INVALIDDATA; } if (i < end_pos) skip_bits_long(gb, end_pos - i); } } return 0; }